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PROJECTIVITY AND DUALITY IN A MORITA CONTEXT

ZHOU ZHENGPING

The concepts of closed submodule, left and right annihilators are generalised and a
necessary and sufficient condition on any Morita context is given so that the duality
and projectivity between these sets exist. As a special case, we get Hutchinson's
necessary and sufficient condition under a weaker hypothesis on the context.

Let U be a left A-module and S the endomorphism ring of U. In 1977 [6], under
the assumption that U is projective and contains a unimodular element, a proof was
given that there is an order inverting bijection called duality, and an order preserving
bijection called projectivity between the closed submodules of U and the right, respec-
tively, left annihilators in S of subsets of 5 . In 1987 [3], in the more general setting of
a Morita context (R, U, V, S), under a much weaker hypothesis that Us is faithful and
(U,V) = R, which is equivalent to (R,U,V,S) being nondegenerate [1, Theorem 2]
and (U, V) = R, Hutchinson proved that the duality and projectivity exist if and only
if U is torsionless. Since a projective module is torsionless, these results generalise the
theorems in [6], and since necessary and sufficient conditions are given, these results
are in some sense the best.

In this paper, we generalise the concepts of closed submodule, and left and right
annihilators, and give a necessary and sufficient condition on any Morita context so
that the duality and projectivity between these sets exist. As a special case, we get
Hutchinson's necessary and sufficient condition under a weaker hypothesis on the con-
text.

Throughout this paper, R and S are associative rings with identity, and R-Mod,
S-Mod denote respectively the categories of unital left R-, and left 5-modules. Modules,
unless otherwise specified, are consistently left modules.

Recall for a Gabriel topology T, a module M is called T-torsion if Ann ji(m) £ T
for every m € M, and any module M has a largest r-torsion submodule Tr(Af); a
module M is called T-free if Ann^f {A) = 0 for every A € T; a submodule K of M is
called r-saturated if M/K is T-free, and TT(M) is the smallest r-saturated submodule
of M. For any submodule K of M, K = {m G M, Am C K for some A E T} is
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the smallest r-saturated submodule of M containing K, and K = K if and only if K

is T-saturated. If M is r-torsion and N is T-free, then Hom( M,N) = 0. For more
details about Gabriel topology or torsion theory, the reader is referred to [8, 2].

Recall that a Morita context (R, U, V, S) consists of two rings R and S, two bi-
modules RUS>S VR, and two bimodule homomorphisms (—,—) : U ®s V —> R and
[—,—] : V ®H U —> 5 satisfying tt[v,u'] = (u,v)u( and v(u,v') = [v,u]v' for all
w,w' G U and v,v' G V with the images being I and J, respectively. I and J are both
ideals and are called the trace ideals of the context.

Leu and Hutchinson [5], and Kasu [4] proved that for any context (R, U, V, S), there
is a lattice isomorphism between the lattice G(R) of all Gabriel topologies containing
/ on .R-Mod, and the lattice G(S) of all Gabriel topologies containing J on 5-Mod.

From now on, whenever we talk about T or T ' , unless otherwise specified, we
always mean that r G G(R),T' 6 G(S) being the corresponding one, denoted by

THEOREM 1 . Ls • X >—> LS(X) = {s G 5 | sX c TT,(S)}, and Rs : X >—»
Rs(X) = {s G S I Xs C TTi(S)} form a Galois connection in the lattice of subsets of
S. Therefore there exists an order inverting bijection between Ls = {Ls(X) \ X C. S}
andR~^= {Rs(X) | X C 5 } . Moreover T^ = {X C S | X = LsRs(X)}, RH = {X C
S\X = RsLs(X)}.

PROOF: By a routine verification, Ls and Rs satisfy :

(1) * i C X2 => LS{XX) D LS(X2) and Rs(Xl) D RS(X2);
(2) X C LsRs{X),X C RSLS(X) for any subset X of 5 .

D
THEOREM 2 . Lv : X i—> LV(X) and R's : U' <—> R'S(U') form a Galois con-

nection between the lattice of subsets of U and that of S, where Ly(X) = {« G U \
uX C TT{V)}, R'S(U') = {seS\U'sC TT(U)}.

Therefore there exists an order inverting bijection between Lu = {Lu{.X) | X C S}
andR^ = {R'S(U') | V C U}. Moreover ~Uj = {W C U \ U' = LuR's(U')},R% =
{X CS\ X = R'sLu(X)}.

