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5.1 Introduction

One of the most remarkable limit theorems in probabilistic number theory
is related to a surprising feature of the distribution of prime numbers, which
was first noticed by Chebychev [24] in 1853: there seemed to be many more
primes p such that p ≡ 3 (mod 4) than primes with p ≡ 1 (mod 4) (any
prime, except p = 2, must satisfy one of these two conditions). More precisely,
he states:

En cherchant l’expression limitative des fonctions qui déterminent la totalité
des nombres premiers de la forme 4n+ 1 et de ceux de la forme 4n+ 3, pris
au-dessous d’une limite très grande, je suis parvenu à reconnaı̂tre que ces deux
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98 The Chebychev Bias

fonctions diffèrent notablement entre elles par leurs seconds termes, dont la
valeur, pour les nombres 4n+ 3, est plus grande que celle pour les nombres
4n+ 1; ainsi, si de la totalité des nombres premiers de la forme 4n+ 3, on
retranche celle des nombres premiers de la forme 4n+ 1, et que l’on divise

ensuite cette différence par la quantité
√
x

log x , on trouvera plusieurs valeurs de x

telles, que ce quotient s’approchera de l’unité aussi près qu’on le voudra.1

It is unclear from Chebychev’s very short note what exactly he had proved,
or simply conjectured, and he did not publish anything more on this topic. It is
definitely not the case that we have

π(x;4,3) > π(x;4,1)
for all x � 2, where (in general), for an integer q � 1 and an integer a, we
write π(x;q,a) for the number of primes p � x such that p ≡ a (mod q).
Indeed, for x = 26,861, we have

π(x;4,3) = 1472 < 1473 = π(x;4,1)
(as discovered by Leech in 1957), and one can prove that there are infinitely
many sign changes of the difference π(x;4,3)− π(x;4,1).

In any case, by communicating his observations, Chebychev created a
fascinating area of number theory. We will discuss some of the basic known
results in this chapter, which put the question on a rigorous footing, and in
particular confirm the existence of the bias toward the residue class of 3
modulo 4, in a precise sense (although this conclusion will depend on currently
unproved conjectures). Because of this feature, the subject is called the study
of the Chebychev bias.

5.2 The Rubinstein–Sarnak Distribution

In order to study the problem suggested by Chebychev, we consider for X � 1
the probability space �X = [1,X], with the probability measure

PX = 1

log X

dx

x
. (5.1)

1 English translation: “While searching for the limiting expression of the functions that determine
the number of prime numbers of the form 4n+ 1 and of those of the form 4n+ 3, less than a
very large limit, I have succeeded in recognizing that the second terms of these two functions
differ notably from each other; its value [of this second term], for the numbers 4n+ 3, is larger
than that for the numbers 4n+ 1; thus, if from the number of prime numbers of the form
4n+ 3, we subtract that of the prime numbers of the form 4n+ 1, and then divide this

difference by the quantity
√
x

log x , we will find several values of x such that this ratio will
approach one as closely as we want.”
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5.2 The Rubinstein–Sarnak Distribution 99

Let q � 1 be an integer. We define a random variable on �X, with values
in the vector space CR((Z/qZ)×) of real-valued functions on the (fixed) finite
group (Z/qZ)×, by defining NX,q (x), for x ∈ �X, to be the function such that

NX,q (x)(a) = log x√
x

(
ϕ(q)π(x;q,a)− π(x)) (5.2)

for a ∈ (Z/qZ)× (this could also, of course, be viewed as a random real vector
with values in R|(Z/qZ)×|, but the perspective of a function will be slightly more
convenient).

We see that the knowledge of NX,q allows us to compare the number of
primes up to X in any family of invertible residue classes modulo q. It is
therefore appropriate for the study of the questions suggested by Chebychev.

We observe that in the remainder of this chapter, we will consider q to
be fixed (although there are interesting questions that one can ask about
uniformity with respect to q). For this reason, we will often simplify the
notation (especially during proofs) to write NX instead of NX,q , and similarly
dropping q in some other cases.

Remark 5.2.1 (1) If q = 4, then (Z/4Z)× = {1,3}, and for x ∈ �T, the
random function NX,4(x) is given by

1 �→ log x√
x
(2π(x;4,1)− π(x)) and 3 �→ log x√

x
(2π(x;4,3)− π(x)).

(2) Recall that the fundamental theorem of Dirichlet, Hadamard and de la
Vallée Poussin (Theorem C.3.7) shows that

π(x;q,a) ∼ 1

ϕ(q)
π(x)

for all a coprime to q. Thus the random variables NX are considering the
correction term from the asymptotic behavior.

(3) The normalizing factor (log x)/
√
x, which is the “correct one,” is the

same one that is suggested by Chebychev’s quote.

The basic probabilistic result concerning these arithmetic quantities is the
following:

Theorem 5.2.2 (Rubinstein–Sarnak) Let q � 1. Assume the Generalized
Riemann Hypothesis modulo q. Then the random functions NX,q converge in
law to a random function Nq . The support of Nq is contained in the hyperplane

Hq =
{
f : (Z/qZ)× → R |

∑
a∈(Z/qZ)×

f (a) = 0

}
. (5.3)

We call Nq the Rubinstein–Sarnak distribution modulo q.
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100 The Chebychev Bias

Remark 5.2.3 One may wonder if the choice of the logarithmic weight in the
probability measure PX is necessary for such a statement of convergence in
law: this is indeed the case, and we will say a few words to explain this in
Remark 5.3.5.

The Generalized Riemann Hypothesis modulo q is originally a statement
about the zeros of certain analytic functions, the Dirichlet L-functions mod-
ulo q. It has, however, a concrete formulation in terms of the distribution of
prime numbers: it is equivalent to the statement that, for all integers a coprime
with q and all x � 2, we have

π(x;q,a) = 1

ϕ(q)

∫ x

2

dt

log t
+ O(x1/2(log qx)),

where the implied constant is absolute (see, e.g., [59, 5.14, 5.15] for this
equivalence). The size of the (expected) error term, approximately

√
x, is

related to the zeros of the Dirichlet L-functions, as we will see later; it explains
that the normalization factor in (5.2) is the right one for the existence of a limit
in law as in Theorem 5.2.2. Indeed, using the case q = 1, which is the formula

π(x) =
∫ x

2

dt

log t
+ O(x1/2(log x)),

we deduce that each value of the function NX satisfies

log x√
x
(ϕ(q)π(x;q,a)− π(x)) = O(ϕ(q)(log qx)2).

