
J. Fluid Mech. (2024), vol. 984, A10, doi:10.1017/jfm.2024.112

Regular reflection of shock waves in steady flows:
viscous and non-equilibrium effects
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Numerical analysis of a steady monatomic gas flow about the point of the regular
reflection of a strong oblique shock wave from the symmetry plane is conducted with the
Navier–Stokes–Fourier (NSF) equations, the regularized Grad 13-moment (R13) equations
and the direct simulation Monte Carlo (DSMC) method. In contrast to the inviscid solution
to this problem completely defined by the Rankine–Hugoniot (RH) relations, all three
models predict a complicated flow structure with strong thermal non-equilibrium and a
long wake with flow parameters not predicted by the RH relations. The temperature Ty
related to thermal motion of molecules in the direction normal to the symmetry plane
has a maximum inside the reflection zone while in a planar shock wave the maximum
is observed for the Tx temperature. The R13 equations predict these features much better
than the NSF equations and are in good agreement with the benchmark DSMC results.
An analysis of the flow with the conservation equations was conducted in order to
evaluate the effects of various processes on a fluid element moving along the symmetry
plane. In contrast to the shock wave where effects of viscosity and heat conduction are
one-dimensional with zeroth net contribution to the fluid-element energy across the shock,
the flow across the zone of the shock reflection is dominated by two-dimensional effects
with positive net contribution of viscosity and negative contribution of heat conduction to
the fluid-element energy. These effects are believed to be the main source of the wake with
parameters deviating from the RH values.
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1. Introduction

Most of the classical gas dynamic problems are characterized by a linear scale of the
flow being much larger than the mean free path of molecules. In this case, molecules
experience a sufficiently large number of collisions within the characteristic time of the
flow, and the velocity distribution function is close to the equilibrium Maxwellian form.
If the flow length scale is comparable to the mean free path, the velocity distribution may
significantly diverge from the Maxwellian form. Such a situation is observed if the gas
density is low (high altitudes or vacuum facilities) (Muntz 1989) or if the length scale is
small (microflows) (Karniadakis, Beskok & Aluru 2005). A classical example of the flow
with the length scale close to the mean free path is the internal structure of the front of a
planar shock wave in a simple monatomic gas (Becker 1922; Mott-Smith 1951; Grad 1952;
Kogan 1969; Shakhov 1974; Alsmeyer 1976; Bird 1994; Erofeev & Friedlander 2002).

In inviscid gas dynamics, the shock waves are treated as discontinuities (see, e.g. Landau
& Lifshitz 1987). This fact implies that the mean free path tends to zero in comparison
with the flow scale. The discontinuity is schematically shown in figure 1(a) in the
reference frame of the shock. The flow direction is from left to right. In more complicated
mathematical models of the gas flow taking into account viscosity and other transport
phenomena, smooth transition between upstream and downstream states occurs in shock
waves (see figure 1b) (Becker 1922; Kogan 1969; Landau & Lifshitz 1987; Cercignani
1988). It is a well-known fact that the shock-wave thickness for sufficiently dilute gases
constitutes several mean free paths, and its structure is independent of the flow density if
the coordinate is normalized to the mean free path (see e.g. Kogan 1969; Cercignani 1988).
The transition from one equilibrium Maxwell phase density in front of the shock wave to
another behind it occurs through a non-equilibrium region inside the front (Mott-Smith
1951; Salwen, Grosch & Ziering 1964). The degree of this non-equilibrium increases with
increasing Mach number of the shock, which is equal to the Mach number of the upstream
flow in the shock-wave frame of reference.

For the case of dilute simple gases, an accurate description of the shock structure
is provided by the kinetic Boltzmann equation. Other models are less detailed and
can be divided into kinetic models using simplified forms of the Boltzmann collision
integral (Bhatnagar, Gross & Krook 1954; Shakhov 1968; Larina & Rykov 2013) and
continuum models based on equations containing macroscopic parameters (moments of
the velocity distribution function) (Grad 1949; Kogan 1969; Chapman & Cowling 1991;
Struchtrup 2005). It is worth mentioning that, in addition to parameters that define
intermolecular interaction, the shock-wave structure depends only on one dimensionless
similarity criterion – the Mach number of the shock. Moreover, in addition to the
intrinsic one-dimensionality, the shock-wave problem possesses cylindrical symmetry in
the velocity space, namely, symmetry of the velocity distribution with respect to the flow
velocity vector (Mott-Smith 1951; Salwen et al. 1964; Pham-Van-Diep, Erwin & Muntz
1989; Ohwada 1993).

The shock-wave problem has become one of the key benchmarks for various molecular
interaction models, mathematical approaches and numerical methods in the field of
gas kinetic theory and rarefied gas dynamics (e.g. Grad 1952; Ruggeri 1993; Uribe
et al. 2000; Erofeev & Friedlander 2002; Torrilhon & Struchtrup 2004; Rykov, Titarev
& Shakhov 2008; Xu & Huang 2010; Bobylev et al. 2011; Dodulad & Tcheremissine
2013; Larina & Rykov 2013). Along with the above-mentioned non-equilibrium, the
reasons for this popularity include the importance of shock-wave phenomena in versatile
real-life applications, simplicity of the mathematical formulation and the availability of
experimental data (Cowan & Hornig 1950; Hansen & Hornig 1960; Robben & Talbot

984 A10-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.112


Regular shock reflection: viscous / non-equilibrium effects

Density

(1)

IS

(2)

RS

(1)

2
-D

 o
b
li

q
u
e 

sh
o
ck

 w
av

e

re
g
u
la

r 
re

fl
ec

ti
o
n

(1)

IS

IS
IS(3) (3)

RS

RS

(4)

(4)

(2)

RS

x
y

x

y

1
-D

 p
la

n
ar

 s
h
o
ck

 w
av

e

(2)

x x

(1) (2)

Density

Inviscid(a) (b)

(c) (d )

Viscous

Figure 1. Typical density profiles for 1-D planar shock wave (a,b) and typical flow patterns and flow
directions/streamlines for 2-D RR of oblique shock waves (c,d) in inviscid (a,c) and viscous cases (b,d).

1966; Schmidt 1969; Alsmeyer 1976; Pham-Van-Diep et al. 1989). In validation studies
of various kinetic and continuum gas flow models, the experiments are complemented
with solutions of the Boltzmann equations, both direct solutions (Aristov & Cheremisin
1980) and those obtained by a statistical approach, namely, the direct simulation Monte
Carlo (DSMC) method (Bird 1994). Both approaches provide essentially identical results
on the shock structure including distribution functions (Ohwada 1993) and very fine details
of the flow such as a tiny maximum of the temperature observed for high Mach numbers
(Malkov et al. 2015). The validity of these results is supported by excellent agreement
with experiments both on macroparameter profiles (Belotserkovskii & Yanitskii 1975; Bird
1994; Timokhin et al. 2015) and distribution functions (Pham-Van-Diep et al. 1989).

Real supersonic flows are rarely one-dimensional (1-D). Among steady two-dimensional
(2-D) flows, there are some examples that retain important features of the 1-D planar
shock front problem. Probably, the simplest example is the problem of stationary regular
reflection (RR) of two symmetrical oblique shock waves which is equivalent to the RR of
one oblique shock wave from the symmetry plane (see, e.g. Ben-Dor 2007). Such a flow is
schematically shown in figure 1, where it is compared with the 1-D planar shock structure.
The direction of the incoming supersonic flow (1) is from left to right (see figure 1c).
The flow changes its direction towards the symmetry plane in the incident shocks (IS).
Then it changes direction again to the direction of the incoming flow in the reflected
shocks (RS). Note that the inviscid solution of this problem consists of four zones of a
uniform supersonic flow (1), (2), (3) and (4) (zone (3) is symmetrical to zone (2)) divided
by four straight-line discontinuities (compare with two uniform flow zones divided by one
discontinuity in the 1-D shock case) (Timokhin, Kudryavtsev & Bondar 2022). As in the
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1-D case, the solution can be determined analytically if one knows the incoming flow Mach
number and the IS angle (in the 1-D case, it is sufficient to know only the Mach number).
Note that the solution exists only for shock angles which do not exceed the maximum
shock angle which depends on the Mach number (Ben-Dor 2007). If viscosity and heat
conduction are taken into account, the shock waves acquire their internal structure. No
analytical solution is known for such a flow (see a typical flow pattern and streamlines
in figure 1d). Again, similarly to the 1-D case, the only length scale present is the local
mean free path; that is why the flow structure is density-independent if all coordinates are
normalized to the free stream mean free path. Owing to the above-mentioned features, the
RR problem can be considered as an extension of the planar shock structure problem to a
more complicated 2-D case.

In our previous works (Khotyanovsky et al. 2009; Shoev et al. 2017; Bondar et al. 2019;
Timokhin et al. 2022), interesting features determined by the effects of viscosity, heat
conduction and thermal non-equilibrium were observed for the RR problem. The main
goal of the present work is a detailed investigation of these effects in the RR flow of a
dilute monatomic gas (argon) for the case of a strong IS and its qualitative comparison
with the case of the planar shock wave. The present numerical strategy is based on
employment of a hierarchy of mathematical models of viscous heat-conducting gas flow
with different degrees of accuracy: starting with the less accurate, but the most common
Navier–Stokes–Fourier (NSF) equations, going up in accuracy and intricacy with the
regularized Grad 13-moment equations (R13) (Struchtrup & Torrilhon 2003) and finishing
with the most accurate model – the Boltzmann equation, which is solved by the DSMC
method. The DSMC solution is used here as a benchmark solution, which allows one to
estimate the accuracy of less accurate and less numerically expensive continuum NSF and
R13 models.

The manuscript is structured as follows. The formulation of the problem and the details
of the mathematical models and numerical methods are presented in the next two sections.
Section 4 is devoted to the main results including the comparison of the solutions obtained
with various models, qualitative comparison of the flow structure with the planar shock
case and analysis of the features observed in the flow on the basis of the 2-D flow structure
consideration, as well as analysis of the flow with conservation equations. The summary
of the key points of the study and concluding remarks are presented in the final section of
the paper.

2. Formulation of the problems

In addition to the primary problem of the steady-flow RR, the classical planar shock wave
problem was considered in order to study the qualitative similarities and differences of
the flows. Both problems are presented below. Computations are performed for a perfect
monatomic gas (argon) with the specific heat ratio γ = 5/3 and Prandtl number Pr = 2/3.
A power-law dependence of dynamic viscosity on temperature μ ∝ Tω with ω = 0.72 is
assumed.

