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Abstract

We study the equation dY(t)/dt = f(Y(t), Eh(Y(t))) for random initial conditions, where £ denotes
the expected value. It turns out that in contrast to the deterministic case local Lipschitz continuity of /
and h are not sufficient to ensure uniqueness of the solutions. Finally we also state some sufficient
conditions for uniqueness.

1980 Mathematics subject classification (Amer. Math. Soc.): 34 F 05, 35 K 22, 60 H 10.

1. Introduction

Vlasov-McKean equations of the form
(1) dX(t) = b(X(t),&(X(t)))dt + o(X(t)
frequently occur as the equation for the dynamics of one component in the
mean-field- (or Vlasov-McKean-) limit [1,4,5,6,8]. Here SC denotes the law of a
random vector, (W(t))t>0 is an n-dimensional Brownian motion, f is an Reval-
ued random variable and b and a are functions having domain and range such
that (1) makes sense. Equation (1) is frequently called "nonlinear stochastic
differential equation" since the associated Fokker-Planck (-Vlasov) equation is a
nonlinear partial (integro-) differential equation. When proving limit theorems of
this type one step (besides tightness and identification of the limit) usually
consists of proving pathwise uniqueness of the solution of (1) (see, for example,
[6, 8]). Under certain assumptions (mostly including Lipschitz conditions) particu-
lar equations of type (1) or the corresponding Fokker-Planck equations were
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[21 Solutions of Vlasov-McKean equations 247

shown to have a unique solution (in different senses, see [1,2,4,5,6,7,8]). In
many applications however b and/or a are not Lipschitz continuous, but, for
example of polynomial type (for example in chemical reaction models, see [6])
and the question arises whether one can still prove pathwise uniqueness. In this
paper we provide a partial answer for degenerate equations, where a = 0 (like
Vlasov equation) and which are of the particular structure

(2) t(t)=f(Y(t),Eh(Y(t))),

We give examples showing that a local Lipschitz condition on either / or h is
insufficient for uniqueness of a solution even if the other function satisfies a
global Lipschitz condition. These examples are in contrast to the deterministic
case (that is, (2) without the expectation in front of h) where local Lipschitz
continuity of / and h are known to be sufficient for uniqueness. The results,
although perhaps not too surprising due to the global effect of taking the
expected value of h, that is, integrating over the whole state space, are still
remarkable since the formally approximating system of equations

(3)

with £, independent and identically distributed, has a unique (local) solution for
every finite JV if / and h satisfy a local Lipschitz condition. By a (strong) solution
of (2) for 0 < / < T on a probability space (fi, &, P) on which £ is defined, we
mean a stochastic process (y(O)o</<r o n t n a t space such that Eh(Y{t)) < oo
for all 0 < t < T, /o

rE\h(Y(t))\dt < oo, Y is continuous with probability one
and satisfies the integrated equation (2). In the first part we specify a number of
conditions on / and h which are insufficient for (2) to have a unique solution by
providing counterexamples. In the last part we prove three positive results on
uniqueness. More precisely we verify the following table

/ Lipschitz and
compact support

Lipschitz locally Lipschitz

Lipschitz and
compact support

Lipschitz

locally Lipschitz

continuous and
compact support

unique (PI, P2, P3)

unique (PI, P3)

unique (P3)

CE3

unique (PI, P2)

unique (PI)

CE2

CE3

unique (P2)

CE1.CE1'

CE1,CE1',CE2

CE3
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248 Michael Scheutzow [31

"CE" stands for "counterexample", "P" stands for "proposition". We omitted
the column " / continuous and compact support" since counterexamples are well
known in that case. The table holds true for every dimension d (1 < d < oo) of
the state space of Y and every dimension n (1 < n < oo) of the range of h.

2. Counterexamples

COUNTEREXAMPLE 1. To construct the first counterexample let (/>,);eNo be a
sequence of strictly positive numbers such that T-f-iPj = 1 and Lj=ojPj < oo.
Furthermore let (g,()),GNo be a sequence of twice continuously differentiable
functions from the interval [0, \] to [0, \] with the properties

(0 g,-(0) = 0.
(ii) g-(s) > 0, 0 < s < j (the prime denotes derivative w.r.t. s).