To see how Theorem 5.2.2 helps answer questions related to the Chebychev
bias, we take q = 4. Then we expect that

lim
X→+∞

PX(π(x;4,3) > π(x;4,1)) = P(N4 ∈ H4 ∩ C),

where C = {(x1,x3) | x3>x1} (although whether this limit exists or not does
not follow from Theorem 5.2.2, without further information concerning the
properties of the limit N4). Then Chebychev’s basic observation could be
considered to be confirmed if P(N4 ∈ H4 ∩C) is close to 1. But in the absence
of any other information, it seems very hard to prove (or disprove) this last fact.

However, Rubinstein and Sarnak showed that one could go much further
by making one extra assumption on the distribution of the zeros of Dirichlet
L-functions. Indeed, one can then represent Nq explicitly as the sum of a series
of independent random variables (and in particular compute explicitly the
characteristic function of the random function Nq ). We describe this random
series in Section 5.4, since to do so at this point would lead to a statement that
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5.2 The Rubinstein–Sarnak Distribution 101

would appear highly unmotivated. The proof of Theorem 5.2.2 will lead us
naturally to this next step (see Theorem 5.4.4 for the details).

Below, we write ∑∗

χ (mod q)

( . . .) and
∏∗

χ (mod q)

( · · · )

for a sum or a product over nontrivial2 Dirichlet characters modulo q; we recall
that these are (completely) multiplicative functions on Z such that χ(n) = 0
unless n is coprime to q, in which case we have χ(n) = χ̃(n) for some group
homomorphism χ̃ : (Z/qZ)× → C×.

We define a function mq on (Z/qZ)× by

mq(a) = −
∑∗

χ (mod q)
χ2=1

χ(a) (5.4)

for a ∈ (Z/qZ)×. This can also, using orthogonality of characters modulo q
(see Proposition C.5.1), be expressed in the form

mq(a) = 1−
∑

b∈(Z/qZ)×
b2=a (mod q)

1,

from which we see that in fact we have simply two possible values, namely,

mq(a) =
{

1 if a is not a square modulo q,

1− σq otherwise,
(5.5)

where

σq = |{b ∈ (Z/qZ)× | b2 = 1}| = |{χ (mod q) | χ2 = 1}|
is also the index of the subgroup of squares in (Z/qZ)×.

In the remaining sections of this chapter, we will explain the proof of
Theorem 5.2.2, following Rubinstein and Sarnak. We will assume some
familiarity with Dirichlet L-functions (in Section C.5, we recall the relevant
definitions and standard facts). Readers who have not yet been exposed to these
functions will probably find it easier to assume in what follows that q = 4.
In this case, there is only one nontrivial Dirichlet L-function modulo 4, which
is defined by

2 We emphasize, for readers already familiar with analytic number theory, that this does not mean
primitive characters.
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102 The Chebychev Bias

L(χ4,s) =
∑
k�0

(−1)k

(2k + 1)s
=
∑
n�1

χ4(n)n
−s,

corresponding to the character χ4 such that

χ4(n) =
{

0 if n is even,

(−1)k if n = 2k + 1 is odd
(5.6)

for n � 1. The arguments should then be reasonably transparent. In particular,
any sum of the type ∑∗

χ (mod 4)

( · · · )

means that one only considers the expression on the right-hand side for the
character χ4 defined in (5.6).

5.3 Existence of the Rubinstein–Sarnak Distribution

The proof of Theorem 5.2.2 depends roughly on two ingredients:

• on the arithmetic side, we can represent the arithmetic random
functions NX as combinations of x �→ xiγ , where the γ are ordinates of
zeros of the L-functions modulo q;

• once this is done, we observe that Kronecker’s Equidistribution Theorem
(Theorem B.6.5) implies convergence in law for any function of this type.

There are some intermediate approximation steps involved, but the ideas are
quite intuitive.

In this section, we always assume the validity of the Generalized Riemann
Hypothesis modulo q, unless otherwise noted.

For a Dirichlet character χ modulo q, we define random variables ψχ on
�X by

ψχ(x) = 1√
x

∑
n�x

�(n)χ(n)

for x ∈�X, where� is the von Mangoldt function (see Section C.4, especially
(C.6), for the definition of this function).

The next lemma is a key step to express NX in terms of Dirichlet characters.
It looks first like standard harmonic analysis, but there is a subtle point in the
proof that is crucial for the rest of the argument, and for the very existence of
the Chebychev bias.
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5.3 Existence of the Rubinstein–Sarnak Distribution 103

Lemma 5.3.1 We have

NX,q = mq +
∑∗

χ (mod q)

ψχ χ + EX,q,

where EX,q converges to 0 in probability as X →+∞.

Proof By orthogonality of the Dirichlet characters modulo q (see Proposition
C.5.1), we have

ϕ(q)π(x;q,a) =
∑

χ (mod q)

χ(a)
∑
p�x

χ(p),

hence

log x√
x

(
ϕ(q)π(x;q,a)− π(x)) = ∑∗

χ (mod q)

χ(a)
log x√
x

∑
p�x

χ(p)+ O

(
log x√
x

)

for x � 2, where the error term accounts for primes p dividing q (for which
the trivial character takes the value 0 instead of 1); in particular, the implied
constant depends on q.

We now need to connect the sum over primes, for a fixed character χ , toψχ .
Recall that the von Mangoldt functions differs little from the characteristic
function of primes multiplied by the logarithm function. The sum of this
simpler function is the random variable defined by

θχ (x) = 1√
x

∑
p�x

χ(p) log(p)

for x ∈ �X. It is related to ψχ by

θχ (x)− ψχ(x) = − 1√
x

∑
k�2

∑
pk�x

χ(pk) logp = − 1√
x

∑
k�2

∑
pk�x

χ(p)k logp.