2.1. The 1-D planar shock wave structure problem
The flow across a planar shock wave is considered in the frame of reference of the shock
wave front (see figure 1). The flow direction is from left to right. In this formulation, the
free stream density ρ1, velocity v1 and temperature T1 (conditions on the left boundary)
are input parameters of the problem. To impose the boundary conditions on the subsonic
right boundary, the corresponding values of the gas-dynamic quantities ρ2, v2 and T2
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are calculated from the free stream parameters ρ1, v1 and T1 with the use of the
Rankine–Hugoniot (RH) conditions, which express the conservation of mass, momentum
and energy (Rankine 1870),

ρ1v1 = ρ2v2,

ρ1v
2
1 + p1 = ρ2v

2
2 + p2,

v2
1

2
+ h1 = v2

2
2

+ h2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.1)

where p is the pressure and h is the enthalpy. For a perfect monatomic gas

h = p
ρ

+ 3
2

RT = 5
2

RT = 5
2

k
m

T, (2.2)

where k is the Boltzmann constant, m is the molecular mass and R = k/m is the gas
constant. As was mentioned in the Introduction, the shock Mach number is

Ma∞ = v1√
γ RT1

= v1√
5RT1/3

, (2.3)

where γ = 5/3 is specific heat ratio. Here Ma∞ is the only similarity parameter of the
flow apart from the molecular collision model parameters. Computations were performed
for Ma∞ = 8, which is a typical test case in numerical studies of strong shock waves (see
e.g. Bird 1994) with a high degree of thermal non-equilibrium inside the front.

2.2. The 2-D problem of shock-wave regular reflection in a steady flow
In the present work, the problem of RR of an oblique shock wave is considered as an
extension of the 1-D planar shock wave structure problem to the 2-D case. As was stated
in the Introduction, both problems share some important similarities; in particular, both of
them have analytical inviscid solutions based on the classical RH conditions. In the 1-D
flow, the solution consists of two regions with constant flow parameters divided by a shock
discontinuity and connected through the RH conditions on the planar shock. In the 2-D RR
flow, the solution is more complicated and consists of four zones with constant parameters
(see figure 1c). These zones are separated by the IS and RS discontinuities.

The flow parameters in zones (2) and (3) are computed by the RH conditions on the
oblique IS from the free stream parameters of zone (1). These conditions are similar to
those of the planar shock (2.1) if the component of velocity normal to the shock front is
considered (the tangential component of the velocity has no discontinuity on the shock
front). The flow parameters in zone (4) are also calculated with the RH conditions on
the oblique RS from the parameters in zone (2) or zone (3). Recall that both problems
in viscous flows also have a similarity: the flow structure in the region of interest is
independent of flow density (as well as the Knudsen and Reynolds numbers) if it is
presented in coordinates normalized to the free stream mean free path.

In the present work, the RR problem is considered in the following formulation. Two
IS waves are generated by two wedges placed in a supersonic viscous flow. A typical
flow structure is presented in figure 2. Dashed green lines on the plot denote upstream
and downstream viscous shock ‘boundaries’. They can be defined quite arbitrarily, e.g. by
one per cent difference in density from the RH upstream and downstream values, and are
plotted only for illustration purposes.
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Figure 2. Flow structure in the RR problem.

The flow Mach number is defined as

Ma∞ = v∞√
γ RT∞

= v∞√
5RT∞/3

, (2.4)

where v∞ and T∞ are the free stream velocity and temperature, respectively. The Mach
number and the angle of the wedge, θw, are specifically chosen to ensure that the RR is
possible and the Mach reflection is impossible. The angle of both IS and RS, as well as the
flow parameters behind them can be determined analytically. We consider the case where
the flow remains supersonic downstream of the RR area. Computations are conducted for
the free stream Mach number Ma∞ = 20 and the wedge angle θw = 17.061◦. Under these
conditions, the Mach number normal to the IS Man is equal to 8; therefore, the IS is equally
strong to the considered 1-D planar shock so that one can expect a comparable degree of
thermal non-equilibrium in the two problems under consideration. This fact allows for
meaningful qualitative comparisons of the planar shock and RR results.

The Knudsen number for the considered flow can be defined as the ratio of the free
stream mean free path λ∞ to the length of the windward side of the wedge w:

Kn = λ∞
w

. (2.5)

The free stream mean free path for the variable hard sphere (VHS) molecular model (see
Bird 1994) consistent with the power-law viscosity dependence on temperature is defined
by

λ∞ = 2(5 − 2ω)(7 − 2ω)

15
√

π

μ∞
ρ∞

√
2RT∞

, (2.6)

where ρ∞ and μ∞ are free stream values of density and dynamic viscosity, respectively.
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The Reynolds number for this flow can be defined as follows:

Re = ρ∞v∞w
μ∞

. (2.7)

For the VHS molecules it can be calculated from the Mach and Knudsen numbers with
the following expression:

Re = 2(5 − 2ω)(7 − 2ω)

15
√

π

√
γ

2
Ma∞
Kn

. (2.8)

In the present work the wedges are used only for generation of the shock waves; only
a relatively small zone in the near vicinity of the reflection point is analysed which
is independent of the macroscopic length scale w. Apart from the molecular collision
model parameters for considered monatomic gas with power-law viscosity dependence on
temperature, such a problem has only two similarity parameters: Mach number Ma∞ and
wedge angle θw (alternatively, Man can be used instead of Ma∞ or the angle between the
IS and plane of symmetry, which equals 23.58◦ in the present study, instead of θw). The
choice of the Knudsen number is therefore quite arbitrary: it only should be low enough for
the shock wave thickness to be much smaller than the size of the computational domain.
In particular, the zone of interest about the reflection point must be small enough so the
expansion fans which emanate from the trailing edges of the wedges do not affect it. The
Knudsen number of 0.001 is considered in the present study, which corresponds to the
Reynolds number of 27 185. The distance between the trailing edges of the wedges, which
is also an arbitrary parameter chosen using similar considerations, is 0.2132w.

Computations performed by all numerical techniques employ similar boundary
conditions. Non-permeability boundary conditions (specular reflection of molecules in the
DSMC method) are used for the wedge surface (the wedge is used only for IS generation;
therefore, the boundary layer is ignored). The free stream parameters are imposed on the
left boundary. Supersonic outflow is used on the right boundary (in the DSMC method,
free outflow is considered with no molecules entering the computational domain).

3. Gas flow models and numerical methods

3.1. The Navier–Stokes–Fourier equations
The NSF equations for compressible flows can be obtained by the Chapman–Enskog
expansion from the kinetic Boltzmann equation (Kogan 1969; Chapman & Cowling 1991).
The conservation laws of mass, momentum and energy correspondingly are as follows:

∂ρ

∂t
+ ∂ρvk

∂xk
= 0, (3.1)

ρ
∂vi

∂t
+ ρvk

∂vi

∂xk
+ ∂p

∂xi
+ ∂NSF

ik
∂xk

= 0, (3.2)

3
2
ρ

∂θ

∂t
+ 3

2
ρvk

∂θ

∂xk
+ ∂qNSF

k
∂xk

+ p
∂vk

∂xk
+ NSF

ij
∂vi

∂xj
= 0, (3.3)

where the mass density ρ, velocity vi, temperature θ in energy units θ = (k/m)T = RT
(k is the Boltzmann constant, m is the molecular mass and R = k/m is the gas constant),
trace-free viscous stress tensor ij (with kk = 11 + 22 + 33 = 0) and heat flux qi form
13 variables in three-dimensional case. The pressure is given by the ideal gas law p = ρθ .
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The Chapman–Enskog method yields the Navier–Stokes and Fourier laws for monatomic
gas with the Prandtl number of 2/3 as

NSF
ij = −2μ

∂v〈i
∂xj〉

, qNSF
i = −15

4
μ

∂θ

∂xi
(3.4a,b)

with the viscosity coefficient μ calculated using a temperature–viscosity exponent of
0.72. The angular brackets in the subscripts indicate the trace-free and symmetric
part of the tensor (Struchtrup 2005). The NSF equations are numerically solved with
two independent flow solvers: CFS3D and ANSYS Fluent. The CFS3D solver is a
time-explicit shock-capturing code developed at the Khristianovich Institute of Theoretical
and Applied Mechanics and it is based on a fifth-order weighted essentially non-oscillatory
reconstruction (Jiang & Shu 1996) of convective terms and a mixed, central-biased,
fourth-order approximation of dissipation terms (Kudryavtsev & Khotyanovsky 2005).
Time marching is performed with the second-order Runge–Kutta scheme. Computations
performed with ANSYS Fluent use a density-based solver in a steady formulation with the
second-order upwind scheme for convective terms and the second-order central difference
scheme for dissipation terms. The other details of the flow-solver set-up can be found
in Shoev & Ogawa (2019). Both NSF flow solvers showed identical numerical solutions,
therefore we do not distinguish them further.

3.2. The regularized 13-moment equations
The regularization of Grad’s original 13-moment system (Grad 1949; Kogan 1969) was
conducted in 2003 (Struchtrup & Torrilhon 2003) by a Chapman–Enskog expansion
(Chapman & Cowling 1991) of higher moment equations only, based on the assumption
of faster relaxation times for higher moments. Since relaxation times for moments only
vary slightly between different moments, this assumption is somewhat artificial. So
later derivations of the R13 equations were developed explicitly without this assumption
(Struchtrup 2005). There are many examples of successful applications of this system of
equations for slow moderately rarefied flows (Torrilhon & Struchtrup 2008; Timokhin,
Ivanov & Kryukov 2014; Torrilhon 2016; Claydon et al. 2017; Baliti, Hssikou & Alaoui
2019; Westerkamp & Torrilhon 2019). It has been shown that the R13 equations predict
the internal structure of shock waves quite accurately (Torrilhon & Struchtrup 2004;
Timokhin et al. 2015, 2017) and can be successfully applied to modelling of supersonic
flows (Torrilhon 2006; Znamenskaya et al. 2014; Timokhin, Ivanov & Kryukov 2018;
Timokhin et al. 2019). The tensor form of the regularized 13-moment system (R13) can be
written as

∂ρ

∂t
+ ∂ρvk

∂xk
= 0, (3.5)

ρ
∂vi

∂t
+ ρvk

∂vi

∂xk
+ ∂p

∂xi
+ ∂ik

∂xk
= 0, (3.6)

3
2
ρ

∂θ

∂t
+ 3

2
ρvk

∂θ

∂xk
+ ∂qk

∂xk
+ p

∂vk

∂xk
+ ij

∂vi

∂xj
= 0, (3.7)

∂ij

∂t
+ ∂ijvk

∂xk
+ 4

5
∂q〈i
∂xj〉

+ 2p
∂v〈i
∂xj〉

+ 2k〈i
∂vj〉
∂xk

+ ∂mijk

∂xk
= −σij

τ
, (3.8)
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∂qi

∂t
+ ∂qivk

∂xk
+ 5

2
p

∂θ

∂xi
+ 5

2
ik

∂θ

∂xk
+ θ

∂ik

∂xk

− ikθ
∂ρ

∂xk
− ij

ρ

∂jk

∂xk
+ 7

5
qk

∂vi

∂xk
+ 2

5
qk

∂vk

∂xi

+ 2
5

qi
∂vk

∂xk
+ 1

2
∂Rik

∂xk
+ 1

6
∂Δ

∂xi
+ mijk

∂vj

∂xk
= −2

3
qi

τ
, (3.9)

where pressure is determined by the ideal gas law p = ρθ and τ = μ/p is the relaxation
time obtained with the viscosity coefficient μ. Mass density ρ, velocity vi, temperature
in energy units θ , trace-free viscous stress tensor ij and heat flux qi form 13 primitive
variables. Equations (3.5)–(3.7) are the conservation laws for mass, momentum and
energy; (3.8) and (3.9) are the moment equations for the stress tensor and heat flux vector,
respectively. These 13 equations must be closed by constitutive relations for the higher
moments Rij, Δ, mijk, and they differ based on the method of regularization. For Grad’s
original 13 moment equations (Grad 1949), Rij = Δ = mijk = 0.

