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Abstract
One of the most challenging tasks for autonomous robots is avoiding unexpected obstacles during their path fol-
lowing operation. Follow the gap method (FGM) is one of the most popular obstacle avoidance algorithms that
recursively guides the robot to the goal state by considering the angle to the goal point and the distance to the
closest obstacles. It selects the largest gap around the robot, where the gap angle is calculated by the vector to
the midpoint of the largest gap. In this paper, a novel obstacle avoidance procedure is developed and applied to
a real fully autonomous wheelchair. This proposed algorithm improves the FGM’s travel safety and brings a new
solution to the obstacle avoidance task. In the proposed algorithm, the largest gap is selected based on gap width.
Moreover, the avoidance angle (similar to the gap center angle of FGM) is calculated considering the locus of the
equidistant points from obstacles that create obstacle circles. Monte Carlo simulations are used to test the proposed
algorithm, and according to the results, the new procedure guides the robot to safer trajectories compared with clas-
sical FGM. The real experimental test results are in parallel to the simulations and show the real-time performance
of the proposed approach.

1. Introduction
Motion planning refers to the robots’ ability to travel from the initial point toward the target without col-
lisions. These algorithms are developed to find the admissible path starting from the initial state toward
the final state, depending on whether the map is given or not, and the type of obstacles, whether they
are stable and static or dynamic. Given a goal state and a map of the environment and assuming that
the obstacles are static and not changing during the travel time, the global planning algorithms can cal-
culate the admissible trajectory on the maps’ collision-free spaces; the trajectory would be admissible
because the map used in these categories of path planning algorithms is static and not updated dynami-
cally [1, 2]. Many different approaches and studies have been made for global path planning purposes,
like A∗, [3] probabilistic road maps, [4] Dijkstra, [5] rapidly exploring random trees (RRTs), [6] RRT∗,
[7] cell decomposition methods, [8] Voronoi diagrams, [9] and visibility graphs. [10] However, these
algorithms’ efficiency and accuracy can be precarious when the information about the environment and
obstacles contains uncertainty. While the robot performs the path planning task, the working environ-
ment can be unknown, contains dynamic obstacles, or even the robot’s motion can be uncertain. In these
situations, the local planning algorithms are used to prevent the robot from colliding with the obstacles
while the robot is trying to track the admissible trajectory from the initial state to the final state. It is
noteworthy to consider that local path planning algorithms use less information about the environment,
which causes them to have lower computational complexity in comparison with the global path planning
algorithms. Like the global planners, local path planning algorithms are being studied and improved in
recent years. One of the firstly developed obstacle avoidance methods is the Bug 1 algorithm. [11] Using
this algorithm, the robot starts to circumnavigate the possible obstacles while moving toward the target,
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and it remembers how close it gets to the final state during this maneuver, and then it returns to the clos-
est point and continues to the target. The Bug 2 algorithm [12] is an improvement of Bug 1. In Bug 2,
the robot starts moving toward the goal, and when it faces an obstacle, the robot encounters it until there
is no obstacle between the robot and the target and then continues moving toward the target. Artificial
potential field (APF) [13] is another common obstacle avoidance method that uses the potential field
for declaring the goal state and obstacles inside the environment. In this method, the repulsive APF
is provided by obstacles, and the goal point generates an attractive APF. While the robot is traveling
using this approach, the attractive potential field from the goal point creates a pulling force, and the
repulsive force generates a pushing force, which causes the robot to avoid the obstacles. Although the
APF is simple, it has a local minimum problem, which causes the robot to stuck in the environment.
[14] This issue happens when the sum of the forces coming from the goal point and obstacles become
zero. Improvement for this method can be found in refs. [15, 16]. Another method similar to the APF is
obstacle restriction method [17] that uses the repulsive angle sets and subgoals instead. The virtual force
field (VFF) method [18] is another popular method used in obstacle avoidance task. Firstly, the obstacles
are represented by a two-dimensional cartesian histogram grid, wherein the possibility of comprising
an obstacle at that point is shown by each cell in the histogram grid. After this step, the APF is applied
to the histogram grid. Similar to the APF, the VFF algorithm has the local minimum problem too. The
vector field histogram (VFH) approach [19] is similar to the VFF, where a two-dimensional cartesian
histogram grid represents the obstacles at the robot’s momentary location. However, the VFH reduces
it to a one-dimensional obstacle density polar histogram. This one-dimensional polar histogram is then
used for comparing the sectors around the robot, and the algorithm selects the sector with the lowest
obstacle density value. Finally, the algorithm sets the robot’s heading angle in compliance with the
chosen sector’s direction. VFH∗ [20] is an improved version of standard VFH. The curvature velocity
method (CVM) [21] uses the robots’ dynamic model to calculate possible curvature paths by discarding
those that collide with the obstacles. Another commonly used obstacle avoidance method is the dynamic
window approach (DWA). [22] This method, similar to the CVM, uses the robot’s dynamic properties;
however, the mechanism is different. It selects the optimum admissible velocity set (V,W) by discarding
the sets that cause the robot to collide and then maximizing a cost function. An improvement study for
DWA can be found in ref. [23]. Timed elastic band (TEB) method [24] is another popular method used
in obstacle avoidance task. This method optimizes the robot’s trajectory locally, regarding the trajec-
tory execution time. It is noteworthy to mention that TEB is an extended version of elastic bands. An
improved study for this method can be found in ref. [25]. In addition to the mentioned algorithms, there
are some metaheuristic-based methods used in mobile robot path planning. The example of these algo-
rithms can be found in refs. [26, 27]. One of these methods uses membrane evolutionary APF. [27] This
method mixes membrane computing with the metaheuristic genetic algorithm and the APF method to
obtain the parameters to find an accessible and safe path.