(iii) There exists some st > 0 such that g,(s) = s2 for 0 < 5 < st.
(iv) g,(?) = i and
(v) E"=o Pjgj(t) converges to h{t) := 2t - 2t2 pointwise (and hence uniformly)

on [0, ̂ ] as n -> oo.
To see that such a sequence of functions exists, define

R 0 ( t ) : = h ( t ) = 2 t - 2 t 2 , 0 < ? < i ,

:= minU(l -
*?-„

1/2

and

= 2t- 2+ E ^ r
7 - 0

P/

and let /?,+ 1 be twice continuously differentiable on [0, \] such that 0 < R'i+i(t)
< R't(t) for 0 < t < j . The inequalities for R'i+l(t) are clearly satisfied for
0 < t < J, and 5,_x < / < f by induction, where R'i+1(t) > 0 for t < j ; follows
from *,-< i (since /J,(r) < 2 by induction) which implies R'i+I(t) = 2-
2(2 + I/j.opj)t > 2 - 6r > 0 for t < $,.. Note that 5, < s,_l since /?;(/) < 2 by
induction and hence /?,-($,•_!) < 2i,_1.

To show that it is possible to choose Ri+l(t) in [S,-,JI-_1] such that the
inequalities for R'i+l(t) hold it is enough to ensure that

0 < * , + iU_ i ) - Ri+M < tf,(*,-i) - Riis,).
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[4] Solutions of Vlasov-McKean equations 249

The right inequality is equivalent to

and hence to sf < ^,(.s,-1)/E°0
=, Pj, the left one is equivalent to

2s, - s}

which follows from the definition of s,. Now g , (0 : = = (-^,-(0 ~ ^,+i(0)/ />, n a s

all the properties (i)-(v). Note that Rn(t) = h(t) - E"ZQ Pjgj(t) converges to
zero at t = \ and hence, due to R'n(t) > 0 and Rn(0) = 0, for all 0 ^ t < \.

Let us now construct a locally Lipschitz continuous function <£: R -» R such
that the equation

(4) Y(t) = *{Y{t))+EY(t)-tjPj
7 = 0

with P{ Y(0) = i) = pit i e No, has at least two different solutions on the interval
[0, i ] . Note that the sequence (/»,),_i>2,... is fixed and therefore Lf=0JPj is a

constant (which could have been incorporated into the function </>). Fixing a
sequence of functions (g,), G N satisfying the assumptions above, define

Y,(t):= i + gi(t), 0 « r < * .

and <|>: R -> R by

*(/ + 0 = ^(ft
for / e No and 0 < t < g,.(i).

Let <>(5) = 0 for s < 0 and define <f> on the intervals [i + g,(i), / + 1] (/' e No)
by hnear interpolation. The function </> is well defined since the functions g, are
strictly monotonically increasing on [0, j]. Obviously <#>(/) = 0 for all / e No and
<j> is continuous. For 0 < t < \

+(¥,(0) = *(/ + g,0)) = g',(t) ~(2t - 2t2) = g'M - t pjgj(t)
7 = 0

= ^ ( o - £ PJYJO) + £ />y7
7-0 7-0

= *,(0 - £ ^ ( 0 + E M(°)-
7-0 7=0

Define the process (y(O)»e[o,i/4] W p{YU) = y)(0 for all 0 < / < i } =/>,.
Then it follows that Y satisfies equation equation (4) with the initial condition
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Since <£(') = 0 for / = 0 ,1 ,2 , . . . the equation is also solved by the process Y
defined by P{Y(t) = i for all t > 0} = pi which clearly has a law different from
that of Y.

All that remains to show is that the function 4> is not only continuous but in
fact locally Lipschitz continuous. It suffices to check the Lipschitz continuity on
every interval [i, / + g,(i)]. Differentiating and evaluating at i + g(.(f) we get

for all 0 < t < \. For 0 < t < s,

For st< t < j , g-(t) is bounded away from zero which shows that <f>'(t) is
bounded on ]/, i + g,(/)[ and hence that <J> is locally Lipschitz continuous.

REMARK. The assumption that the /?, are (strictly) positive can be relaxed by
only requiring that infinitely many of the /», are strictly positive and the others are
zero. If however only finitely many are nonzero the construction does not work.

COUNTEREXAMPLE V. One might suspect that the construction of two different
solutions of equation (4) was possible only because EY(t) is not a (weakly)
continuous functional of the law of Y(t). The following generalization of counter-
example 1 shows however that this is not true.