We can immediately see that the contribution of k � 3 is very small: since
the exponent k is at most of size log x, and |χ(p)| � 1 for all primes p, it is
bounded by∣∣∣∣ 1√

x

∑
k�2

∑
pk�x
k�3

χ(p)k logp

∣∣∣∣ � 1√
x

∑
3�k�log x

(log x)x1/k � (log x)2

x1/6
,

where the implied constant is absolute.

https://doi.org/10.1017/9781108888226.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.006


104 The Chebychev Bias

For k = 2, there are two cases. If χ2 is the trivial character, then

1√
x

∑
p�√x

χ(p)2 logp = 1√
x

∑
p�√x
p�q

logp = 1+ O

(
1

log x

)

by a simple form of the Prime Number Theorem in arithmetic progressions
(the Generalized Riemann Hypothesis would of course give a much better error
term, but this is not needed here). If χ2 is nontrivial, then we have

1√
x

∑
p�√x

χ(p)2 logp � 1

log x

for the same reason. Thus we have

θχ (x) = ψχ(x)− δχ2 + O

(
1

log x

)
, (5.7)

where δχ2 is 1 if χ2 is trivial, and is zero otherwise.
By summation by parts, we have

∑
p�x

χ(p) = 1

log x

∑
p�x

χ(p) logp +
∫ x

2

⎛⎝∑
p�t

χ(p) logp

⎞⎠ dt

t (log t)2

for any Dirichlet character χ modulo q, so that

log x√
x

(
ϕ(q)π(x;q,a)− π(x)) = ∑∗

χ (mod q)

χ(a) θχ (x)

+ log x√
x

∫ x

2

θχ (t)

t1/2(log t)2
dt + O

(
log x√
x

)
.

(5.8)

We begin by handling the integral for a nontrivial character χ . We have
θχ (x) = ψχ(x)+ O(1/ log x) if χ2 �= 1q , which implies∫ x

2

θχ (t)

t1/2(log t)2
dt =

∫ x

2

ψχ(t)

t1/2(log t)2
dt + O

(
x1/2

(log x)3

)
since ∫ x

2

1

t1/2(log t)2
dt � x1/2

(log x)2
.

https://doi.org/10.1017/9781108888226.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.006


5.3 Existence of the Rubinstein–Sarnak Distribution 105

If χ2 is trivial, we have an additional constant term θχ (x) − ψχ(x) = 1 +
O(1/ log x), and we get∫ x

2

θχ (t)

t1/2(log t)2
dt =

∫ x

2

ψχ(t)

t1/2(log t)2
dt +

∫ x

2

1

t1/2(log t)2
dt + O

(
x1/2

(log x)3

)
=
∫ x

2

ψχ(t)

t1/2(log t)2
dt + O

(
x1/2

(log x)2

)
.

Thus, in all cases, we get

log x√
x

∫ x

2

θχ (t)

t1/2(log t)2
dt = log x√

x

∫ x

2

ψχ(t)

t1/2(log t)2
dt + O

(
1

log x

)
.

Now comes the subtle point we previously mentioned. If we were to use
the pointwise bound ψχ(t) � (log t)2 (which is essentially the content of the
Generalized Riemann Hypothesis) in the remaining integral, we would only get

log x√
x

∫ x

2

ψχ(t)

t1/2(log t)2
dt � log x,

which is too big. So we need to use the integration process nontrivially.
Precisely, by Corollary C.5.11, we have∫ x

2
ψχ(t)dt � x

for all x � 2 (this reflects a “smoothing” effect due to the convergence of the
series with terms 1/| 12 + iγ |2, where γ are the ordinates of zeros of L(s,χ )).
Using integration by parts, we can then deduce that

log x√
x

∫ x

2

ψχ(t)

t1/2(log t)2
dt � log x√

x

(
x

x1/2(log x)2
+
∫ x

2

t1/2dt

(log t)2

)
� 1

log x
.

Finally, we transform the first term of (5.8) to express it in terms of ψχ ,
again using (5.7). For any element a ∈ (Z/qZ)× and x ∈ �X, we have

log x√
x

(
ϕ(q)π(x;q,a)− π(x))

= −
∑
χ2=1
χ �=1

χ(a)+
∑∗

χ (mod q)

χ(a)ψχ(x)+ O

(
1

log x

)

= mq(a)+
∑∗

χ (mod q)

χ(a)ψχ(x)+ O

(
1

log x

)
,

where the implied constant depends on q. Since the error term is � (log x)−1

for x ∈ �X, it converges to zero in probability, and this concludes
the proof.
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106 The Chebychev Bias

We keep further on the notation of the lemma, except that we also
sometimes write EX for EX,q . Since EX tends to 0 in probability and mq is
a fixed function on (Z/qZ)×, Theorem 5.2.2 will follow (by Corollary B.4.2)
from the convergence in law of the random functions

MX,q =
∑∗

χ (mod q)

ψχ χ .

Now we express these functions in terms of zeros of L-functions. Here and
later, a sum over zeros of a Dirichlet L-function always means implicitly that
zeros are counted with their multiplicity.

We will denote by IX the identity variable x �→ x on�X; thus, for a complex
number s, the random variable IsX is the function x �→ xs on �X.

Below, when we have a random function X on (Z/qZ)×, and a nonnegative
random variable Y, the meaning of a statement of the form X = O(Y) is that
‖X‖ = O(Y), where the norm is the euclidean norm, that is, we have

‖X‖2 =
∑

a∈(Z/qZ)×
|X(a)|2.

Lemma 5.3.2 We have

MX,q = −
∑∗

χ (mod q)

( ∑
|γ |�X

IiγX
1
2 + iγ

)
χ + O

(
(log X)2

X1/2

)
,

where γ ranges over ordinates of zeros of L(s,χ), counted with multiplicity,
and the implied constant depends on q.

Proof The key ingredient is the (approximate) explicit formula of Prime
Number Theory, which can be stated in the form

ψχ = −
∑

L(β+iγ )=0
|γ |�X

I
β− 1

2+iγ
X

β + iγ + O

(
I1/2X log(X)2

X

)
,

where the sum is over zeros of the Dirichlet L-functions with 0 � β � 1,
counted with multiplicity (see Theorem C.5.6). Under the assumption of the
Generalized Riemann Hypothesis modulo q, we always have β = 1

2 , and this
formula implies

ψχ = −
∑
|γ |�X

IiγX
1
2 + iγ

+ O

(
(log X)2

X1/2

)
.

Summing over the characters (the number of which is ϕ(q) − 1 � q), the
formula follows.
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5.3 Existence of the Rubinstein–Sarnak Distribution 107

Probabilistically, we have now a finite linear combination (of length
depending on X) of the random variables IiγX . The link with probability theory,
and to the existence of the Rubinstein–Sarnak distribution, is then performed
by the following theorem (quite similar to Proposition 3.2.5).

Proposition 5.3.3 Let k � 1 be an integer. Let F be a finite set of real numbers,
and let (α(t))t∈F be a family of elements in Ck . The random vectors∑

t∈F

IitX α(t)

on �X converge in law as X →+∞.