Apart from these, another obstacle avoidance approach, ‘follow the gap method (FGM),” is one of
the most popular obstacle avoidance algorithms that recursively guides the robot to the goal state by
considering the angle to the goal point and the distance to the closest obstacles. [28] According to
the comparison study in ref. [29], the original FGM is shown to be the most efficient one comparing
to several famous obstacle avoidance approaches. Many other research and studies have been made to
improve this method in recent years. Improved follow the gap method (FGM-I) [30] brings a new solution
to the classic FGM’s zigzag and the trajectory length problem. Another study that aims to improve the
FGM is called FGM-DWA. [31] This method combines the DWA and FGM by modifying the DWA’s
mechanism of selecting the optimum velocity pair by changing the heading function inside the DWA’s
objective function and generating a new heading score using the FGM’s safe heading angle for each
set. In 2019, FGM was used for overtaking maneuver. [32] As another improvement for FGM, FGM-
I2 [33] brings a new solution to obstacle avoidance task by mixing the FGM-I and DWA. The latest
study aiming to improve the FGM is represented in follow the dynamic gap method, [34] wherein the
algorithm develops a new gap selection strategy for FGM, resulting in safe trajectories by considering
the gap borders’ velocity vectors and the future gap change.
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In this paper, a novel procedure for improving the classical FGM is developed and applied to a
fully autonomous wheelchair. This proposed algorithm, entitled as “follow the obstacle circle method
(FOCM),” brings a new solution to the obstacle avoidance task that improves FGM’s travel safety. In
the FGM, the gaps are selected based on their size in angle, and the final heading angle of the robot is
calculated considering the angle to the gaps’ center point. While FGM works well in most cases, we
propose a safer strategy for both gap selection and final angle calculation parts. The main contributions
of this newly proposed approach are:

• We propose “obstacle circle’’ concept to maximize the distance to obstacle in all conditions.
• We select the gaps based on gaps’ width instead of their angular values to get safer paths.
• We show the statistically significance of the results for the proposed improvements, which has not

been done for FGM and its variants previously.