Let h be a continuously differentiable function from R to R satisfying
h'(x) > 0 for all x e R (h can be bounded or unbounded). Furthermore let
(/>,)/=o,i,2 t>e a sequence of nonnegative numbers which contains infinitely
many nonzero elements satisfying Y.J=0Pj = 1 and Y.J=0Pjh(j) < oo. Almost the
same construction as before shows that

(5) Y{t) = *(y(r)) + Eh(Y(t)) - £ pjh(j),
7 = 0

P{y(0) = ,-}=/>„ i = 0 ,1 ,2 ,

has more than one solution on some interval [0, to]if <j> is defined in the same way
as before, but where the g, satisfy

E Pj(h(j + gj(t)) - h(j)) = 2t- 2t2 forO
7 = 0

https://doi.org/10.1017/S1446788700029384 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029384


f61 Solutions of Vlasov-McKean equations 251

instead of LJLoPj8j(O = 2/ - It2 and gt(t0) < \ instead of g,( i ) = i- It is not
hard to see that such g, exist and that one can choose any t0 > 0 which is not
greater than (1 - (1 - min(A, l ) ) 1 / 2 ) / 2 where A = I * = 0 J p y m i n y < J < y + 1 A ' ( J ) be-
cause in this case

t Pj{h(j + gj(to)) ~ HJ)) > £ Pj min h'(s) • gj(t0)

which can, by an appropriate choice of the gy, assume any value between 0 and
A/2, but A/2 is greater or equal to 2t0 — 2t\ if t0 is chosen in the way above.

COUNTEREXAMPLE 2. We give an example showing that the equation

(6) ir(t) = Eh(Y(t)), y(o) = *

can have more than one solution if h is locally Lipschitz continuous.
Take a sequence of nonnegative numbers (/>,),<=N0 which contains infinitely

many nonzero members such that £°°_0 Pj = 1. Now let h be any locally Lipschitz
continuous function satisfying T.J.0Pjh(j + u) = (3M)2 / 3 where the sum con-
verges uniformly for all 0 < w < 1/3. Define g(t):= t3/3 for 0 < t < 1 and
Y,(t) = i + g(t). Then fy/) = *( / ) = f2 = (3g(O)2 / 3 = Z.JLoPjhU + g(t)) =
Zf-oPjKYjit)), that is, the process Y defined by ^ { 7 ( 0 = Yt(t) for 0 < t < 1}
= />„ / e No satisfies equation (6) provided P { | = /} = />, for all / = 0 , 1 , 2 , . . . .
On the other hand equation (6) is also solved by Y(t) = £ for all f > 0 since

REMARKS, (i) h can be chosen to be bounded and even to converge to zero at an
arbitrary speed (in particular h is then uniformly continuous): Pick a sequence of
positive numbers (a,), e N converging to zero monotonically. Then we construct a
locally Lipschitz continuous nonnegative function h: R -» R such that
max/ < J < 1 + 1 h(s) < a, for every / e No and such that (6) has more than one
solution. Let /0:= min(^(E?_0/>/-ay.)

3/2, \) and define h(t) = 0 for / < 0. For
0 < / < 1 let h be Lipschitz continuous, nonnegative and satisfy max0 < / < 1 h{t)
< a0, h{\) = 0 and 0 < (3r)2/3 - poh(t) < I.f_l pjCj for all 0 < t < t0. Such a
function exists by the definition of f0. Continue by defining h in the interval [1,2]
such that h is nonnegative, Lipschitz continuous and satisfies max \<t<2h{t) < av

h(2) = 0 and 0 < (3r)2/3 - I}j-0Pjh(J + 0 < £"=2 ^a 7 for all 0 < r < r0 and
so forth. It follows that Iff.0Pjh\j + u) = (3u)2/3 for 0 < « < t0. The same
reasoning as in counterexample 2 shows that there exist at least two solutions on
the interval [0, /„].

(ii) As mentioned in the introduction one main interest in studying McKean
equations is due to the fact that they often appear as limiting equations for the
motion of one particle in a field of N interacting like particles as N tends to
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252 Michael Scheutzow [7]

infinity. This is also true for the example given above: Consider N particles with
positions (Y ( 1 ' N ) (0 , - - - , Y<N-N\t)) having independent .S?(Y(O))-distributed ini-
tial conditions y(/Ar)(0) and satisfying

(7) ^

with h defined like in the preceding remark. Since h is locally Lipschitz continu-
ous the only solution of (7) is Y<'-N\t) = Y(i-N\0) for all t^O and i =
1,2, ...,N. So the processes Y{1-N\-) converge in law to the solution Y of
equation (6) but not to the first solution Y!. So the infinite particle system can
exhibit a solution that cannot be approximated by the finite dimensional system
(7).