PROOF: This is also a routine verification as the previous theorem. D

The following lemma will be used frequently in the sequel.

LEMMA 3 . (1) [V,u] C Tr>(S) if and only if u G TT(U);
(2) Us C Tr(U) if and only if a G TT,{S).

PROOF: Let a G TTi(S),B G T' such that Bs = 0; then UBs = 0. Consider

/ , G End(U) defined by /»(«) = us; then / , induces a homomorphism f, : U/UB —>
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U/Tr(U). But U/UB is T-torsion by Lemma2.1 in [9], and U/Tr(U) is T-free, therefore
T. = 0; that is, f.[V) = UsC Tr{U). So UT^S) C TT{U).

If u G Tr(U),A G r such that An = 0, then [V,.4tt] = [V«4,u] = 0. Consider
/„ G 2fom(V,S') defined by /«(t>) = [»,«]; then /„ induces a homomorphism /„ :
V/VA —y S/T^S). But V/VA is r'-torsion by Lemma 2.1 in [9], and S/T^S) is
r'-free, therefore % = 0, that is, / U (F) = [V,u] C Tr/(S). So [V,Tr(^)] C Tr,(5).

Now if Us C r r ( ^ ) , then [V,U)a = [V.ffj] C [^,^(1/)] C Tri(5). But J =
[V,U] € T', and TT/(5) is r'-saturated, therefore a € TT,{S). Similarly, if [V,u] C
Tr,(S), then (^, V)u = U[V,u] C ETTr,(5) C r r ( t / ) , and we get u G TT(U). D

THEOREM 4 . 5 ^

PROOF: We shall show R'S(U') = RS([V,U')), and ^ ( J T ) = R'S(UX) for any

First a € -R's(tf') «f=> U'a C Tr(Jf) <t=s> [F,^']* = [V,U'a] C Tr»(5) (by Lemma
3) *=*a£Rs([V,U']).

Secondly a G R'S(UX) «J=> Ĉ Xa C TT(U) <=> Xa C Tr,(S) (by Lemma 3)
D

Now letting F(U') = {a G 5 \Ua CU'},vfe have the following significant result.

THEOREM 5 . (1) TAe map F above forms an order preserving bijection between
Lu and Ls',

(2) The map G = RsF forms an order inverting bijection between Lu and

Rl.

PROOF: By Theorems 2 and 4, it remains to show that R's = RsF, and LsR's =
F.

If V 6 TU, and a 6 i*s(tf'), t h e n UF(U')a C tf'a C rr(£/) and so .F(tf> C
Tr»(5) (by Lemma 3), and so a G RSF(U'). Conversely, if F(U')a C TT,(S), then
since it is easy to see that U' £ Lu is a submodule of U and [F,^1] £ .F(t/'),
[F,J7'a] = [V,U']a C i^(tA')a C Tr»(5). We have that U'a C TT{U) by Lemma 3,
that is, RSF(U')CR'S(U').

Since F(^') G I i , LsR's = LsRsF = F by Theorem 1. D

Let us look at the special case where T — ri and T' = TJ, (the topologies de-
termined by the trace ideals / and J), and where TT{U) = Tri(S) = 0 (which is
equivalent to (R,U, V,S) being nondegenerate, that is, Us is faithful and [V,u] ^ 0
whenever 0 ^ tt G U).

Let A" C tf,X C S.AnnsA" = {a G 5 | /fjs = 0} , l(X) = {a G S \ aX = 0} ,
r(X) = {a G S | Xa = 0} and ^nnt/JT = {u£U \uX = 0}. Let (see [3])
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CA = {K C U | K - AnnuAnnsK},

Tl = {X C S | X = rl(X)};

then it is clear that Lu = CA, LS = C, and Rs = "R., so we have

COROLLARY 6. If (R, U, V, S) is nondegenerate, and r = TI,T' = rj, then

(1) F : CA —• £ is an order preserving bijection;
(2) G : CA —• 7̂  is an order inverting bijection.

In [3, Theorem 3], the same result is proven with the assumption that Us is faithful
and uE.lv. for all tt 6 17, which is much weaker than the existence of a unimodular
element [6] and also weaker than I = R, but stronger than our assumption of the
nondegeneracy here.