In the subsequent parts of this paper, we address, in detail, that these two contributions make the
proposed approach safer without a significant extension of the travel length.

The remainder of the paper is organized in the following way: Section 2 presents the FGM. Section 3
introduces the new approach. Simulation results are demonstrated in Section 4, Section 5 introduces
the experimental platform, Section 6 discusses the experimental results, and finally, the conclusion is
presented in Section 7.

2. Follow the gap method
FGM is a safety-based geometric obstacle avoidance algorithm that recurrently leads the robot to the goal
point while keeping the robot from colliding with the obstacles. [28] It selects the gaps with maximum
angle size, using the sensory information. FGM is a three-stage algorithm. The first stage is calculating
the gap arrays. In this stage, the algorithm uses the current sensory information like the LIDAR sensor
to generate a gap array. This array contains information about the size of the existing gaps around the
robot in angle form. FGM selects the largest gap at the end of this stage, which is called the gap selection
process. FGM calculates the angle to the gap’s center point in the second stage, using specific geometric
relations. Finally, in the third stage, FGM calculates the final heading angle (ϕfinal), using Eq. (1). The
weighted function mentioned in Eq. (1) consists of the angle to the largest gap’s center point (ϕgap−c),
the angle to the goal point (ϕgoal), the distance to the closest obstacle (dmin), and a safety factor named
alpha (α). The alpha parameter’s higher values cause the robot to keep its distance from the obstacles
and follow the safe gap’s center. In contrast, alpha’s lower values cause the robot to follow the goal
point and get too close to obstacles in some cases. These changes in alpha cause the robot to travel on
different trajectories, as shown in Fig. 1. The alpha is a user-defined parameter as it is defined in the
original paper. Furthermore, it can be noticed in Fig. 1 that the selection of alpha is entirely free and
practical, so to continue, we will select α = 40 in this paper.

ϕfinal =
α

dmin

ϕgap−c + ϕgoal

α

dmin

+ 1
(1)

The visualization of the available gaps around the robot, the angle to the midpoint of the largest gap, the
angle to the final goal, and the FGM’s final heading angle are shown in a robot-obstacle configuration
represented in Fig. 2.

Furthermore, although FGM was selected as the most effective and safest obstacle avoidance method
in a study by Zohaib et al., [29] it faces a wide range of inherent drawbacks, including the zigzag and the
trajectory length problem which were improved by FGM-I. [30] Another con of this method is that FGM
puts the robot at risk and causes some safety problems using the simple gap selection and final heading
angle calculation procedures simultaneously. The next part of this study will cover this drawback in
detail and provide a solution by proposing FOCM.
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Figure 1. Visualization of robot’s different paths based on different values of α.

Figure 2. Robot-obstacle configuration, obstacles (A, B, and C), gaps (G1, G2), the midpoint of the
widest angular gap (M2), goal point (X), angle to the goal point (ϕgoal), final heading angle (ϕfinal), and
angle to the largest gap’s center point (ϕgap−c).

https://doi.org/10.1017/S0263574721001624 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001624


Robotica 2235

Figure 3. Robot-obstacle configuration, where selecting the largest gap by FGM causes the unsafe path
in red color. A, B, and C are the obstacles. M1,M2 are the center of the G1 and G2 gaps, respectively,
and the goal point is represented by (X).