Proof After a simple translation, this is a direct consequence of the Kronecker
Equidistribution Theorem B.6.5. Indeed, consider the vector

z =
(
t

2π

)
t∈F
∈ RF.

By Kronecker’s Theorem, the probability measures μY on (R/Z)F defined
for Y > 0 by

μY(A) = 1

Y
|{y ∈ [0,Y] | yz ∈ A}|,

for any measurable set A, converge in law to the probability Haar measure μ
on the subgroup T of (R/Z)F generated by the classes modulo ZF of the
elements yz, where y ranges over R.

We extend the isomorphism θ �→ e(θ) from R/Z to S1 componentwise
to define an isomorphism of (R/Z)F to (S1)F. For any continuous function f
on (S1)F, we observe that∫

(R/Z)F
f (e(v))dμY(v) = 1

Y

∫ Y

0
f (e(yz))dy

= 1

Y

∫ Y

0
f
(
(eity)t∈F

)
dy

= 1

Y

∫ eY

1
f ((xit )t∈F)

dx

x
= EX

(
f ((IitX)t∈F)

)
for X = eY, after the change of variable x = ey . Hence the vector (IitX)t∈F

converges in law as X → +∞ to the image of μ by v �→ e(v). Now we
finish the proof of the proposition by composition with the continuous map
from (S1)F to Ck defined by
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108 The Chebychev Bias

(zt )t∈F �→
∑
t∈F

ztα(t),

using Proposition B.3.2.

From the proof, we see that we can make the result more precise:

Corollary 5.3.4 With notation and assumptions as in Proposition 5.3.3, the
random vectors ∑

t∈F

IitX α(t)

on �X converge in law as X →+∞ to∑
t∈F

It α(t),

where (It )t∈F is a random variable with values in (S1)F with law given by the
probability Haar measure of the closure of the subgroup of (S1)F generated by
all elements (xit )t∈F for x ∈ R.

Remark 5.3.5 This proposition explains why the logarithmic weight in (5.1)
is absolutely natural. It also hints that it is necessary. Indeed, the statement
of the proposition becomes false if the probability measure PX on �X is
replaced by the uniform measure. This is already visible in the simplest case
where F = {t} contains a single nonzero real number t ; for instance, taking
the test function f to be the identity, observe that with this other probability
measure, the expectation of x �→ xit is

1

X− 1

∫ X

1
xit dx = 1

it + 1

Xit+1 − 1

X− 1
∼ Xit

it + 1
,

which has no limit as X →+∞.

Let T � 2 be a parameter. It follows from Lemma 5.3.2 and Proposition
5.3.3 that for X � T, we have

MX,q = NX,T,q +
∑∗

χ (mod q)

( ∑
T�|γ |�X

IiγX
1
2 + iγ

)
χ + O

(
(log X)2√

X

)
, (5.9)

where

NX,T,q = −
∑∗

χ (mod q)

( ∑
|γ |�T

IiγX
1
2 + iγ

)
χ

https://doi.org/10.1017/9781108888226.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.006


5.3 Existence of the Rubinstein–Sarnak Distribution 109

are random functions that converge in law as X → +∞ for any fixed T � 2.
The next lemma will allow us to check that the remainder term in this
approximation is small.

Lemma 5.3.6 Let k � 1 be an integer. Let F be a countable set of real numbers,
and let (α(t))t∈F be a family of elements in Ck . Assume that the following
conditions hold for all T � 2 and all t0 ∈ R:∑

t∈F

‖α(t)‖2 |t |1/2 log(1+ |t |) < +∞, (5.10)

∑
t∈F|t |�T

‖α(t)‖
|t |1/4 � (log T)2

T1/4
, (5.11)

|{t ∈ F | |t − t0| � 1}| � log(1+ |t0|). (5.12)

Then we have

lim
T�X

T→+∞

∥∥∥∥ ∑
t∈F|t |�T

IitX α(t)

∥∥∥∥
L2

= 0,

where the limit is over pairs (T,X) with T � X and T tends to infinity.

In this statement, we use the Hilbert space L2(�X;Rk) of Rk-valued L2-
functions on �X, with norm defined by

‖f ‖2
L2 = EX(‖f ‖2)

for f ∈ L2(�X;Rk).
Proof Note first that an explicit computation of the integral gives

EX(I
i(t1−t2)
X ) = 1

log X

Xi(t1−t2) − 1

t1 − t2

for t1 �= t2, hence the general bound

|EX(I
i(t1−t2)
X )| � min

(
1,

1

log X

2

|t1 − t2|
)

. (5.13)

We will use this bound slightly wastefully (using the first estimate even
when it is not the best of the two) to gain some flexibility.
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110 The Chebychev Bias

All sums below involving t , t1, t2 are restricted to t ∈ F. Assume 25 � T � X.
We have ∥∥∥∥ ∑

t∈F|t |�T

IitX α(t)

∥∥∥∥
L2

= EX

⎛⎝∥∥∥ ∑
T�|t |�X

IitX α(t)
∥∥∥2

⎞⎠
=

∑
T�|t1|,|t2|�X

α(t1) · α(t2)EX

(
Ii(t1−t2)X

)
.

We write this double sum as S1 + S2, where S1 is the contribution of the
terms where |t1 − t2| � |t1t2|1/4, and S2 is the remainder.

In the sum S1, we first claim that if T �
√

2, then the condition |t1 − t2| �
|t1t2|1/4 implies |t2| � 2|t1|. Indeed, suppose that |t2| > 2|t1|. We have

|t2| � |t1 − t2| + |t1| � |t1t2|1/4 + 1
2 |t2|,

hence |t2| � 2|t1t2|1/4, which implies |t2| � 24/3|t1|1/3, and further

2|t1| < |t2| � 24/3|t1|1/3,

which implies that T � |t1| <
√

2, reaching a contradiction.
Exchanging the roles of t1 and t2, we see also that |t1| � 2|t2|. In particular,

it now follows that we also have

|t2 − t1| � |t1t2|1/4 � 2|t1|1/2 and |t2 − t1| � |t1t2|1/4 � 2|t2|1/2.