To see this, first we should mention a fact in [7, Proposition 1] that M is T-free,
where r is determined by a two sided ideal I, if and only if Ann\i{I) = 0. Now if
Iu = 0, then 0 = u e Iu = 0, so U is r/-free and TT(U) = 0. If Js = 0, then
UJa — IV'a = 0, but U is T/-free, so we have Ua = 0. However Us is faithful, so
a = 0, and sS is Tj-free and TTi(S) = 0.

In fact, if X G C, it is easy to check that F~1(X) = WX, while in [3] it is defined
to be UX, and the stronger condition that u G Iu for all u € U just makes UX = UX
for all X G C. However, this is not necessary in establishing the desired bijection.

Let K C U, Kx = {v € V | {K,v)U C TT(U)}, K±J- = {« G U \ faK^U C
Tr(U)}, C = {KQU\K = K•>">-}, T = {u€U\ {u,V)U C TT(U)}; then we have:

THEOREM 7 .

(2) Tr(U)
(3) T is r-saturated, tierefore Tr(tf) C T;
(4) Tcr r ( l / ) X i .

PROOF: (1) Let K e C; clearly K C Lt/JZ'̂ JiQ. Since K[K*-, U] = (K,KL)V C
rr(C^), [if-1-,^] C fl's(/ir) and for any u G Lt/ii's(ii:), u[K*-,U\ = (u^K^U C Tr(^).
Therefore u G A"-1"1- = K a n d X D LuR's{K). Hence A" = LuR's(K) and A G It/ .

(2) It is easy to check that TT(U) = LuR's(0) •
(3) Clearly T is a submodule of U. It is also r-saturated. To see this let

A G T, and u G U such that .4« C T. Then >l(tt,V)^ = (Au,V)U C
TT(i7). For any (w,v)u' G (w, V)^,>l(«,w)w' C Tr([7), and therefore
(«,«)«' G Tr(t/) since TJU) = TT{U). Hence (u,V)U C Tr(^),u G T
and T = T
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(4) Let u G T, then (u,rr(tf)"
L) C (u, V), so (u,Tr(£0"L)tf £ (u,F)tf C

Tr(l7) and therefore «G Tr(^)J"L. . D

If the context is nondegenerate, RII is faithful, and r = r/, then (1) is exactly
Theorem 4, (c) in [3].

THEOREM 8 . T = TT(U) ifand only ilTU = C.

PROOF: It remains to show that T^ C C if and only if T = TT{U). If T = Tr(U),
K = LuR's(K) e Lu, then clearly K C Kx± by the definition. On the other hand,
KR'S{K) C Tr(U) = T and so (KR'S{K), V)U = (ii:,i?'5(ii:)7)^ C Tr(l7). It foUows
that R'S(K)V C K2-, and so (A"-1-1-,A (̂A")V)CT = (K±±R'S(K),V)U C Tr(£0. It
follows that A"J~Li2^(7if) C T = Tr(£^), and so if-1"1 C Z^B^Jir) = K. So if-1-1- = if
and K eC.

Conversely suppose that T ^ ?V(£0- N o t e t h a t Tr{U) C T, Tr(^) € Tu and
Tr(J7)J"'L 2 T by Theorem 7 (3), (2) and (4). Hence TT{U) ^ Tr(Cr)J"L, that is,
TT(U)<?C. D

This result contains Theorems 5, 6, and 10 in [3] as special cases when the context
is nondegenerate, or both nondegenerate and RU faithful, and r = TI.

Combining Theorems 8, 5 and Corollary 7 (1), we get

THEOREM 9 . For any Morita. context (R, U, V, 5 ) , t ie following are equivalent:

(1) the duality between C and Rs exists;
(2) the projectivity between C and Ls exists;
(3) Tr(U) = T.

This contains Corollary 7 in [3] as a special case. In fact, we have

COROLLARY 1 0 . If (R,U,V,S) is nondegenerate and RU is I-faithful, that is,
ill ^ 0 whenever 0 ^ > £ / , then the following are equivalent;

(1) t ie duality between Cp and 1Z exists;
(2) t ie projectivity between Cp and C exists;
(3) T = 0.

Here CP = {K C U \ K = K**},K* = {v 6 V | ( A » = 0} and K** = {u 6 U \

(«,#*) = 0}.

PROOF: Under this assumption, CP=C,R~^ = Tl,T^ = C and TT(U) = 0 . 0

An element in Cp is called a closed submodule of U in [3]. If V = Hom(U,R),
then T = 0 if and only if U is torsionless, and since I = R implies RU is /-faithful
we get Hutchinson's result [3] under a weaker assumption as a special case.
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