3. Follow the obstacle circle method
FGM is developed to keep the robot safe during travel. This method’s primary part is calculating the final
heading angle based on the angle to the gap’s center. In the gap selection stage, the method selects the
desired gap by comparing the gaps based on their size in angle, and it does not consider the gaps’ width
(in the distance). Although comparing the gaps using the angles is practical, in some cases, it makes the
robot travel on unsafe trajectories. An example of this configuration can be seen in Fig. 3, where the
FGM puts the robot in a perilous path by selecting the largest gap (G2) among the other available gaps.
As shown in Fig. 3, the robot gets too close to obstacle B compared to the safer path shown in green color.
This inherent problem cannot be solved by just modifying the FGM’s gap selection procedure because
regardless of which gap has been selected, FGM calculates the angle to the gaps’ center point, and the
robot has to navigate to that center point straightforwardly for crossing the gap. In other words, FGM
uses the heading lines, which start from the robot’s current position and end on the gaps’ center points,
so it is possible for the robot to get close to the obstacles during the travel, and in some configuration
puts the robot in the risk by getting it too close to the obstacles as shown in Fig. 4. As it is seen in
Fig. 4, the shortest distances between the first path, which is created by selecting the largest gap, and
the obstacles A and B are BM1 = AM1 = 2 m. However, the shortest distances between the second path,
which is caused by selecting the gap with the largest width, and the obstacles are (BP2 = CP3 = 1.5 m),
so selecting the gap with the largest width does not always lead the robot to safer trajectories when using
the FGM. In addition to what has been stated, the safest and the optimum available path for the robot is
represented in green color in Fig. 4. It is noteworthy to consider that FGM does not provide this kind
of path. The solution to this problem, regardless of the gap selection procedure, requires changing the
gap selection procedure and the whole mechanism of the FGM’s final heading calculation. This solution
will result in a safe green path represented in Fig. 4. The newly proposed algorithm uses a new concept
named “obstacle circles” to compute the final heading angle. Moreover, using this approach allows the
robot to travel on safer trajectories using the same sensory information.
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Figure 4. The problem of unsafe paths cannot be solved by only modifying the gap selection procedure
of FGM.

Figure 5. Outline of the newly proposed algorithm.

The freshly proposed algorithm, similar to the FGM, is a three-phase procedure, represented in Fig. 5.
The gap selection procedure is explained in Section 3.1. The target heading angle calculation is covered
in Section 3.2, and finally, the final heading angle calculation is explained in Section 3.3. At the end of
this section, a summary of the algorithm is presented in Section 3.4.

3.1. Gap selection procedure
As mentioned before, FGM’s inherent problem cannot be solved by changing the gap selection stage;
however, the gap selection procedure can be done by selecting the largest gap available based on the
gaps’ width. Selecting the gap with largest width will guarantee the robot’s safety during the travel, not
only in the selected gap but also on every gap during the travel. Considering the mentioned fact, the
newly proposed algorithm will select the largest gap available based on their width and continue to the
next stage.

3.2. Calculation of avoidance heading angle for each gap
Irrespective of the chosen gap, a robot must cross the gap baseline (the segment connecting the obsta-
cle borders to each other). Selecting the gaps’ centers is mathematically optimal for passing the robot
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Figure 6. Obstacle circles for the obstacles A, B, and C.

through the gap baseline because the robot will have the maximum distance from obstacles there.
Considering the fact that the robot will have this distance in the best situation will lead us to use the
mentioned distance as a margin between the robot and obstacles, where this margin is a locus of points
equidistant from obstacles in 2D that creates “obstacle circles” with the radius of the minimum dis-
tance from the obstacles to the center of each gap baseline. We will call this radius as gap radius (rgap).
Considering the robot-obstacle configuration scenario shown in Fig. 6, the obstacle circles are notable
in each gap. It is noteworthy to mention that the center of these obstacle circles are gap borders (the
edges of obstacles); these centers can be calculated by obtaining the distance and the angle information
from the robot to the obstacles’ edges (gap borders) using the sensory data. The calculation contains
scanning the LIDAR data continuously and detecting the obstacle edges then converting the polar coor-
dinates of obstacle borders to the Cartesian coordinate systems. Figure 7 represents an actual scene of
the robot-obstacle configuration, and visualization of robot, the obstacle (box in black), LIDAR data in
red, robot’s LIDAR range (representing LIDAR field of view [FOV]), first gap (G1 in green), second
gap (G2 in gold), center of obstacle circles (OC11 and OC12 for the first gap; OC21 and OC22 for the
second gap), obstacle circles for each gap, and distance from robot to the center of obstacle circles (d1
and d2).