There are several nonlinear variants of the R13 equations which are different in
higher-order moment relations (Struchtrup & Torrilhon 2003; Struchtrup 2005; Rana &
Struchtrup 2016; Timokhin et al. 2016, 2017). The linear variant of the R13 equations has
been used in the present study. In the linear case (gradient transport mechanism (Gu &
Emerson 2009)), higher-order moments have the following form:

mijk = −2τθ
∂〈ij
∂xk〉

, Rij = −24
5

τθ
∂q〈i
∂xj〉

, Δ = −12τθ
∂ql

∂xl
. (3.10a–c)

The numerical method used for solving the R13 system in this work was described in detail
by Ivanov, Kryukov & Timokhin (2013) and Timokhin et al. (2015).

3.3. The DSMC method
The DSMC method is a numerical technique which treats the gas flow as an ensemble
of model particles. Each model particle represents a large number (∼1012–1020) of real
molecules (or atoms) of the gas. The modelling process is split into two independent
stages at each time step 
t: free-molecular transfer and collisional relaxation. At the
first stage the model particles are shifted by distances proportional to their velocities.
If the model particle collides with the body surface during its free-molecular travel, its
reflection is modelled in accordance with a specified law of gas–surface interaction. At the
second stage, molecular collisions are simulated stochastically in each collisional cell of
the computational domain, disregarding the mutual positions of the model particles. The
spatial distributions of gas-dynamic parameters, such as velocity, density, temperature,
etc., are obtained by averaging molecular properties sampled in each cell over some time
interval after reaching the steady state.

The DSMC method can be considered a Monte Carlo method for the numerical
solution of the kinetic Boltzmann equation when the number of model particles tends
to infinity (see Ivanov & Rogasinsky 1988). The DSMC solutions for the strong shock
fronts are known to be in perfect agreement with the direct numerical solution of the
Boltzmann equation (see e.g. Malkov et al. 2015). In the present work the DSMC results
are considered benchmark solutions. The applicability and accuracy of the other two
approaches are analysed by comparison with the DSMC method.

The DSMC computations are performed with the SMILE++ software system
(Kashkovsky et al. 2005; Ivanov et al. 2011) that is based on the majorant frequency
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scheme (Ivanov & Rogasinsky 1988). The VHS model was applied for elastic collisions.
The model is consistent with the power-law temperature dependence of viscosity used in
both continuum methods and ω can be considered its input parameter. At the start of the
simulation process, the domain is populated by model particles according to the Maxwell
distribution function corresponding to the free stream parameters. Then the computation is
run until the steady state is reached and sampling of molecular properties begins in order
to obtain macroparameter flow fields.

3.4. Accuracy of computational results
The grid for all three methods considered was fine enough providing the linear cell sizes
are small in comparison with the local mean free path at the steady state. This means in
all computations shock structures were well-resolved with dozens of grid points inside
shock fronts. The computation time step in all methods was chosen small enough (smaller
than mean collision time) to ensure high accuracy of results. All numerical data presented
below can be considered grid- and timestep-independent. In the DSMC computations, the
number of particles exceeded by orders of magnitudes all accuracy requirements (see e.g.
Shevyrin, Bondar & Ivanov 2005), and the sample size was large enough to make the
statistical error negligible. A detailed analysis of the grid convergence of all three methods
for the RR problem is presented in the Appendix.

4. Results and discussion

The following non-dimensionalization of the flow parameters is used in this section:

v̂i = vi

C∞
, x̂ = x

λ∞
, T̂ = θ̂ = T

T∞
, ρ̂ = ρ

ρ∞
,

p̂ = p
ρ∞C2∞

= 1
2
ρ̂T̂, q̂i = qi

ρ∞C3∞
, ̂ij = σij

ρ∞C2∞
,

⎫⎪⎪⎬⎪⎪⎭ (4.1)

where C∞ = √
2RT∞ is the absolute value of the free stream most probable peculiar

molecular velocity. The ∞ subscript denotes the free stream values. Only non-dimensional
variables (4.1) are used below in the present section with the ‘hat’ symbol omitted except
for the non-dimensional coordinates in figures where they are denoted as x/λ∞ and y/λ∞.

4.1. General features of flow fields
The main focus of the present study is the relatively small region of the incident oblique
shock wave reflection from the plane of symmetry. Figure 3 presents the numerical results
of the distributions of dimensionless temperature in this region (see (4.1)) obtained by
the NSF, R13 equations and DSMC. The point with the coordinates (0, 0) is the reflection
point obtained analytically from the inviscid solution (see figure 2). The black lines present
the shock-wave discontinuities in the inviscid solution.

All three considered viscous flow models predict non-uniform temperature behind the
RS that shows essentially viscous and non-continuum effects since the inviscid continuum
solution given by the Euler equations predicts the uniform flow behind the RS. In
particular, they all predict the appearance of a 2-D maximum (overshoot) to the right of the
point (0, 0). The zone with the temperature maximum behind the RS is called the non-RH
zone (Sternberg 1959; Ivanov et al. 2010; Shoev et al. 2023) (this term was originally
coined for the flow near the triple point in the irregular shock reflection). Indeed, the
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Figure 3. Temperature distribution fields for NSF (a), R13 (b) and DSMC (c).

temperature value behind two oblique shocks given by RH conditions correspond to the
orange colour in the legend. It is quite clear that all three approaches predict values of
temperature that exceed the RH values.

The presence of a temperature extremum for the DSMC and R13 solutions might
be expected in connection with similar results in the problem of the 1-D structure of
the shock wave (see the § 4.2). The presence of an overshoot in the planar shock wave
structure problem at large Mach numbers has been shown in many papers using both
kinetic description (Elliott & Baganoff 1974; Erofeev & Friedlander 2002; Dodulad
& Tcheremissine 2013; Malkov et al. 2015) and extended gas dynamics methods (Jin,
Pareschi & Slemrod 2002; Torrilhon & Struchtrup 2004; Erofeev & Friedlander 2007;
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Figure 4. Temperature isolines for NSF–R13 (a) and R13–DSMC (b).

Ivanov et al. 2012; Timokhin et al. 2015). In addition, it was shown that this maximum is
observed at all types of molecular interaction potentials with the Mach number Ma ≥ 3.9
(Yen 1984; Erofeev & Friedlander 2002). At the same time, it can be shown (Struchtrup
2005) that it is impossible to obtain a non-monotonic temperature distribution in a planar
shock wave with the NSF equations. It is interesting to obtain a temperature maximum in
the NSF solution of this 2-D problem. The same effect was also demonstrated with the
NSF equations by Khotyanovsky et al. (2009). These results suggest that the appearance
of such a maximum is not due to non-equilibrium effects as in the planar shock wave case,
but rather can be explained by 2-D effects (see § 4.4). Another difference between these
two cases is that the planar shock overshoot is located within the shock front while the
present 2-D results clearly indicate that the maximum is separated from the RS front (see
figure 3). For the sake of clarity, in what follows the term ‘temperature overshoot’ is used
for the planar shock wave maximum (which is also observed in oblique shock waves) and
the term ‘temperature maximum’ is applied to the maximum which is observed on the
symmetry plane in the RR problem.

As it can be seen from the comparison of temperature flow fields in figure 3,
the numerical results by the R13 equations turn out to be not only qualitatively but
quantitatively very close to the DSMC kinetic solution. Figure 4 presents a comparison
of temperature isolines for all three numerical approaches (figure 4a gives NSF versus
R13, and figure 4b gives DSMC versus R13). The NSF numerical solution is far from
the R13 numerical solution – R13 demonstrates greater thickness for both IS and RS
waves. This disagreement is expected since the NSF equations fail to predict the internal
structure of a shock wave accurately if the Mach number of the free stream is higher than
Ma = 2.0 (Pham-Van-Diep, Erwin & Muntz 1991). The R13 results agree with the DSMC
benchmark solution quite well. The quantitative agreement between the two methods
improves with the decreasing of the local Mach number (as it moves downstream). This
R13 equations’ behaviour is similar to that in the 1-D shock wave structure problem, where
the fast upstream part of a shock wave is predicted much more poorly than the downstream
slower flow part (Timokhin et al. 2017).

Figure 5 presents the comparison of the density and temperature profiles for all three
models over horizontal cross-sections at different distances from the symmetry plane. The
curves at finite distances from the symmetry plane consist of distinct incident oblique and
RS-wave profiles and areas of nearly uniform flow (zones (1), (2), (3) in figure 1) while
the curves for the y = 0 cross-section resemble ordinary planar 1-D shock-wave profiles
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Figure 5. Profiles of density (a) and temperature (b) for NSF, R13 and DSMC along x at y = 0.0, y = 5λ∞,
y = 10λ∞ and y = 15λ∞. Dashed lines show RH values behind incident (bottom) and reflected (top) shocks.

(IS and RS fronts are merged into one). The profiles along the symmetry plane for all
three models also clearly reveal a temperature maximum which was observed in the flow
fields. The maximum exceeds 5 per cent for the DSMC and R13 and is much smaller for
the NS. The density profile along the symmetry plane especially for the R13 and DSMC
case lies below the RH value of density behind IS and RS even a hundred mean free paths
downstream of the reflection point. It is consistent with the long wake observed in the
temperature flow fields. It is interesting that at the distance of five and 10 mean free paths
from the symmetry plane all the density profiles reach the RH value rapidly as in a typical
shock wave, although tiny overshoots are observed in the DSMC and R13 density profiles.

