AUTOCLINISMS AND AUTOMORPHISMS OF FINITE GROUPS II

by JÜRGEN TAPPE

(Received 8 July, 1979)

In part I of this paper P. Hall's formula for finite stem groups was derived. Using results of C. R. Leedham-Green and S. McKay, a similar formula for isoclinic groups with arbitrary branch factor group is shown.

The main result of this paper is the following theorem, which appears without proof in [1, p. 203].

Theorem. Let Γ be an isoclinism family of finite groups, Q a finite abelian group and $Acl(\Gamma)$ the autoclinism group of Γ . Then we have

$$\frac{1}{|\operatorname{Acl}(\Gamma) \times \operatorname{Aut}(Q)|} = \sum \frac{1}{|\operatorname{Aut}(G)|},$$

where G runs through a complete system of non-isomorphic groups in Γ with Q as branch factor group.

Let G and H be groups (not necessarily finite). We call G and H strongly isoclinic, if there exists an isomorphism α from $G/(Z(G)\cap G')$ to $H/(Z(H)\cap H')$, which induces an isomorphism γ from G' to H'; α is called a strong isoclinism, if G=H a strong autoclinism. It can be easily verified that a strong isoclinism induces isomorphisms α_1 from G/Z(G) to H/Z(H) and α_2 from G_{ab} to H_{ab} , where α_1 and α_2 "coincide" on G/(G'Z(G)), and which determine α . The pair (α_1, γ) is an "ordinary" isoclinism from G to G. The restriction of G to G/(G'Z(G))/G' is an isomorphism onto G/(G'Z(G))/G'. These quotients are called the branch factor groups of G and G0 and G1, being invariant under strong isoclinism. In the terminology of G1, Hall, strong isoclinism describes the "situation of the commutator quotients".

Let α be a strong autoclinism of G, K = G/Z(G), Q the branch factor group of G, and τ the restriction of α_2 to Q. Then α determines an element $((\alpha_1, \gamma), \tau)$ of $Acl(\Gamma) \times Aut(Q)$. Let Φ denote the class of groups being strongly isoclinic to G, and $A(\Phi)$ the corresponding group of strong autoclinisms (which does not depend on the representatives of Φ). Then we have a homomorphism from $A(\Phi)$ to $Acl(\Gamma) \times Aut(Q)$, and it is easy to see that the kernel of this homomorphism is isomorphic to $Hom(K_{ab}, Q)$. Let $L = G/(Z(G) \cap G')$ and $B = Z(G) \cap G'$, and we consider the central extension

$$C: 1 \rightarrow B \rightarrow G \rightarrow L \rightarrow 1$$
.

Then C determines an epimorphism from the Schur multiplier of L onto B, which corresponds to a coset Ω of $\operatorname{Ext}(L_{ab}, B)$, regarded as a subgroup of $H^2(L, B)$, (in part I the

Glasgow Math. J. 21 (1980) 205-207.

Ext-group was denoted by sym). It follows from Theorem I.2.1 in [2] and similar observations as in part I that the isomorphism classes of groups in Φ correspond to the orbits of $A(\Phi)$ on Ω , where $\alpha \in A(\Phi)$ acts on $H^2(L, B)$, resp. Ω via the action of α on L and γ on B. For finite groups we obtain in the same way as in part I the formula

$$\cdot \frac{1}{|A(\Phi)|} = \sum \frac{1}{|Aut(H)|},\tag{1}$$

where H runs through the isomorphism classes of groups in Φ .

Now we consider all groups in a family Γ with a fixed branch factor group Q, which are divided into certain classes Φ of strongly isoclinic groups. Let S be a (fixed) stem group in Γ with K = S/Z(S). We consider all abelian extensions D of Q by K_{ab} :

$$D: 1 \to Q \to \tilde{D} \to K_{ab} \to 1$$

and denote for each D by G(D) the direct product of S and \bar{D} with amalgamated quotient K_{ab} . From Theorem II.3.2 in [2] we obtain that each group in Γ with Q as branch factor group is strongly isoclinic to some G(D). In order to determine the isomorphism classes, we only have to decide, which groups G(D) are in the same class Φ . The groups G(D) are in one-to-one correspondence with the elements of $\operatorname{Ext}(K_{ab}, Q)$. As each autoclinism of S induces an automorphism of K_{ab} , we have an action of $\operatorname{Acl}(\Gamma) \times \operatorname{Aut}(Q)$ on $\operatorname{Ext}(K_{ab}, Q)$, and it is not very difficult to see that groups of the form G(D) are strongly isoclinic, if and only if the corresponding elements of $\operatorname{Ext}(K_{ab}, Q)$ are conjugate under $\operatorname{Acl}(\Gamma) \times \operatorname{Aut}(Q)$. The corresponding stabilizers are the homomorphic images of the groups $A(\Phi)$. For finite groups we obtain

$$|\operatorname{Ext}(K_{ab}, Q)| = \sum \frac{|\operatorname{Acl}(\Gamma) \times \operatorname{Aut}(Q)|}{|A(\Phi)|/|\operatorname{Hom}(K_{ab}, Q)|},$$

where the sum is taken over all classes Φ of strongly isoclinic groups in Γ with Q as branch factor group, which yields

$$\frac{1}{|\operatorname{Acl}(\Gamma) \times \operatorname{Aut}(Q)|} = \sum \frac{1}{|A(\Phi)|}.$$
 (2)

Now the theorem follows from (1) and (2).

REMARKS. The theorem above can also be obtained by a dual procedure, using Hall's "situation of the centrals". It is also possible to "extend" the formulae and the results on the isomorphism classes of groups in a family to isoclinism classes of arbitrary central extensions without any further complications.

REFERENCES

- 1. P. Hall, On groups of automorphisms, J. Reine Angew. Math. 182 (1940), 194-204.
- 2. C. R. Leedham-Green and S. McKay, Baer invariants, isologism, varietal laws and homology, *Acta Math.* 137 (1976), 99-150.

3. R. Reimers and J. Tappe, Autoclinisms and automorphisms of finite groups, *Bull. Austral. Math. Soc.* 13 (1975), 439-449.

LEHRSTUHL B FÜR MATHEMATIK
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE,
AACHEN,
GERMANY