(iii) The results of Shiga and Tanaka [8] show (in particular) that the equation
dX(t) = Eh(X(t))dt + dW(t) does have a unique solution if h is bounded and
measurable. So the noise helps to achieve uniqueness. We conjecture however that
one can construct examples of nonuniqueness for the same equation if h is
allowed to be unbounded but is locally bounded (or even locally Lipschitz
continuous).

COUNTEREXAMPLE 3. The following counterexample is well known. It shows
that the equation

(8) Y(t) = Eh(Y(t)), 7(0) = |

can have more than one solution if h is continuous (but not Lipschitz) and has
compact support: Let P{£ = 0} = 1 and define

x < 0, x > 2,

Then (8) is solved by the two deterministic processes Yx(t) = f 2 / 4 and Y2(t) = 0
for 0 < / < 2.

3. Some positive results

Let us now state three positive results about uniqueness of solutions of (2).

PROPOSITION 1. If f and h are Lipschitz-continuous functions and 0 < T < oo,
then there exists at most one (strong) solution of (2) on [0, T].
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PROOF. Let (7(O)o«<«r and (Y(t))Q<l<T be two solutions of (2) defined on
the same space (Q,^,P) and let K be a Lipschitz constant for both / and h.
Then

\Y(t)-Y(t)\<^\f(Y(s),Eh(Y(s)))-f(Y(s),Eh(Y(s)))\ds

< Kf \Y(S) - Y(s)\ds + K(' \Eh(Y(s)) - Eh(Y(s))\dsf \ ( ) ()\
almost surely. Using the Lemma of Bellman and Gronwall (see Liptser and
Shiryayev [3], page 139) we get

(9) \Y(t) - Y(t)\* Kf e*'-'* f \Eh(Y(u)) - Eh(Y(u))\duds

+ Kf\Eh(Y(s))-Eh(Y(s))\ds.
Jo

Since the right hand side is deterministic the inequality remains true if we take the
expected value on the left side. It follows that there exists a constant L such that

\Eh(Y(t))-Eh(Y(t))\<KE\Y(t)-Y(t)\

L['\Eh(Y(u))-Eh(Y(u))\du

for all 0 < t < T. Applying the Lemma of Bellman and Gronwall once more we
get Eh(Y(t)) = Eh(Y(t)) for all 0 < / < T and therefore, from (9) P{ Y(t) = Y(t)
for all 0 < / < T} = 1 which proves the assertion.

REMARKS, (i) The proposition and its proof remain true in the multidimensional
case, that is, h:Rd ->R" and / : R ^ x R " - . Rd.

(ii) Under the assumptions of Proposition 1 the solution of (2) is also unique in
law, that is, the laws of any two solutions Y and Y defined on {Qi,^,P) and
(ft, # , P) respectively with &(Y(0)) = &(Y(0)) coincide. To see this let
m(t):= Eh(Y(t)). Then Y(t) = f(Y(t), m(t)), 7(0) = £ has a solution on
(fi, !F, P) in the usual sense (see Walter [9], page 82) which is measurable with
respect to £ and which solves (2) in the sense stated in the introduction. Therefore
this solution can also be realized (in law) on (ft, # , P) which, together with
proposition 1, proves the assertion. This shows that strong uniqueness always
implies uniqueness in law (not only under the assumptions of Proposition 1).

(iii) The assumptions of Proposition 1 do not imply the existence of a solution
even if E\h(Y(0))\ < oo. Define for example

A(2') = 0, / = 0,1,2,. . . ,
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and interpolate h linearly otherwise. Then h is Lipschitz with constant 1. Let
P{ 7(0) = 2'} = pt, i e N 0 , such that E?_o 2

Jpj = oo and define

f(x,y) = x + a(arctanj> + ir/2) (o < a < (lir)'1),

that is, we consider the system

f(t) = Y(t) + a(arctan£/i(y(f)) + V 2 ) -

Solving this linear equation for Y we get

Y(t) = Y(Q)e' + a (' e~s f arctanEh{Y{u)) + ir/2duds,

but Eh(Y(t)) > E«L0/,/(2V) = L?-0Pj(2V - V) = (e' - VjZ?^PjV = oo
for 0 < / < In 5/4 because

0 < a (' e's f arctan£/i(y(u)) + ir/2duds < ir/4n = 1/4
Jo Jo

and 2Je' + 1/4 < 2>5/4 + 1/4 < (3/2)2> for 0 < r < In 5/4 and y = 0 ,1 ,2 . . . .
(iv) The proof is also valid for (multidimensional) stochastic equations of the

form

(10) dY(t) = f(Y(t), Eh(Y(t))) dt + dM(t)

where M is any fixed continuous L2-martingale, because the stochastic term
drops out in the proof. If in addition to the assumption in Proposition 1 h is
bounded and £T2(0) < oo then uniqueness (and also existence) of the solution of
equation (10) follows from a (more general) result of Oelschlager [5]. In fact, if
£ |y(0) | < oo, then the usual recursive approximation scheme will give existence
of a solution of (10) even without the boundedness condition on h.