The NSF equations provide results that are significantly different from the benchmark
DSMC solution. As can be expected, disagreement is observed inside both IS and RS: the
NSF model significantly underpredicts thickness of the shock front and does not predict
a temperature overshoot inside the IS at various distances from the symmetry plane (a
purely 1-D effect predicted by the R13 and DSMC for high Mach numbers). This 1-D
overshoot is shown in the zoomed zone of the figure 5(b). The other difference is that
the effects mentioned above (the temperature maximum on the symmetry plane and long
downstream density tail lying below the RH value) are not prominent in the NSF solution.
On the contrary, the distributions of the macroparameters of the R13 moment solution
are quantitatively consistent with the DSMC kinetic solution in all cross-sections. The
exceptions include the overestimated 1-D temperature overshoot in the IS and temperature
distributions in the region of formation of the leading front of shock waves. Both of these
effects are well known (see the results of Timokhin et al. (2015) and Timokhin et al.
(2017)). Another small difference is slight overestimation of the temperature maximum on
the symmetry plane by the R13 equations.

Figure 6 presents the results for temperature and density in the cross-sections
perpendicular to the flow direction in the free stream: along x = −20.6λ∞, x = 0 and
x = 20.6λ∞ lines. Two velocity components in the same cross-sections are shown in
figure 7. Solid black lines present the inviscid solution on both sides of the shock waves.
The dashed vertical lines show the positions of the IS and RS. The R13 results inside the
fronts of oblique shock waves (parts of the profiles for x = −20.6λ∞ and x = 20.6λ∞)
turn out to be much closer to the reference DSMC solution than the NSF equations
solution. The qualitative behaviour of the solutions by all three approaches is similar for
the main flow macroparameters.
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Note, that the inviscid solution for temperature, density and flow velocity is constant for
x = 0 and equal to their values behind the IS. For all three models of the viscous flow one
observes clearly non-constant solutions in this cross-section. In particular, temperature
exhibits more than a 50 per cent maximum in comparison with its value behind the IS.
The NSF equations underpredict the temperature in this zone while the R13 equations
overpredict the maximum value of the temperature in the vicinity of the origin. There
are also visible non-uniformities in the R13 and NS density profiles and an x-velocity
minimum in the origin. The value of this minimum is overpredicted by the R13 model
while the NSF model predicts it accurately.

The quantitative difference between the three models under consideration for all
the variables become smaller with increasing x-coordinate. Most significant differences
are observed for the upstream cross-section (x = −20.6λ∞), while the downstream
cross-section (x = 20.6λ∞) reveals the smallest difference between all three models. In
this case, the results of the R13 equations almost repeat the DSMC data profiles. This
trend correlates with the decrease in the local Mach number and increase of density of the
flow downstream. It is interesting to notice that in the downstream cross-section near the
symmetry plane the DSMC and R13 models predict temperature higher and x-velocity
lower than that given by the RH conditions. It agrees with the figures shown above
which confirm the existence of the large non-RH-zone behind the point of the shock-wave
reflection.

4.2. Comparison of structures of the planar shock wave and the zone of the RR of an
oblique shock wave

The flow fields and profiles of macroparameters along the symmetry plane presented in
the previous subsection demonstrates that the area in the vicinity of the reflection point
where IS and RS merge resembles an ordinary normal shock (such as Mach stem in the
case of Mach reflection, see e.g. Ben-Dor 2007) with macroparameter isolines normal
to the symmetry plane and a steep rise of density and temperature along the streamline.
The present section is devoted to the analysis of the similarities and differences in the
macroparameters’ distributions of the NSF, R13 and DSMC solutions in the 1-D normal
shock and along the symmetry plane in the 2-D RR flow. Recall, that we consider the
normal shock wave with Mach number Ma = 8.0 equal to the normal Mach number for
the IS in the RR case, Man = 8.0 to ensure comparable degree of thermal non-equilibrium
inside the shocks in both flows. Below, macroparameters’ comparison is presented starting
with zeroth- and first-order moments of the distribution function (density and velocity)
and moving on to higher-order moments such as temperature, viscous stress tensor and
heat flux. The origin for the normal shock wave case is located in the shock centre – a
point with the density equal to the mean value of the densities upstream and downstream
of the shock.

The figures 8, 9 and 10 present density, velocity and temperature profiles for both
flows obtained with all three gas flow models. The black lines here illustrate the inviscid
solutions. As it can be seen from the profiles, the thickness of the 1-D shock wave
(characterized by maximal slope of the profile) is approximately 10 mean free paths,
while the thickness of the 2-D structure along the symmetry plane in the RR case is more
than two times greater. The reference DSMC solution in the 2-D RR case reveals that a
very long tail is observed after the steep part of the profile with all the macroparameters
reaching the RH values rather slowly in comparison with the normal shock case. While
it takes approximately five mean free paths from the origin to reach the RH values in the
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Figure 8. The NSF, R13 and DSMC density profiles for the 1-D shock structure problem (a) and 2-D RR
problem (b).
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Figure 10. The NSF, R13 and DSMC temperature profiles for the 1-D shock structure problem (a) and
2-D RR problem (b).

normal shock case, in the 2-D RR case density, velocity and temperature are substantially
different from the RH values 35 mean free paths downstream of the origin, or in other
words the non-RH-zone is observed. The velocity profiles for the two cases considered
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have a qualitative difference in the region behind the shock wave front. A minimum of
velocity is observed in the problem of RR in the non-RH-zone (figure 9b). Its position
coincides with the position of the temperature maximum (figure 10b).

The NSF equations greatly underestimate the thickness of the shock structures in both
cases (the slope of the profiles is almost two times steeper than for the DSMC solution).
The R13 solution agrees well with the DSMC one for density. A significant difference
is observed in velocity and temperature at the leading edge of the shock wave which is
manifested in a longer upstream tail of the DSMC profile (figures 9a and 10a). A detailed
discussion of the behaviour of shock-wave solutions of various variants of the R13 system
is given by Timokhin et al. (2017).

As it was mentioned above, both the R13 equations and the DSMC method predict
temperature overshoot in the planar shock wave (see figure 10a) while the NSF solution is
monotonic. For Ma∞ = 8 the size of the overshoot in the DSMC solution is approximately
1 % with respect to the value behind the shock front. The overshoot in the R13 solution
is much bigger (approximately 3 %), and the NSF temperature profile does not have
this peak at all. For the flow along the plane of symmetry (see figure 10b), all models
considered predict a temperature maximum, and its value in the DSMC and R13 solutions
is approximately 5 % with respect to the downstream temperature, which is substantially
greater than the maximum predicted by the NSF solution (approximately 2 %).

The distribution of temperatures associated with thermal motion of molecules in
different directions can provide additional information on the structure of the flows under
consideration. Gas temperature can be represented as follows:

T = 1
3(Tx + Ty + Tz), (4.2)

where Tx, Ty and Tz are kinetic temperatures defined by mean energy of thermal
motion of molecules in the x, y and z directions (temperature components or x-, y- and
z-temperature, respectively). The following expressions relate these temperatures to the
diagonal components of stress tensor in the non-dimensional form (4.1):

θx = Tx = 2( p + σxx)/ρ, (4.3)

θy = Ty = 2( p + σyy)/ρ, (4.4)

θz = Tz = 2( p + σzz)/ρ. (4.5)

In the problem of the structure of a planar shock wave, so called transverse temperatures
Ty and Tz are equal to each other. So an overall gas temperature (4.2) in the 1-D case can
be written as T = 1

3(Tx + 2Ty).
Figures 11 and 12 show the comparisons of the temperature components for both

problems obtained using all three approaches. In figure 11 NSF and DSMC results are
presented. As for other macroparameters the NSF solution predicts much steeper slope
and much less gradual onset of the profiles for both problems. Except for these differences
the NSF and DSMC profiles are qualitatively similar for the planar shock wave case:
streamwise temperature Tx has a significant maximum while transverse temperature Ty
increases monotonically and the RH postshock value is reached within five free stream
mean free paths by both temperatures. Moreover, the value of the streamwise temperature
maximum in the planar shock wave is similar for both gas flow models, which is predicted
by Yen’s solution (Yen 1966). The profiles of temperature components for the 2-D RR
profile reveal the similar differences between the NSF and DSMC results from the planar
shock wave cases witnessed above: the zone of steep gradients is approximately two times
thicker and a very long non-RH-zone is observed downstream.
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Figure 11. Different components of temperature predicted by the NSF and DSMC. The 1-D shock-wave
structure (a) and internal structure of RR along the symmetry plane (b).
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Figure 12. Different components of temperature predicted by the R13 and DSMC. The 1-D shock-wave
structure (a) and internal structure of RR along the symmetry plane (b).

All temperature distributions provided by the R13 are much closer to the DSMC
data for both problems (see figure 12) as it can be expected from the profiles of
the macroparameters analysed above. However, longer upstream tails in the DSMC
distributions are observed similar to other macroparameters. Note, that in the RR x and y
temperature components are overpredicted by the R13 near the origin. These overestimated
values of these two temperature components lead to an overestimated value of the total
temperature in this region (see figure 5b for y = 0).

The most significant qualitative difference in distributions of directional temperatures
between the two problems under consideration, is that in the RR the mentioned streamwise
temperature maximum is not observed at all. Instead all three approaches predict
prominent maxima of Ty temperature near the origin, while Tx and Tz temperature are
very close to each other and steadily increase up to the point of equalization of all three
directional temperatures. Farther downstream all the temperatures decrease down to the
RH value, so, strictly speaking, all three temperatures exhibit a non-monotonic behaviour.
This Ty maximum can be explained by a sharp flow deceleration along the y-direction to a
zero value of velocity y-component on the plane of symmetry in the vicinity of the point of
origin (0,0). This part of the kinetic energy goes into thermal molecular motion. Obviously,
the translational y-temperature must get more energy. At the same time, the molecules
need time to undergo a sufficient number of collisions to dissipate thermal motion over all
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Figure 13. The σ -components predicted by NSF, R13 and DSMC. The 1-D shock-wave structure (a) and
internal structure of RR along the symmetry plane (b).
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Figure 14. The qx predicted by NSF, R13 and DSMC. The 1-D shock-wave structure (a) and internal
structure of RR along the symmetry plane (b).

translational molecular degrees of freedom. This local thermal non-equilibrium leads to
such behaviour of directional temperatures observed in figures 11(b) and 12(b).

Figures 13 and 14 present a comparison of the components of the viscous stress tensor
and the longitudinal heat flux component in the same format as above. The heat flux
is the highest moment of the local distribution function among considered. Therefore,
one can expect a greater difference in the results of continuum approaches from the
kinetic solution. Figures 13(a) and 14(a) compare the results of the NSF, R13 and DSMC
for the normal shock. As it can be seen, the results of the R13 equations are in good
agreement with the low-speed part of the DSMC shock wave front. The extrema for
both macroparameters are predicted fairly accurately by the R13 equations. At the same
time, significant differences are observed in the high-speed part of the structure. The NSF
equations provide xx and qx distributions which is significantly different from the DSMC
ones: the value of the viscous stress maximum is overpredicted by 20 % while the value of
the heat flux minimum is underpredicted by the same degree.