Still for T �
√

2, we get

|S1| �
∑

T�|t1|,|t2|�X
|t2−t1|�|t1t2|1/4

|α(t1) · α(t2)|

� 1

2

∑
T�|t1|,|t2|�X
|t2−t1|�|t1t2|1/4

(‖α(t1)‖2 + ‖α(t2)‖2)

�
∑

T�|t1|�X

‖α(t1)‖2
∑

T�|t2|�X
|t2−t1|�2|t1|1/2

1+
∑

T�|t2|�X

‖α(t2)‖2
∑

T�|t1|�X
|t2−t1|�2|t2|1/2

1

�
∑

T�|t |�X

‖α(t)‖2|t |1/2 log(1+ |t |)

by (5.12). This quantity tends to 0 as T → +∞ since the series over all t
converges by assumption (5.10).
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For the sum S2, we have

|S2| � 2

log X

∑
T�|t1|,|t2|�X
|t2−t1|>|t1t2|1/4

‖α(t1)‖ ‖α(t2)‖
|t1 − t2|

� 2

log X

∑
T�|t1|,|t2|�X
|t2−t1|>|t1t2|1/4

‖α(t1)‖ ‖α(t2)‖
|t1t2|1/4 ,

and therefore

|S2| � 2

log X

∑
T�|t1|�X

‖α(t1)‖
|t1|1/4

∑
T�|t2|�X

‖α(t2)‖
|t2|1/4 � 1

log X

(log T)4

T1/2
,

by (5.11). The lemma now follows.

Remark 5.3.7 Although we have stated this lemma in some generality, it is
far from the best that can be achieved along such lines.

The assumptions might look complicated, but note that (5.12) means that
the density of F is roughly logarithmic; then (5.10) and (5.11) are certainly
satisfied if the series with terms ‖α(t)‖ is convergent, and more generally when
‖α(t)‖ is comparable with (1+ |t |)−α with α > 3/4.

We will now finish the proof of Theorem 5.2.2. We apply Lemma 5.3.6 to
the set F of ordinates γ of zeros of some L(s,χ), for χ a nontrivial character
modulo q, and to

α(γ ) =
∑∗

χ (mod q)

L( 1
2+iγ )=0

1
1
2 + iγ

χ

for γ ∈ F, viewing α(γ ) as a vector in C(Z/qZ)× , and taking into account the
multiplicity of the zero 1

2 + iγ for any character χ such that L( 1
2 + iγ ,χ) = 0.

We need to check the three assumptions of the lemma.
From the asymptotic von Mangoldt formula (C.10), we first know that

(5.12) holds for the zeros of a fixed L-function modulo q, with an implied
constant depending on q, and hence it holds also for F.

We next have

‖α(γ )‖ �
∑∗

χ (mod q)

L( 1
2+iγ )=0

1

| 12 + iγ |
‖χ‖ = ϕ(q)1/2

∑∗

χ (mod q)

L( 1
2+iγ )=0

1

| 12 + iγ |
� ϕ(q)3/2

| 12 + iγ |

(5.14)

by a trivial estimate of the number of characters of which 1
2 + iγ can be a zero.
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112 The Chebychev Bias

Condition (5.10) follows from (5.14), since we even have∑
L( 1

2+iγ ,χ)=0

1

| 12 + iγ |1+ε
< +∞ (5.15)

for any fixed ε > 0 and any χ (mod q), and condition (5.11) is again an easy
consequence of (5.15) and (5.14).

From (5.9), we conclude that for X � T � 2, we have

MX = NX,T + E′X,T,

where

E′X,T =
∑∗

χ (mod q)

( ∑
T�|γ |�X

IiγX
1
2 + iγ

)
χ + O

(
(log X)2√

X

)
.

These random functions converge to 0 in L2, hence in L1, by Lemma 5.3.6 as
applied before. By Proposition B.4.4 (and Remark B.4.6), we conclude that the
random functions MX converge in law, and that their limit is the same as the
limit as T →+∞ of the law of the limit of

−
∑∗

χ (mod q)

( ∑
|γ |�T

IiγX
1
2 + iγ

)
χ .

In the next section, we compute these limits, and hence the law of Nq ,
assuming that the zeros of the Dirichlet L-functions are “as independent as
possible,” so that Proposition 5.3.3 becomes explicit in the special case of
interest.

To finish the proof of Theorem 5.2.2, we need to check the last assertion,
namely, that the support of Nq is contained in the hyperplane (5.3). But
note that ∑

a∈(Z/qZ)×
NX(x)(a) = log x√

x

∑
a∈(Z/qZ)×

(ϕ(q)π(x;q,a)− π(x))

= log x√
x

∑
p�x

p (mod q)/∈(Z/qZ)×

1 � log x√
x

for all x ∈�X, since at most finitely many primes are not congruent to
some a ∈ (Z/qZ)×. Hence the random variables∑

a∈(Z/qZ)×
NX(a)
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5.4 The Generalized Simplicity Hypothesis 113

converge in probability to 0 as X → +∞, and by Corollary B.3.4, it follows
that the support of Nq is contained in the zero set of the linear form

f �→
∑

a∈(Z/qZ)×
f (a),

that is, in Hq .

5.4 The Generalized Simplicity Hypothesis

The proof of Theorem 5.2.2 now allows us to understand what is needed for
the next step, which we take to be the explicit determination of the random
variable Nq . Indeed, the proof tells us that Nq is the limit, as T → +∞, of
the random variables that are themselves the limits in law as X → +∞ of the
random function given by the finite sum

mq −
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

IiγX
1
2 + iγ

χ(a),

which converge by Proposition 5.3.3. The proof of that proposition shows how
this limit Nq,T can be computed in principle. Precisely, let XT be the set of
pairs (χ,γ ), where χ runs over nontrivial Dirichlet characters modulo q and γ
runs over the ordinates of the nontrivial zeros of L(s,χ) with |γ | � T. Then,
by Corollary 5.3.4, we have

Nq,T = mq −
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

Iχ,γ
1
2 + iγ

χ(a), (5.16)

where (Iχ,γ ) is distributed on (S1)XT according to the probability Haar mea-
sure of the closure ST of the subgroup generated by the elements (xiγ )(χ,γ )∈XT

for x ∈ R.
Thus, to compute Nq explicitly, we “simply” need to know what the

subgroup Sq,T is. If (hypothetically) this subgroup was equal to (S1)Xq,T , then
the (Iχ,γ ) would simply be independent and uniformly distributed on S1, and
we would immediately obtain a formula for Nq from (5.16) as a sum of a series
of independent terms.