PROPOSITION 2. / / / is locally Lipschitz continuous and h is Lipschitz continuous
and has compact support, then for every 0 < T < oo there exists at most one strong
solution of (2).

PROOF. Let Ml be chosen such that supp/i c [x | |JC| < Mx} and let M2 > Mv

Furthermore define h:= maxx e s u p p A|/i(x)| . Since / is bounded on {(x, z)\
|x| < Af2, | z | < ^ } there exists some 0 < t0 < T such that for all measurable
functions (2(0)0<»<<0

 w i t h s u p o ^ J ^ O I < h and for all y0 satisfying \yo\ >
M2, the solution of Y(t) = f(Y(t), z(t)), Y(0) = y0 satisfies in f o < , < / o | y ( / ) | > Mv

Now let / be any globally Lipschitz function which agrees with / on the set
{(x, z) | \x\ < M2, \z\ < h). According to Proposition 1

(11) Y(t)=f(Y(t),Eh(Y(t))),

has at most one solution.
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Let Yx a n d Y2 be two solutions of (2) wi th Yx(0) = r 2 ( 0 ) = £. If we insert
Eh(Yx(t)) for Eh(Y(t)) into (11) we see that the corresponding unique solution
Y{t) agrees with Yx(t) on the support of h for 0 < t < t0. In particular Eh(Y(t))
= Eh(Yx(t)) showing that Y satisfies (11). Since (11) has exactly one solution one
can show Eh(Y(t)) = Eh(Y2{t)) in the same way. So Eh(Yx(t)) = Eh(Y2(t)) for
0 < t < t0 which implies P{Yx(t) = Y2{t), 0 < / < t0} = 1, that is, uniqueness
on the interval [0, t0]. Repeating the argument with 0 replaced by /0 and t0

replaced by tx = 2t0 etc. we get uniqueness on [0, T\.

REMARK. The proposition and its proof are also valid in the multidimensional
case.

PROPOSITION 3. / / / is Lipschitz and has compact support w.r.t. the first
argument, that is, there exists some M > 0 such that f(y, z) = 0 for all z e R and
\y\> M and if h is locally Lipschitz continuous then for every 0 < T < oo there
exists at most one strong solution of (2).

PROOF. If E\h(Y(0))\ = oo there is nothing to prove. Otherwise let h be a
Lipschitz function which agrees with h inside a ball of radius M and satisfies
Eh(Y(0)) = Eh(Y(0)). Obviously any solution of (2) satisfies

(12) Y(t)=f(Y(t),Eh(Y(t))), y(0) = «

since 7(0 = 0 if \Y(t)\ > M and

Eh(Y(t)) = E{h(Y(t))\\Y(0)\< M)P{\Y(0)\< M)

+ E(h(Y{t))\\Y(0)\> M)P{\Y(0)\> M)

= E(h(Y{t))\Y(0)\< M)P{\Y(O)\< M}

+ E('h(Y(0))\\Y(0)\> M)P{\Y(0)\> M}

= Eh{Y{t)).

The assertion follows from the fact that equation (12) has at most one solution
due to Proposition 1.

REMARK. Again the proposition and its proof are also valid in the multidimen-
sional case.

FINAL REMARK. Instead of (2) some authors treat the (nonlinear) equation

(13) X(t)=f f(X(t),y)dut(y), «,=
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with / : I t ' x R ' ' - * Rd (mostly plus a noise term). If we agree to call (X(t))l>0 a
(strong) solution of (13) if its law u, = J£'(X(t)) satisfies supo<,<7-/Rd|j>|*/M,(;')
< oo for every T > 0, (X(t))l>0 has continuous paths and (13) holds in its
integrated form for almost all paths, then the following table holds true for the
function / where uniform (locally) Lipschitz means that the (local) Lipschitz
constants can be chosen independently of the other component. Here the unique-
ness result is a special case of [2], page 342.

1st comp.
2nd comp. unif. Lipschitz unif. loc. Lipschitz

unif. Lipschitz
unif. loc. Lipschitz

unique
CE1

CE2
CE1,2
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