Due to the presence of a large transverse gradient of the y-velocity component (see § 4.4)
near the RR point, the behaviour of the components of the viscous stress tensor differs
qualitatively from the results of the 1-D problem. Figure 13(b) shows the distributions of
the components xx and yy obtained by all the proposed methods. Figure 14(b) presents a
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similar comparison of the longitudinal heat flux qx. As it can be seen from the both figures,
the difference between the R13 and the DSMC solution appears to be significant in the
entire considered region. The absolute values of the extrema are underestimated by the
R13 equations (the differences reach approximately 20 %). Moreover, the NSF equations
overestimate the absolute values of extrema by up to 30 %. The qualitative behaviour of
the viscous stress tensor diagonal components is in agreement with the distributions of
directional temperatures (see figures 11 and 12) which are related to them by (4.3)–(4.5).

4.3. The 2-D effects in the confluence of the incident and reflected shock wave
The present subsection aims at explaining the effects in the flow along the symmetry plane
streamline in the RR discussed in the previous subsection. Let us first start with the flow
at some distance from the symmetry plane where the IS and RS fronts can be separated
from one another.

As mentioned above, the considered free stream Mach number Ma = 20 and the wedge
angle θw = 17.061 correspond to the normal Mach number Man = 8 of the incident
oblique shock wave. The normal Mach number for the oblique RS wave in the considered
case is Man = 2.1. It is well known that the RH conditions across any oblique shock
are similar to the normal shock if one formulates them in terms of the normal Mach
number and takes into account that the tangential flow velocity component is equal on
both sides of the shock front (see e.g. Landau & Lifshitz 1987). Moreover, the problem
of internal structure of an oblique shock wave can be reduced to a problem of internal
structure of a normal shock by considering it in the frame of reference which is moving
with the component of the free stream velocity tangential to the shock front. In this frame
of reference tangential gas velocity becomes equal to zero and the problem formulation
fully coincides with that of the 1-D normal shock. Hence the structures of the normal and
oblique shocks differ only in the presence of the constant tangential component of flow
velocity in the latter case.

The profiles across the IS and RS along the free stream direction (x axis, symmetry
plane) at different y-coordinate were compared with the planar shock wave profiles
computed at Ma = 8.0 and Ma = 2.1. For the sake of such comparison the normal shock
profiles were linearly transformed from the shock-front reference frame to the laboratory
reference frame. The scheme of such a transformation is shown in figure 15. A planar
shock wave lies schematically between two blue lines. The red segment AB is the shock
wave profile along the normal to the shock front, and the green segment AC is the result of
the transformation (non-orthogonal projection in the direction parallel to the shock front
onto the x axis). In order to obtain the required shock wave profile along the AC segment
the coordinate across the original 1-D normal shock profile (AB segment) is divided by
the sine of the oblique shock angle.

The comparison series of the NSF results of transformed temperature distributions for
two 1-D shock waves and the results for the 2-D RR problem is presented in figure 16
in decreasing order of distance to the symmetry plane (for y = {15λ∞, 8λ∞, 3λ∞ and
0λ∞}). The red and green curves represent the projections of the 1-D profiles of the IS
and RS, respectively. Symbols indicate the results of the regular reflection computation.
Far from the reflection point, the results of two 1-D shock waves exactly repeat the 2-D
solution (see the first two plots in figure 16 for y = 15λ∞ and y = 8λ∞). This indicates the
absence of 2-D effects of the investigated flow at such a distance. As one approaches the
symmetry plane, at a distance of the order of a mean free path, 2-D effects start playing
a significant role in the distribution of macroparameters in the vicinity of the reflection
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Figure 15. Scheme of comparison between 1-D and 2-D numerical results.
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Figure 16. Comparison between transformed 1-D temperature distributions and temperature distributions in
the RR problem at y = const. (NSF).

point: two shock waves merge in the RR problem (see the other two plots in figure 16 for
y = 3λ∞ and y = 0λ∞). In addition to the difference in the region around the point x = 0,
the temperature maximum is observed in the 2-D problem when it cannot be predicted by
1-D computations.
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Figure 17. Comparison between transformed 1-D temperature distributions and temperature distributions in
the RR problem at y = const. (DSMC).

Similar results obtained with the DSMC method are presented in figure 17. At a distance
of 15 mean free paths from the symmetry plane the IS and RS do not affect each other
(2-D effects are negligible) and the RR profile coincides with the 1-D solutions as in
the NSF case. At a distance of eight mean free paths, however, some minor 2-D effects
are seen in the profile of the RS: temperature immediately behind the shock is slightly
smaller than in the 1-D case and approaches the RH value farther downstream. This result
is consistent with temperature isolines presented in figure 4. In the other two plots for
y = 3λ∞ and y = 0λ∞ one can observe clear 2-D merging of two shocks with a much
more prominent temperature maximum in the DSMC solution than in the NSF one. The
R13 model provides qualitatively similar results to the DSMC (not presented in the plots).

Profiles of directional temperatures Tx, Ty and Tz for various distances from the
symmetry plane are presented in figures 18 and 19 for all three gas flow models. Despite
the clearly demonstrated fact that internal structure of an oblique shock coincides with that
of a normal shock, these profiles exhibit unexpected pronounced overshoots of Ty inside
the fronts while Tx and Tz are monotonic. Recall, that an overshoot of Tx is typical for a
normal shock. This seeming contradiction is explained by the choice of the axis direction
in these two problems. Indeed, the Tx temperature in the RR problem is not associated with
thermal motion of molecules in the direction normal to the front but rather in the direction
of the free stream. Due to significant inclination of both IS and RS with respect to the free
stream (more than 45 degrees) the thermal motion of the molecules in the direction normal
to the shocks mainly contribute to the Ty temperature which explains its overshoots inside
the shock fronts. With decreasing distance from the symmetry plane, Ty overshoots start to
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Figure 18. Temperatures Tx, Ty and Tz at y = const. for the RR problem. The NSF and DSMC results:
y = 10λ∞ (a), y = 5λ∞ (b), y = 3λ∞ (c), y = 0λ∞ (d).

merge and eventually form the sole overshoot at the symmetry plane for all three gas flow
models under consideration. This fact clearly explains the presence of the Ty overshoot
discussed in the previous subsection as a result of the confluence of two shocks each of
which has its own Ty overshoot.

4.4. Analyses of the flow with conservation equations
The results on RR presented above clearly demonstrate deviation from the RH values
downstream of the reflection point, e.g. the existence of a non-RH zone. Recall, that the
RH relations can be considered as a corollary of the 1-D conservation laws. Deviation
from the RH relations can be explained by 2-D effects in the region of the shock
reflections. In order to clarify which processes are important in this regard an analysis
of mass, momentum and energy conservation equations is performed for the symmetry
plane streamline. In addition, the normal shock problem is also considered. Note, that the
conservation equations are presented in the general form. All of them directly follow from
the Boltzmann equation and must hold for any dilute gas flow model, including the three
models employed in the present paper. As the R13 equations provide results which are
qualitatively consistent with the DSMC ones, only the NSF and R13 models were used in
the analyses.

The mass and momentum conservation equations for a steady 2-D flow along the plane
of symmetry streamline can be written in terms of the substantial derivatives

D
Dt

= ∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
= vx

∂

∂x
+ vy

∂

∂y
(4.6)
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Figure 19. Temperatures Tx, Ty and Tz at y = const. for the RR problem. The R13 and DSMC results:
y = 10λ∞ (a), y = 5λ∞ (b), y = 3λ∞ (c), y = 0λ∞ (d).

as follows:

Dρ

Dt
= −ρ

(
∂vx

∂x
+ ∂vy

∂y

)
, (4.7)

Dvx

Dt
= − 1

ρ

(
∂p
∂x

+ ∂xx

∂x
+ ∂xy

∂y

)
. (4.8)

The underlined terms are caused by the two-dimensionality of the flow. The rest of the
terms remain in the 1-D case of a planar shock wave structure problem.

The energy conservation law along the symmetry plane has the following form:

DE
Dt

= − 1
ρ

(
∂vxp
∂x

+ ∂vyp
∂y

+ ∂vxxx

∂x
+ ∂vxxy

∂y
+ ∂vyyy

∂y
+ ∂qx

∂x
+ ∂qy

∂y

)
, (4.9)

where E is the total internal energy per unit mass containing kinetic EK = v2/2 and
internal EI = e parts,

E = EK + EI = v2

2
+ e = v2

2
+ 3

4
T. (4.10)

This form of the conservation laws allows one to analyse an evolution of density, velocity
and total internal energy of a ‘fluid element’ of a constant mass and variable volume as
it moves along the streamline (see e.g. Anderson 2019). The rates of change of these
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three parameters are determined by the terms on the right-hand side of the equations,
which describe various physical processes, to be discussed below in detail. The term
‘fluid element’ typical of conventional continuum fluid dynamics is used hereafter for
convenience. Note, that it should not be understood literally because all three considered
gas flow models presume exchange of molecules between such an imaginary element and
the gas medium which surrounds it.

To illustrate the influence and physical meaning of the right-hand part terms of the
energy conservation equation (4.9) let us rewrite it taking into account that the terms
vy(∂p/∂y), vy(∂yy/∂y) and xy(∂vx/∂y) are equal to zero on the symmetry plane

DE
Dt

= − 1
ρ

(
vx

∂p
∂x

+ p
∂vx

∂x
+ vx

∂xx

∂x
+ xx

∂vx

∂x
+ ∂qx

∂x

+vx
∂xy

∂y
+ p

∂vy

∂y
+ yy

∂vy

∂y
+ ∂qy

∂y

)
, (4.11)

where the underlined terms are present only in the 2-D RR problem and hence describe
2-D effects on the symmetry plane. Equation (4.11) can be rewritten into two governing
equations for kinetic and internal parts of E (see e.g. Anderson 2019) as follows:

D
Dt

(
v2

2

)
= − 1

ρ

(
vx

∂p
∂x

+ vx
∂xx

∂x

)
︸ ︷︷ ︸

Pxx gradient power

− 1
ρ

(
vx

∂xy

∂y

)
︸ ︷︷ ︸

viscous friction power

, (4.12)

D
Dt

(e) = − 1
ρ

(
p
∂vx

∂x
+ xx

∂vx

∂x
+ p

∂vy

∂y
+ yy

∂vy

∂y

)
︸ ︷︷ ︸

adiabatic compression power

− 1
ρ

(
∂qx

∂x
+ ∂qy

∂y

)
︸ ︷︷ ︸

heat input power

. (4.13)

Note, that the first kinetic energy equation is, strictly speaking, redundant, because it
follows directly from the momentum conservation equation.