This hypothesis is however too optimistic. Indeed, there is an “obvious”
type of dependency among the ordinates γ , which amount to restrictions on
the subgroup ST in (S1)XT. Beyond these relations, there are none that are
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114 The Chebychev Bias

immediately apparent. The Generalized Simplicity Hypothesis modulo q is
then the statement that, in fact, these obvious relations should exhaust all
possible constraints satisfied by ST.3

These systematic relations between the elements of XT are simply the
following: a complex number 1

2 + iγ is a zero of L(s,χ) if and only if the
conjugate 1

2 − iγ is a zero of L(s,χ), simply because L(s̄,χ) = L(s,χ) as
holomorphic functions; hence (χ,γ ) belongs to XT if and only if (χ,−γ ) does.

We are therefore led to the so-called Generalized Simplicity Hypothesis
modulo q.

Definition 5.4.1 Let q � 1 be an integer. The Generalized Simplicity
Hypothesis holds modulo q if the family of nonnegative ordinates γ of
the nontrivial zeros of all nontrivial Dirichlet L-functions modulo q, with
multiplicity taken into account, is linearly independent over Q.

We emphasize that we are looking at the family of the ordinates, not just the
set of values. In particular, the Generalized Simplicity Hypothesis modulo q
implies that

• for a given γ � 0, there is at most one primitive Dirichlet character χ
modulo q such that L( 1

2 + iγ ,χ) = 0;

• all nontrivial zeros are of multiplicity 1;

• we have L( 1
2,χ) �= 0 for any nontrivial character χ .

All these statements are highly nontrivial conjectures!

Lemma 5.4.2 Under the assumption of the Generalized Simplicity Hypothesis
modulo q, the subgroup ST is given by

ST = {(zχ,γ ) ∈ (S1)XT | zχ,−γ = zχ,γ for all (χ,γ ) ∈ XT}, (5.17)

for all T � 2. In particular, denoting by X+T the set of pairs (χ,γ ) in XT

with γ � 0, the projection

(zχ,γ ) �→ (zχ,γ )(χ,γ )∈X+T
(5.18)

from ST to (S1)X
+
T is surjective.

Proof Indeed, ST is contained in the subgroup S̃T in the right-hand side
of (5.17), because each vector (xiγ )(χ,γ )∈XT has this property for x ∈ R, by
the relation between zeros of the L-functions of χ and χ .

3 In other words, it is an application of Occam’s Razor.
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5.4 The Generalized Simplicity Hypothesis 115

To show that ST is not a proper subgroup of S̃T, it is enough to prove the
last assertion, since an element of S̃T is uniquely determined by the value of
the projection (5.18). But if that projection is not surjective, then there exists a
nonzero family of integers (mχ,γ )(χ,γ )∈X+T

such that∏
(χ,γ )∈X+T

ximχ,γ γ = 1

for all x ∈ R, and this implies∑∗

χ (mod q)

∑
γ�0

mχ,γ γ = 0,

which contradicts the Generalized Simplicity Hypothesis modulo q.

Remark 5.4.3 If we were also considering problems involving the comparison
of the number of primes in arithmetic progressions with different moduli, say,
modulo q1 and q2, then there would be another systematic source of relations
between the zeros of the L-functions modulo q1 and q2. Precisely, if d is a
common divisor of q1 and q2, and χ0 a Dirichlet character modulo d, corre-
sponding to a character χ0 of (Z/dZ)×, then there is a Dirichlet character χi
modulo qi , for i = 1, 2, corresponding to the composition

(Z/qiZ)× → (Z/dZ)×
χ0−→ C×,

and we have

L(s,χi) =
∏
p|qi/d

(1− χ0(p)p
−s)L(s,χ0),

which shows that the ordinates of the nontrivial zeros of L(s,χ1) and L(s,χ2)

are the same.
Because of this, the correct formulation of the Generalized Simplicity

Hypothesis, without reference to a single modulus q, is that the nonnegative
ordinates of zeros of the L-functions of all primitive Dirichlet characters are
Q-linearly independent; this is the statement as formulated in [105].

We can now state precisely the computation of the law of the random
function Nq under the assumption of the Generalized Simplicity Hypothesis
modulo q.

To do this, let X+ be the set of all pairs (χ,γ ) where χ is a nontrivial
Dirichlet character modulo q and γ � 0 is a nonnegative ordinate of a
nontrivial zero of L(s,χ), that is, we have L( 1

2+iγ ,χ) = 0. Let (Iχ,γ )(χ,γ )∈X+

be a family of independent random variables all uniformly distributed over the
circle S1.
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116 The Chebychev Bias

Define further

Iχ,−γ = Iχ,γ (5.19)

for all ordinates γ � 0 of a zero of L(s,χ). We have then defined random
variables Iχ,γ for all ordinates of a zero of L(s,χ).

Theorem 5.4.4 (Rubinstein–Sarnak) Let q � 1. In addition to the Gen-
eralized Riemann Hypothesis, assume the Generalized Simplicity Hypothesis
modulo q. Then the law of Nq is the law of the series

mq −
∑∗

χ (mod q)

( ∑
γ

L( 1
2+iγ ,χ)=0

Iχ,γ
1
2 + iγ

)
χ, (5.20)

where the series converges almost surely and in L2 as the limit of partial sums

lim
T→+∞

∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

Iχ,γ
1
2 + iγ

. (5.21)

In these formulas, for each Dirichlet character χ modulo q, the sum runs
over the ordinates of zeros of L(s,χ).

Remark 5.4.5 (1) Since the Generalized Simplicity Hypothesis modulo q
implies that each zero has multiplicity one (even as we vary χ modulo q), there
is no need to worry about this issue when defining the series over the zeros.

(2) This result shows that the random function Nq is probabilistically quite
subtle. It is somewhat analogue to Bagchi’s measure, or to one of its Bohr–
Jessen specializations (see Theorem 3.2.1), with a sum (or a product) of
rather simple individual independent random variables, but it retains important
arithmetic features because the sum and the coefficients involve the zeros of
Dirichlet L-functions (instead of the primes that occur in Bagchi’s random
Euler product).

One important contrasting feature, in comparison with either Theorem 3.2.1
(or Selberg’s Theorem) is that the series defining Nq is not far from being
absolutely convergent, which is not the case at all of the series∑

p

Xp
ps

that occurs in Bagchi’s Theorem when 1
2 < Re(s) < 1.
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Before giving the proof, we can draw some simple conclusions from
Theorem 5.4.4, in the direction of confirming the existence of a bias for certain
residue classes.