Figures 20–23 present the distribution of various terms on the right-hand sides of the
conservation equations obtained from NSF and R13 numerical solutions of the planar
shock and RR problems.

The terms of the mass conservation equation (4.7) shown in figure 20 demonstrate the
compression of the fluid element caused by the velocity gradient. The values of all terms
are higher for the NSF solution than for the R13 one. This can be explained by the fact
the R13 equations predict a thicker shock wave front. For the planar shock wave the net
compression across the shock wave is similar for all the models and is given by the RH
density value. This is why a thicker shock front must lead to the lower compression terms’
values. The compression terms caused by the x-velocity gradient are more than two times
lower for the RR reflection than for the 1-D planar shock. The major contribution to the
fluid element compression in the RR case is provided by the y-velocity gradient: it is one
order of magnitude higher than that of the x-velocity gradient and is more than four times
higher than the compression term for the planar shock problem. This fact demonstrates
that even at the level of the mass conservation equation, the 2-D effects dominate the flow
structure for the RR problem. The terms of the momentum conservation equation (4.8)
shown in figure 21 differ similarly between the NSF and the R13 cases: on the one hand,
the R13 shock front (or reflection region structure in the 2-D case) is approximately one
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Figure 20. Mass conservation terms for 1-D shock-wave structure (a) and internal structure of RR along the
symmetry plane (b) for the NSF equations. Panels (c,d) are similar results for the R13 equations.
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Figure 21. Momentum conservation terms for 1-D shock-wave structure (a) and internal structure of RR
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984 A10-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.112


Regular shock reflection: viscous / non-equilibrium effects

20

(a) (b)

(c) (d )

–vx(p)′x/ρ
–vx(σxx)′x/ρ
–vx(Pxx)′x/ρ
–vx(σxy)′y/ρ

0

–20

–8 –4 0 4

E
n
er

g
y
 t

er
m

s

8

20

80

40

–40

–80

00

–20

–8 –4 0 4

E
n
er

g
y
 t

er
m

s

8

x/λ∞
–20 0 20

x/λ∞

80

40

–40

–80

0

–20 0 20

Figure 22. Energy conservation terms (kinetic part) for 1-D shock-wave structure (a) and internal structure of
RR along the symmetry plane (b) for the NSF equations. Panels (c,d) are similar results for the R13 equations.

and a half times thicker than the NSF one, and on the other hand the values of parameters
are approximately one and a half times higher for the NSF model. There is also a noticeable
feature of the R13 profiles which is also seen in some R13 profiles in figure 20: the profiles
have many inflection points (extrema of the derivative) and therefore look less smooth than
the NSF profiles.

The momentum equation terms describe the contribution of various forces to the
deceleration of the fluid element. In both problems considered the normal stress Pxx
gradient clearly contributes to the deceleration everywhere from the undisturbed flow
upstream to the undisturbed flow downstream (see figure 21). However, if we consider the
contribution of the gradients of pressure p and normal viscous stress xx (recall that Pxx =
p + xx) that the situation qualitatively differs between the two problems considered. The
pressure gradient also contributes to the deceleration everywhere in both problems. As
for the normal viscous stress xx, in the case of the planar shock (figure 21a,c) the term
related to its gradient decelerates the fluid element in the upstream high-speed part of the
shock front but accelerates it in the downstream part. On the contrary, in the RR problem
(figure 21b,d) normal stress accelerates the flow in the upstream part of the structure and
decelerates farther downstream. This fact is consistent with the sign of the xx gradient
which is evident from the profiles for both problems shown in figure 13.

Additionally to the normal stress in the RR problem there is an effect of the shear stress
(dashed black curves in figure 21) which is more than two times higher and opposite to
that of the normal stress. The effect of the shear stress is quite evident because accordingly
to the 2-D flow structure ‘gas layers’ which are located farther from the symmetry plane
start passing through the IS first and decelerate the ‘gas layer of the symmetry plane’ due
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Figure 23. Energy conservation terms (internal part) for 1-D shock-wave structure (a) and internal structure of
RR along the symmetry plane (b) for the NSF equations. Panels (c,d) are similar results for the R13 equations.

to shear stress in the upstream part of the structure. On the other hand, farther downstream
the symmetry-plane layer is accelerated via the shear stress by the neighbouring layers
which did not yet pass through the RS.

The profiles of kinetic energy conservation equation (4.12) terms shown in figure 22 are
fully consistent with the considered results for the momentum conservation equation and
reflect power produced by all considered forces which result in the change of kinetic energy
of the fluid element. Recall, that the kinetic energy conservation equation is a corollary of
the momentum conservation equation, and on the symmetry plane, as it can be seen, all
the right-side terms of the former are obtained by the multiplication of the corresponding
terms of the later by the absolute value of local gas velocity vx. Nevertheless, this result
cannot be considered completely redundant because it allows us to provide comparison of
the presented terms with the right-side terms of the internal energy conservation equation
(4.13) given in figure 23. Also it is worth noting, that the values of power produced by
normal stress are more than two times higher in the 2-D problem than in the 1-D shock,
which can be explained by much higher non-dimensional velocity values (see figure 9).

In the planar shock problem internal energy of a fluid element is changing due to heat
conduction and compression by pressure forces which can be divided into pressure and
normal viscous stress terms. Their profiles are given in figure 23(a,c). The contribution of
compression to the internal energy change is positive everywhere while the effect of heat
conduction is positive in the upstream cold part of the front and negative in the downstream
cold one. The differences between the NSF and R13 results reflect the familiar pattern: the
R13 equations predict a thicker shock front and smaller local values of the terms than
the NSF equations. The values of these terms in the RR problem (see figure 23b,d) are
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Regular shock reflection: viscous / non-equilibrium effects

significantly smaller, moreover, the term which describes power of compression due to
xx viscous stress has a minimum instead of maximum (this difference is explained by the
behaviour of xx inside the front for these two problems shown in figure 13).

The most striking feature of the internal energy balance in the RR problem is that for
considered flow parameters the terms related to 2-D effects (their profiles are presented
by dashed curves in figure 23) are an order of magnitude higher than 1-D terms shown
by solid curves which are present also in the planar shock problem. Again the difference
between the NSF and R13 solution manifests itself mainly in the width of the structure
which is higher in the R13 and absolute values of the terms which are lower in the
R13. The green and blue dashed curves which are related to the work of normal stress
in the y-direction resulting in compression of the fluid element are positive and have
maxima. Their relatively large values are consistent with the already-discussed effect of
high compression of the fluid element along the y axis (see figure 20). The term related to
the change of the internal energy of the fluid element due to heat flux along y axis (black
dashed curve) is positive in the upstream cold part of the shock structure and negative in
the downstream hot part being much higher in the absolute value. The value of the term
in the downstream part is comparable to the power of compression due to pressure forces
(green curves).

Generally one can conclude from the conducted analysis of kinetic and internal energy
equations that the terms related to the 2-D effect such as acceleration and deceleration of
the flow due two shear stress, compression due to pressure and normal viscous stress in
the y-direction and heat conduction in the y-direction contribute to the energy of a fluid
element on the RR problem comparably to the x-direction terms which present also in the
1-D case. While the kinetic energy for the most part is governed by a 1-D term related to
deceleration due to the pressure gradient, the internal energy is determined by virtually
only 2-D terms related to compression and heat conduction in the direction normal to the
symmetry plane.

In order to analyse the net effect of the processes represented by the terms on the
right-hand sides of the conservation equation on the parameters of the fluid element, let
us consider integration of the conservation equations along the trajectory of the element.
Below, (4.7), (4.8), (4.12) and (4.13) are presented in the following form:

Dρ

Dt
=

2∑
i=1

ρ̇i, (4.14)

Dvx

Dt
=

3∑
i=1

v̇xi, (4.15)

D
Dt

(EK) = D
Dt

(
v2

2

)
=

3∑
i=1

Ėi, (4.16)

D
Dt

(EI) = D
Dt

(e) =
9∑

i=4

Ėi, (4.17)

where Ėi is a power of mechanical force or heat input. The expressions for ρ̇i, v̇xi and
Ėi are presented in table 1 with their physical meaning and the NSF expressions through
transport coefficients and gradients of pressure, temperature and velocity.
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Term Expression Physical meaning Expressions in the NSF equations
1-D 2-D (symmetry plane)

ρ̇1 −ρ ∂vx
∂x x-compresssion −ρ ∂vx

∂x −ρ ∂vx
∂x

ρ̇2 −ρ
∂vy
∂y y-compression 0 −ρ

∂vy
∂y

v̇x1 − 1
ρ

∂p
∂x pressure gradient − 1

ρ
∂p
∂x − 1

ρ
∂p
∂x

x-force

v̇x2 − 1
ρ

∂xx
∂x normal viscous stress gradient 1

ρ
∂
∂x

(
2
3 μ
[
2 ∂vx

∂x

])
1
ρ

∂
∂x

(
2
3 μ
[
2 ∂vx

∂x − ∂vy
∂y

])
x-force

v̇x3 − 1
ρ

∂xy
∂y shear stress gradient 0 1

ρ
∂
∂y

(
μ
[

∂vx
∂y

])
x-force

Ė1 − 1
ρ
vx

∂p
∂x power of v̇x1 force − 1

ρ
vx

∂p
∂x − 1

ρ
vx

∂p
∂x

Ė2 − 1
ρ
vx

∂xx
∂x power of v̇x2 force 1

ρ
vx

∂
∂x

(
2
3 μ
[
2 ∂vx

∂x

])
1
ρ
vx

∂
∂x

(
2
3 μ
[
2 ∂vx

∂x − ∂vy
∂y

])
Ė3 − 1

ρ
vx

∂xy
∂y power of v̇x3 force 0 1

ρ
vx

∂
∂y

(
μ
[

∂vx
∂y

])
Ė4 − 1

ρ
p ∂vx

∂x pressure − 1
ρ

p ∂vx
∂x − 1

ρ
p ∂vx

∂x

x-compression power

Ė5 − 1
ρ
xx

∂vx
∂x normal viscous stress 1

ρ
2
3 μ
[
2 ∂vx

∂x

]
∂vx
∂x

1
ρ

2
3 μ
[
2 ∂vx

∂x − ∂vy
∂y

]
∂vx
∂x

x-compression power

Ė6 − 1
ρ

p ∂vy
∂y pressure 0 − 1

ρ
p ∂vy

∂y

y-compression power

Ė7 − 1
ρ
yy

∂vy
∂y normal viscous stress 0 1

ρ
2
3 μ
[
2 ∂vy

∂y − ∂vx
∂x

]
∂vy
∂y

y-compression power

Ė8 − 1
ρ

∂qx
∂x heat transfer input along x 1

ρ
∂
∂x

(
κ ∂T

∂x

)
1
ρ

∂
∂x

(
κ ∂T

∂x

)
Ė9 − 1

ρ

∂qy
∂y heat transfer input along y 0 1

ρ
∂
∂y

(
κ ∂T

∂y

)
Table 1. The terms and their physical meaning in the conservation equations of mass, momentum and energy

across the normal shock front and along the symmetry plane in the RR problem.

Increments of the density, velocity, kinetic and internal energy of a fluid element with
respect to their free stream values can be calculated for any position x of the element on
the symmetry plane by evaluating the following integrals:


ρ(x) =
∫ t(x)

−∞

2∑
i=1

ρ̇i dt =
∫ x

−∞

2∑
i=1

ρ̇i

vx
dx, (4.18)


vx(x) =
∫ t(x)

−∞

3∑
i=1

v̇xi dt =
∫ x

−∞

3∑
i=1

v̇xi

vx
dx, (4.19)
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Figure 24. The NSF and R13 results for 
ρ(x), 
vx(x), 
EK(x) and 
EI(x) in 1-D shock wave structure (a)
and internal structure of RR along the symmetry plane (b). Black dashed lines are the analytical downstream
values.


EK(x) =
∫ t(x)

−∞

3∑
i=1

Ėi dt =
∫ x

−∞

3∑
i=1

Ėi

vx
dx, (4.20)


EI(x) =
∫ t(x)

−∞

9∑
i=4

Ėi dt =
∫ x

−∞

9∑
i=4

Ėi

vx
dx. (4.21)

The profiles of these increments across the normal shock and along the symmetry plane
streamline in the RR problem are given in figure 24. Qualitatively the behaviour of the
increments is almost similar for the normal shock and the RR problem: density and internal
energy are increasing while velocity and kinetic energy are decreasing with a lower rate for
the R13 and with a higher rate for the NSF equations. Quantitatively the increments in the
RR problem are substantially higher (e.g. more than two times higher for both energies).
Some differences between the two problems are manifested in subtle features like minima
of velocity and kinetic energy increments present in the RR results. There is a maximum
of internal energy in the RR increment of the internal energy, however, it is also present
in the normal shock problem but only in the R13 and not in the NSF results. This is
not surprising, because the internal energy is proportional to temperature with a constant
coefficient and the temperature profiles exhibit similar features (see figure 10). Note, that
while in the normal shock problem all increments approach analytical RH values behind
the shock, in the RR problem the downstream values depend on the gas flow model which
is explained by the presence of a long non-RH wake behind the shock reflection zone more
prominent in the R13 model.

The contribution of each term Ėi to the increments of kinetic and internal energies for a
1-D planar shock wave and the RR problem along the symmetry line can be evaluated as
follows:


Ei(x) =
∫ t(x)

−∞
Ėi dt =

∫ x

−∞
Ėi

vx
dx. (4.22)

The profiles of the increments of the terms of the kinetic energy conservation equation
are presented in figure 25. As could be expected from the already-discussed distribution
of the right-side terms of the kinetic energy conservation equation 
E1 increment which
reflects the work of the pressure gradient force is decreasing for both problems and both
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Figure 25. The 
Ei contributions (kinetic part) for 1-D shock-wave structure (a) and internal structure of RR
along the symmetry plane (b) for the NSF equations. Panels (c,d) are similar results for the R13 equations.
Black dashed lines in (a,c) are the analytical downstream values.

models (reducing the kinetic energy of the fluid element) while 
E2, the work of the
normal stress gradient force, has a minimum in the normal shock and a maximum in the
RR problem. A less evident fact is that the net contribution of the E2 term to the total
kinetic energy is negative for the normal shock and positive for the RR problem (see the
downstream values). Another interesting fact is that the net contributions of E1 and E2
depend on the gas flow model. At the same time the sum of these two contributions for the
normal shock 
(E1 + E2) (total work of the normal stress gradient force which results in
deceleration of the fluid element) which equals 
EK in the 1-D case do not depend on the
model for the normal shock and is related to the RH downstream velocity. This is not the
case for the RR problem: total work of the normal viscous stress gradient force depends
on the mathematical model of the gas flow. There is also a contribution of the shear stress
gradient to the net kinetic energy change in the RR problem: consistently with already
discussed xy profiles, the 
E3 increment has a minimum inside the shock structure and,
more interestingly, its net contribution to the kinetic energy change is negative and depends
on the gas flow model used (it is less for the R13 than for the NSF equations).

The increments of the terms describing contribution of various processes to the change
of internal energy is given in figure 26. It is clear that the term related to the heat flux input

E8 has a maximum inside the normal shock and its net contribution to the internal energy
of a fluid element passing the shock is equal to zero for both models considered. Indeed,
if we one takes into account that in the 1-D stationary case mass flux is constant ρxvx =
ρ∞v∞ and heat flux asymptotically tends to zero in the free stream and downstream, then
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Figure 26. The 
Ei contributions (internal part) for 1-D shock-wave structure (a) and internal structure of RR
along the symmetry plane (b) for the NSF equations. Panels (c,d) are similar results for the R13 equations.
Black dashed lines in (a,c) are the analytical downstream values.

the net increment 
E8 across the shock front is


Etotal
8 =

∫ ∞

−∞
Ė8

vx
dx = −

∫ ∞

−∞
1

ρxvx

∂qx

∂x
dx = − 1

ρ∞v∞

∫ ∞

−∞
∂qx

∂x
dx = 0. (4.23)

The contribution of pressure and viscous stress forces to the internal energy is positive
in the 1-D shock and hence increments 
E4 and 
E5 are increasing across the shock and
approach positive asymptotic values which depend on the gas flow model. Similarly to
the to the case of E1 and E2 the total increment of the sum of E4 and E5 which equals
net internal energy increment 
Etotal

I = 
(E4 + E5)
total is completely defined by the RH

conditions on temperature and therefore is independent of the gas flow model employed.
Note, that the total increment of E5 has an opposite sign and is equal in absolute value to
E2, which means the net contribution of viscous stress to the energy of a fluid element in
the 1-D case equals zero. Indeed, in the 1-D case taking into account that xx tends to zero
with increasing distance from the shock, one obtains


(E2 + E5)
total =

∫ ∞

−∞
Ė2 + Ė5

vx
dx = −

∫ ∞

−∞
1

ρxvx

(
vx

∂xx

∂x
+ xx

∂vx

∂x

)
dx

= − 1
ρ∞v∞

∫ ∞

−∞

(
vx

∂xx

∂x
+ xx

∂vx

∂x

)
dx

= − 1
ρ∞v∞

∫ ∞

−∞
∂(vxxx)

∂x
dx = 0. (4.24)
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This means the viscosity inside the shock is responsible for the transfer of some portion
of kinetic energy which depends on the gas flow model to internal energy (viscous
dissipation) but it does not contribute to the total energy of the fluid element passing
the shock. Due to this fact the total increment of total energy across the normal shock
equals 
E = 
(E1 + E4)

total. This is why the total increment of the sum of E1 and E4
(asymptotic values for the green curves in figures 25a,c and 26a,c) which represents the
total work of the pressure forces does not depend on the model and is defined by the RH
conditions.

In the RR problem the situation is much more complicated. First, the total x-heat-flux
input increment 
Etotal

8 is positive and depends on the mathematical model of the gas
flow. Second, the total viscous stress x-compression increment 
Etotal

5 is negative, while
the pressure x-compression term increment 
Etotal

4 is positive and the total increment of
their sum in contrast to the 1-D case depends on the model. Third, the net contribution
of x-viscous stress to the total energy 
(E2 + E5)

total is not equal to zero and depends on
the model as well. Fourth, the 2-D internal energy terms’ increments (shown in dashed
curves) are almost one order of magnitude higher than the increments of the 1-D terms
presented by solid curves. It is not surprising that the increments of the terms related to
the compression of the fluid element along the y axis provide the most significant positive
impact on the total internal energy rise in the shock structure. The increment of the term
E9 related to the heat conduction along the y axis behaves non-monotonically: first it
increases and approximately five mean free paths before the origin starts to decrease and
finally provides a very strong negative contribution to the internal energy which is several
times higher than that of all the 1-D terms combined. All these contributions of the 2-D
terms strongly depend of the gas flow model: e.g. the contribution of the viscous stress
y-compression and y-heat-conduction terms to the net increment of internal energy are
approximately one and a half times higher for the NSF equations than for the R13 model.

It is clearly seen from the slopes of the curves for the RR problem, especially in the
R13 results, that the y-compression and y-heat-conduction terms continue to significantly
contribute to the change of internal energy of a fluid element even as far as 20–30 mean
free paths downstream of the origin. These coordinates correspond to what was referred
as ‘wake’ in the flow fields. Indeed, the y-profiles of vy in figure 7 indicate the visible
y-gradient of vy in the wake area on the symmetry plane, which produce the mentioned
compression. The temperature non-uniformity along the y axis of this downstream wake
region evident from figure 6 may be the reason for the y-heat-flux non-zeroth divergence
which contributes to the change of internal energy.

Recall, that the net contributions of viscous stress and heat conduction to the total energy
of a fluid element passing the shock wave are both equal to zero for all dilute gas flow
models. It leads to the fact that the change of total energy across the shock is determined by
the work of pressure forces and hence the change of total enthalpy across the shock is equal
to zero (see e.g. Shoev, Timokhin & Bondar 2020). This statement can also be applied to
a fluid element moving along a streamline in the RR problem sufficiently far from the
symmetry plane and passing two separate (incident and reflected) oblique shocks. This is
clearly not the case for the plane-of-symmetry streamline in the RR problem. Indeed, it is
clear from figures 25b,d and 26b,d that the total contribution of viscous stress to the fluid
element energy (given by the total contribution of E2, E3, E5 and E7 terms) is positive and
is somewhat higher for the NS equations than for the R13.