Under the assumptions of Theorem 5.4.4, we have E(Nq) = mq , since the
convergence also holds in L2, and E(Iχ,γ ) = 0 for all (χ,γ ). Using either (5.4)
or (5.5), we know that

1

ϕ(q)

∑
a∈(Z/qZ)×

mq(a) = 0 and
1

ϕ(q)

∑
a∈(Z/qZ)×

mq(a)
2 = σq =

∑∗

χ2=1

1.

It is natural to say that “not all residue classes modulo q are equal,” as
far as representing primes is concerned, if the average function mq of Nq is
not constant (assuming that Theorem 5.4.4 is applicable). This is equivalent
(by (5.5)) to the existence of at least one b �= 1 such that b2 = 1, and therefore
holds whenever q �= 2, since one can always take b = −1.

This statement can be considered to be the simplest general confirmation of
the Chebychev bias; note that q = 2 is of course an exception, since all primes
(with one exception) are odd.

Remark 5.4.6 (1) The mean-square σq of mq is also the size of the quotient
group

(Z/qZ)×/((Z/qZ)×)2

of invertible residues modulo quadratic residues, minus 1. Using the Chinese
Remainder Theorem, this expression can be computed in terms of the factor-
ization of q, namely, if we write

q =
∏
p

pnp,

then we obtain

σq = 2min(n2−1,2)
∏
p|q
p�3

2− 1

(because for p odd, the group of squares is of index 2 in (Z/pnpZ)× if np � 1,
whereas for p = 2, it is trivial if np = 1 or np = 2, and of index 4 if n2 � 3).

(2) Consider once more the case q = 4. Then m4(1) = −1 and m4(3)= 1,
and in particular we certainly expect to have, in general, more primes
congruent to 3 modulo 4 than there are congruent to 1 modulo 4.

In fact, using Theorem 5.4.4 and numerical tables of zeros of the Dirichlet
L-functions modulo 4 up to some bound T, one can get approximations to
the distribution of N4 (e.g., through the characteristic function of N4, and
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approximate Fourier inversion). Rubinstein and Sarnak [105, §4] established
in this manner that

P(N4 ∈ H4 ∩ C) = 0.9959 . . .

(under the assumptions of Theorem 5.4.4 modulo 4). This confirms a very
strong bias for primes to be ≡ 3 modulo 4, but also shows that one has
sometimes π(x;4,1) > π(x;4,3) (in fact, in the sense of the probability
measure PX, this happens with probability about 1/250, and we have already
mentioned that the first occurrence of this reverse inequality is for X = 26861).

We now give the proof of Theorem 5.4.4. We first check that the
series (5.20) converges almost surely and in L2 in the sense of the limit (5.21).4

It suffices to prove that each value Nq(a) of the random function Nq
converges almost surely and in L2. To check this, we first observe that for
any T � 2, we have∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

Iχ,γ
1
2 + iγ

χ(a)

=
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
0<γ�T

(
Iχ,γ

1
2 + iγ

χ(a)+ Iχ,−γ
1
2 − iγ

χ(a)

)

= 2
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
0<γ�T

Re

(
Iχ,γ

1
2 + iγ

χ(a)

)
(5.22)

according to the definition (5.19) of Iχ,γ for negative γ (we use here the
fact that, under the Generalized Simplicity Hypothesis, no zero has ordinate
γ = 0).

The right-hand side of (5.22) is the partial sum of a series of independent
random variables, and we can apply Kolmogorov’s Theorem, B.10.1. Indeed,
we have

E

(
Re

(
Iχ,γ

1
2 + iγ

χ(a)

))
= 0

4 This convergence could be proved without any condition, not even the Generalized Riemann
Hypothesis, but the series has no arithmetic meaning without such assumptions.
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for any pair (χ,γ ), and

∑∗

χ (mod q)

∑
γ>0

V

(
Re

(
Iχ,γ

1
2 + iγ

χ(a)

))
�

∑∗

χ (mod q)

∑
γ>0

E

⎛⎝∣∣∣∣∣ Iχ,γ
1
2 + iγ

∣∣∣∣∣
2
⎞⎠

=
∑∗

χ (mod q)

∑
γ>0

1
1
4 + γ 2

< +∞

by Proposition C.5.3 (2), so that the series converges almost surely and in L2,
by Kolmogorov’s Theorem, as claimed.

Now we need only go through the steps described above when motivating
Definition 5.4.1. The random function Nq is the limit as T →+∞ of

Nq,T = mq − lim
X→+∞

( ∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

IiγX
1
2 + iγ

χ(a)

)
.

We write once more

mq −
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
|γ |�T

IiγX
1
2 + iγ

χ(a)

= mq − 2
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
0<γ�T

Re

(
IiγX

1
2 + iγ

χ(a)

)
.

By Proposition 5.3.3, or Corollary 5.3.4, as explained above, and the Gener-
alized Simplicity Hypothesis modulo q (precisely through Lemma 5.4.2), the
limit as X →+∞ of these random functions is simply

mq − 2
∑∗

χ (mod q)

∑
L( 1

2+iγ ,χ)=0
0<γ�T

Re

(
Iχ,γ

1
2 + iγ

χ(a)

)
,

which in turn converge to the random function Nq as T → +∞ by definition.
This concludes the proof of Theorem 5.4.4.

Theorem 5.4.4 is equivalent to the computation of the characteristic func-
tion of Nq , viewed as a random vector, that is, of the function

t �→ E(eit ·Nq )
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for t ∈ R(Z/qZ)× , where

t · f =
∑

a∈(Z/qZ)×
taf (a)

for t = (ta) ∈ R(Z/qZ)× and f : (Z/qZ)× → R. (Indeed, this is how the result
is presented in [105, §3.1].)

To state the formula for the characteristic function, define the Bessel
function J0 on R by

J0(x) = 1

2π

∫ 2π

0
eix cos(t)dt .

It is elementary that J0 is a real-valued and even function of x.

Corollary 5.4.7 Let q � 2 be an integer. Assume the Generalized Riemann
Hypothesis and the Generalized Simplicity Hypothesis modulo q. The charac-
teristic function of the law of the Rubinstein–Sarnak distribution Nq modulo q
is given by

E(eit ·Nq ) = exp(it ·mq)
∏∗

χ (mod q)

∏
γ>0

L( 1
2+iγ ,χ)=0

J0

(
2 |t · χ |

( 1
4 + γ 2)1/2

)

for t ∈ R(Z/qZ)× , where, for each Dirichlet character χ modulo q, the product
runs over the positive ordinates of zeros of L(s,χ).