For the kinetic energy, positive normal viscous x-stress contribution (acceleration) and
negative shear stress contribution (deceleration) nearly compensate each other, yet there is
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a small net negative effect more pronounced for the R13 equations. Probably, the presence
of the decelerating shear stress leads to a velocity minimum with values predicted by
the RH relations. For the internal energy, negative normal viscous x-stress contribution
(expansion) is more than one order of magnitude smaller than the most significant of
all four terms’ y-stress contribution (compression). The total positive contribution of the
viscous stress terms is almost compensated by the negative contribution of heat conduction
which consists of a small positive contribution of x-heat flux component (heating) and
several times larger negative contribution of y-heat flux (cooling). It is also worth noting
that for the plane-of-symmetry streamline the net work of pressure forces (in the x direction

(E1 + E4)

total or in both directions 
(E1 + E4 + E6)
total) depends on the gas flow model

hence are not determined by the RH conditions.
In general, one can conclude that in contrast to the flow across any number of

normal or oblique shocks the total energy of the fluid element passing through the
zone of RR along the symmetry plane is significantly affected by the total non-zeroth
contribution of viscosity and heat conduction. The most important effects are essentially
2-D, namely, compression by the normal viscous stress perpendicular to the stream line
and heat-conduction cooling in the same direction. One can conclude from the curves
corresponding to these processes in figures 25 and 26 that first the fluid element is
compressed by the normal viscous stress in the y direction which leads to the increase of
its internal energy (viscous dissipation) and temperature values different to those predicted
by the RH relations on the IS and RS. This difference manifests itself in the presence of
a non-RH zone with high temperature in the form of the wake downstream of the shock
reflection point. The excessive temperature leads to intensive heat transfer in the y direction
from the wake towards fluid elements passing two separate shocks and hence having lower
temperatures predicted by the RH relations.

5. Summary and conclusions

A detailed study of a structure observed in a reflection of an oblique shock wave from a
plane of symmetry was carried out using a hierarchy of mathematical models of the dilute
gas flow (Euler, NSF, R13 and Boltzmann equations). While the inviscid Euler equation
has a classical analytical solution, all other viscous models require a numerical solution.
The NSF and R13 equations were solved by finite volume methods, and for the Boltzmann
equation the DSMC method was used. The DSMC solution is considered a benchmark
one, and the accuracy of the other models is assessed by comparison with it. The case of
the Mach number Ma = 20 flow was considered while the angle of the IS was chosen to
provide the Mach number in the normal direction to its front to be equal to eight.

All three viscous solutions are qualitatively similar to each other and different from the
inviscid one not only inside the shock fronts but also in a wake which extends dozens of
mean free paths downstream of the reflection point along the plane of symmetry. In this
wake the flow parameters differ from that predicted by the inviscid RH relations. In this
sense it is similar to the non-RH zone which have been observed behind the triple point
in the viscous calculation of stationary irregular reflection. In this wake the minimum of
the velocity is observed while there are maxima of temperature and pressure. While the
R13 results are quite close to the DSMC benchmark solution, the NSF equation predicts
stronger gradients and less pronounced deviations from the RH values.

It seems natural to compare a structure of the flow along the symmetry-plane streamline
in the RR problem with a structure of a 1-D planar shock wave. Despite obvious
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similarities between these two flows, the performed comparison revealed important
qualitative differences. The first one is the wake which extends downstream of the region of
high gradients in the RR, which is absent in the planar shock. The temperature maximum
is present in the planar shock only when R13 or DSMC are used and absent in the NSF
solution, when it is present in the RR problem for all models. The velocity minimum
is also characteristic of the RR problem but not the planar shock. The most interesting
difference between the two flows is the behaviour of profiles of directional temperatures
(or diagonal components of the viscous stress tensor): instead of non-monotonic behaviour
of the x-temperature typical of the normal shock, the non-monotonic behaviour is observed
for the y-temperature in the RR problem. Analysis of the 2-D RR flow structure provides
an insight into the source of this effect, which is related to the small angle between both IS
and RS and the incoming flow direction. Due to this geometrical feature, if profiles along
planes at various distances from the plane of symmetry are considered, Ty has maxima
inside the shocks while Tx is monotonic. When one approaches the symmetry plane the
two shocks merge and two maxima of Ty merge into a single one. This is also true for other
parameters which have maxima inside shocks.

The flow along the symmetry plane in the RR has been also analysed with mass,
momentum and energy conservation equations written in non-conservation form, i.e. with
respect to substantial derivatives of density, velocity and energy per unit mass. Using the
numerical solutions the contribution of various process to the change of density, velocity
and energy (both kinetic and internal) of a fluid element moving along the plane of
symmetry has been calculated and compared with the similar results for the 1-D normal
shock. The results supported the notion that the two considered flows are qualitatively
different. The 2-D effects are essential in the RR problem: the source terms present only
in the 2-D case are more prominent than 1-D terms in the mass and internal energy
conservation equations while in the momentum and kinetic energy conservation equations
they are comparable to the 1-D terms. In particular, the compression and heat transfer
along the y axis are of major significance in the RR problem. Note, that the behaviour of
some 1-D terms in the momentum and energy equations related to the work of the diagonal
viscous stress tensor components are qualitatively different in the normal shock and the
RR problem due to differences in the viscous stress tensor between the two problems
mentioned above.

Calculation of the net effect of various processes on the kinetic and internal energy of
fluid element passing the shock reflection zone along the symmetry plane revealed major
differences from the flow across conventional normal and oblique shocks. A stationary
flow across any shock wave front has a following feature which is independent of the
gas flow model used: there is no net effect of viscosity and heat conduction on total
energy or total enthalpy of a fluid element passing the shock. It has been found to be
untrue for the plane-of-symmetry stream line in the RR. The most significant viscosity
and heat conduction effects comparable in magnitude with inviscid effects appear to be
two-dimensional. In particular, the total effect of compression of the fluid element by the
y-normal viscous stress (viscous dissipation of kinetic energy of the flow motion towards
the plane of symmetry) is positive and is believed to be the source of the existence of the
discussed temperature and pressure maxima. The velocity minimum is likely to be caused
by the negative net effect of the shear stress. The temperature maximum is in its turn the
major source of the heat loss in the direction normal to the stream line which results in the
negative total contribution of heat transfer to internal energy of the line-of-symmetry flow.

The present study has a significant limitation related to the lack of parametric analysis
of effects of IS angle and intensity (normal Mach number) on the flow in the zone of
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the RR. One can expect that for larger angles between the shocks and the incoming flow
the profiles of directional temperatures and viscous stress along the x axis could behave
differently, possibly the maxima of Ty and yy would not be observed. Also for some sets of
parameters the 2-D heat conduction and viscous dissipation effects may be less prominent
in comparison with the 1-D effects. These questions require further investigation.

Its important to note that the analysed effects are essentially non-equilibrium which is
related to strong non-Maxwellian shape of the molecular velocity distribution (see Bondar
et al. 2019; Timokhin et al. 2022). The NSF equations less accurate in this regard predict
quantitatively different results than the more accurate R13 equations and the benchmark
Boltzmann equation (or DSMC method). The authors suggest that the simple regular
reflection problem becomes a test case for checking accuracy of various sophisticated
models of non-equilibrium gas flows by comparison with benchmark solutions.
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Appendix. Grid convergence for the RR problem

To confirm the accuracy of the obtained numerical results, the convergence of the
macroparameter distributions was demonstrated in series of computations with increasing
spatial resolution of the flow structure for the RR problem.

For the continuum methods (NSF and R13), series of calculations were carried
out on identical sets of computational grids. The cell size in the grids used in the
vicinity of the shock wave reflection varied with respect to the free stream mean
free path as follows: 2.2λ∞, 1.1λ∞, 0.54λ∞, 0.27λ∞ and 0.14λ∞. In figures 27 and
28 the NSF and R13 comparisons of density and temperature distributions along the
symmetry plane for various computational grids are presented. The convergence of
solutions is clearly observed for both methods: all red (0.27λ∞) and dotted (0.14λ∞)
lines are indistinguishable in figures 27 and 28. The maximum difference for temperature
distributions does not exceed 0.4 %. The 0.14λ∞-grid was used in computations presented
in the paper.

Due to presence of various numerical errors governed by different computational
parameters, a DSMC grid convergence study cannot be performed solely by the grid
size variation (see Bird 1994). For example, reducing the collision cell size (and hence
reducing the spatial discretization error) while keeping constant the number of simulated
particles would lead to an increase of the error related to the low number of particles in the
collisional cell. For this reason, in the series of computations of the present convergence
study the collisional cell size 
xc and total number of simulated particles N were varied
simultaneously. The parameter which is proportional to and can be used instead of the total
number of simulated particles is Nλ, which is the number of simulated particles in λ-cell
(in the 2-D case it is a square with the side equal to the local mean free path). For the
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Figure 27. Convergence of NSF results for density (a) and temperature (b) along the symmetry plane.
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Figure 28. Convergence of R13 results density (a) and temperature (b) along the symmetry plane.

DSMC computation to be considered accurate this parameter must be higher than unity in
the whole flow field (see Shevyrin et al. 2005).

In the SMILE++ DSMC code (see Ivanov et al. 2011) employed in the present work two
separate rectangular grids are used: the macroparameter sampling grid and the collisional
grid. The first grid does not affect the accuracy of the modelling process and only should be
fine enough in order to provide sufficient resolution of macroparameter gradients, so it was
not varied in the series. The collisional grid is adapted in the course of the computation in
order to provide a nearly constant number of particles in the collisional cell throughout the
whole flow field. In the present series of computations the free stream Nλ∞ was increased
while reducing the typical collisional cell size 
xc obtained in the course of automatic
adaptation. Here Nλ∞ was varied from 1 to 32. The values of numerical parameters for the
computations of the series is presented in table 2. The total number of simulated particles
is proportional to Nλ∞ and varied from 1.3 to 42.1 × 106 in the series. Local Nλ is not
constant in the flow field due to variations both in local density and mean free path, so it
decreases by approximately 40 % downstream of the reflection point. The collisional cell
size obtained during the adaptation also varies across the flow field due to variation in local
density. It decreases slowly in the series, approximately proportional to the square root of
Nλ∞ . This is due to the fact that the square grid is used in the computations with cells
similarly adapted along the x and y axes. Comparison of results of the DSMC computation
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Case N, mil Nλ 
xc/λ∞

Nλ∞ = 1 1.3 0.6–1.0 1.00–5.00
Nλ∞ = 2 2.6 1.2–2.1 0.71–2.50
Nλ∞ = 4 5.3 2.4–4.2 0.50–1.67
Nλ∞ = 8 10.5 4.9–8.4 0.33–1.00
Nλ∞ = 16 21.1 9.9–16.9 0.23–0.71
Nλ∞ = 32 42.1 19.9–33.8 0.15–0.45

Table 2. Parameters of the series of DSMC computations: total number of simulated particles, number of
particles in λ-cell in the reflection zone and collision cell size in the reflection zone.
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Figure 29. Convergence of DSMC results for density (a) and temperature (b) along the symmetry plane.

series for density and temperature along the symmetry plane is presented in figure 29.
The convergence is clearly reached with increasing Nλ∞ , starting from its value of eight.
At higher values of Nλ∞ (at 
xc/λ∞ < 1) the results are virtually indistinguishable.
The computational results of Nλ∞ = 32 case were used in the present study of the RR
reflection.
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