Proof Using the previous argument, we write the series defining Nq in the
form

mq −
∑∗

χ (mod q)

∑
γ>0

(
Iχ,γ

1
2 + iγ

χ + Iχ,−γ
1
2 − iγ

χ

)

= mq − 2 Re

⎛⎝ ∑∗

χ (mod q)

∑
γ>0

Iχ,γ
1
2 + iγ

χ

⎞⎠ .

Since the characteristic function of a limit in law is the pointwise limit
of the characteristic functions of the sequence involved, we obtain using the
independence of the random variables (Iχ,γ ) the convergent product formula
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5.4 The Generalized Simplicity Hypothesis 121

E(eit ·Nq ) = eit ·mq
∏∗

χ (mod q)

∏
γ>0

E

(
e
−2it ·Re

( Iχ,γ
1/2+iγ χ

))

= eit ·mq
∏∗

χ (mod q)

∏
γ>0

ϕ

(
t · χ

1
2 + iγ

)
,

where, for z ∈ C, we defined

ϕ(z) = E
(
e−2i Re(zI)

)
for a random variable I uniformly distributed over the unit circle. By invariance
of the law of I under rotation (i.e., the law of zeiθ I is the same as that of zI for
any θ ∈ R), applied to the angle θ such that zeiθ = |z|, we have

ϕ(z) = E(e−2i Re(|z|I)) = E(e−2i|z|Re(I)) = 1

2π

∫ 2π

0
e−2i|z| cos(t)dt = J0(2|z|).

Hence we obtain

E(eit ·Nq ) = eit ·mq
∏∗

χ (mod q)

∏
γ>0

J0

(
2
|t · χ |
| 12 + iγ |

)
,

as claimed.

Another consequence of Theorem 5.4.4 is an estimate for the probability
that Nq takes large values.

Corollary 5.4.8 There exists a constant cq > 0 such that, for A > 0, we have

c−1
q exp(−exp(cqA1/2)) � lim inf

X→+∞
PX(‖NX,q‖ �A)

� lim sup
X→+∞

PX(‖NX,q‖>A) �cq exp(−exp(c−1
q A1/2)).

Proof We view Nq as a random variable with values in the complex finite-
dimensional Banach space of complex-valued functions on (Z/qZ)×. We have
the series representation

Nq = mq − 2
∑∗

χ (mod q)

∑
γ>0

L( 1
2+iγ ,χ)=0

Re

(
Iχ,γ

1
2 + iγ

χ

)
.

This series converges almost surely, the terms are independent and the random
variables Iχ,γ are bounded by 1 in modulus. Moreover,

P(‖Nq‖ > A) � P(‖Ñq‖ > A),
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122 The Chebychev Bias

where

Ñq = mq − 2
∑∗

χ (mod q)

∑
γ>0

L( 1
2+iγ ,χ)=0

Iχ,γ
1
2 + iγ

χ,

since ‖Nq‖ � ‖Ñq‖. By Corollary C.5.5, the functions

− 2
1
2 + iγ

χ

satisfy the bounds described in Remark B.11.14 (2), namely,∑∗

χ (mod q)

∑
0<γ<T

L( 1
2+iγ ,χ)=0

∥∥∥∥∥ 1
1
2 + iγ

χ

∥∥∥∥∥� (log T)2

and ∑∗

χ (mod q)

∑
γ>T

L( 1
2+iγ ,χ)=0

∥∥∥∥∥ 1
1
2 + iγ

χ

∥∥∥∥∥
2

� log T

T

for T � 1. Thus by Remark B.11.14 (2), and the convergence in law of NX,q

to Nq , we deduce the upper bound

lim sup
X→+∞

PX(‖NX,q‖ > A) � P(‖Nq‖ > A) � c exp(− exp(c−1A1/2))

for some real number c > 0.
In the case of the lower bound, it suffices to prove it for Nq(a), where a

is any fixed element of (Z/qZ)×. Since the series expressing Nq(a) is not
exactly of the form required for the lower bound in Remark B.11.14 (2) (and
in Proposition B.11.13), we first transform it a bit. We have

Re

(
Iχ,γ

1
2 + iγ

χ(a)

)
= 1

2( 1
4 + γ 2)

Re(Iχ,γ χ(a))+ γ

1
4 + γ 2

Im(Iχ,γ χ(a))

for any pair (χ,γ ), which implies that

Nq(a) = mq(a)+ eq(a)− 2
∑∗

χ (mod q)

∑
γ>0

L( 1
2+iγ ,χ)=0

γ

1
4 + γ 2

Im(Iχ,γ χ(a)),

where the random variable eq(a) (arising from the sum of the first terms in the
previous expression) is uniformly bounded (by Proposition C.5.3 (2)). Now
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5.5 Further Results 123

we can apply the lower bound in Remark B.11.14 (2) to the last series: the
random variables Im(Iχ,γ χ(a)) are independent, symmetric and bounded by 1,
and the assumptions on the size of the coefficients are provided by Corollary
C.5.5 again.

5.5 Further Results

In recent years, the Chebychev bias has been a popular topic in analytic number
theory; besides further studies of the original setting that we have discussed,
it has also been generalized in many ways. We only indicate a few examples
here, without any attempt to completeness.

In the first direction, there have been many studies of the properties
of the Rubinstein–Sarnak measures, and of the consequences concerning
various “races” between primes (see, for instance, the papers of Granville and
Martin [50] and Harper and Lamzouri [56]). In parallel, attempts have been
made to weaken the assumptions used by Rubinstein and Sarnak to establish
properties of their measures (recall that the existence of the measure does
not require the Generalized Simplicity Hypothesis). Among these, we refer
in particular to the work of Devin [26], who found a much weaker condition
that ensures that the Rubinstein–Sarnak measure is absolutely continuous.

Among generalizations, it seems worth mentioning the discussion by
Sarnak [107] of a bias related to elliptic curves, as well as the recent extensive
work of Fiorilli and Jouve [38] concerning Artin L-functions. In another
direction, Kowalski [68] and later Cha–Fiorilli–Jouve [23] have considered
analogue questions over finite fields, where the main difference is that relations
between zeros of the analogues of the Dirichlet L-functions may well exist
(although they are rare), leading to new phenomena.
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