Following the obstacle circle with the largest radius will guarantee the robot’s safety during the travel
because it would have the most considerable maximum distance to obstacles among the other gaps, not
only on the gap baseline but also everywhere on the robot-obstacles configuration. Figure 8 demonstrates
the possible path that tracks the obstacle circle without getting inside the circle (Path 1) and the path
created by FGM (Path 2). It is evident that by considering the mentioned obstacle circles instead of the
FGM’s gap center angle, the new algorithm drives the robot to safer trajectories by keeping the robot
out of the dangerous zone. The shortest path that a robot can travel with the constraint of (dmin ≥ rgap),
is Path 1, which is represented in blue color in Fig. 6, where dmin is the shortest distance from the robot
to the obstacles in the selected gap. The calculation of Path 1 depends on the robot’s position regarding
the obstacle circles, whether the robot is inside/on the obstacle circle or outside the obstacle circle. The
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Figure 7. Visualization of the robot-obstacle configuration, where it shows: robot, obstacle (box in
black), LIDAR data in red, robot’s LIDAR range in blue (representing the LIDAR FOV), first gap (G1
in green), second gap (G2 in gold), center of obstacle circles (OC11 and OC12 for the first gap; OC21
and OC22 for the second gap), obstacle circles for each gap, and distance from robot to the center of
obstacle circles (d1 and d2).

proposed algorithm compares the minimum distance between the robot and obstacles and the gap radius
(rgap) for each gap. Consequently, there are two possible cases, as follows:

1- If dmin is more extensive than rgap as shown in Eq. (2), the robot is outside the obstacle circles:

dmin > rgap (2)

In this case, the robot will try to get itself as close as possible to the gap center with the constraint
of (dmin > rgap). To make this maneuver possible, the algorithm calculates a heading angle named as
“avoidance heading angle” (ϕAvoid) to the best tangent point on the closest obstacle circles. It considers
the distance to the center of each obstacle circle (finding the closest circle – discarding two tangent
points out of four) and then compares the angle between the robot, the gap’s center point, and two
tangent points. Then it selects the minimum one to find the best tangent. Figure 9 demonstrates the
flowchart used for selecting the best tangent point. Figure 10 represents an example of this procedure
for a robot-obstacle configuration. As it is seen in this figure, the algorithm first selects the obstacle
circle B as the closest obstacle circle (selecting the tangent points R1 and R2), then it compares the
angle between the gap’s center point, the robot, and the tangent points and as a result, selects the R2 as
the best tangent point (M2R̂R2 < M2R̂R1). Also, it is notable to mention that each tangent point can be
calculated by knowing the obstacle circle’s equation (center and radius) and a point outside the circle,
which in our case, it is the robot’s position. Figure 11 represents a path traveled by the robot under this
circumstance for the robot-obstacle configuration mentioned in Fig. 10.
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Figure 8. Demonstrates the possible path that tracks the obstacle circle without getting inside the circle
(Path 1) and the path created by FGM.

Figure 9. The flowchart of selecting the best tangent point. ϕcg is the heading angle from the robot to
the center of the gap, �t1 and �t2 are the heading angles from the robot to tangent points #1 and #2.
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Figure 10. Robot-obstacles configuration, where the R2 tangent point has been selected as the best
tangent point. A, B, and C are the obstacles. R1, R2, L1, L2 are the tangent points. M2 is the center of the
largest gap in width.

Figure 11. Visualization of the traveled path of the robot from outside the circle where dmin > rgap.
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(a) (b)

Figure 12. (a): Visualization of how the robot tracks a circular arc inside the obstacle circle recursively
updating its heading angle. (b): Visualization of the traveled path by the robot while tracking a circular
arc, recursively updating its heading angle in the identical configuration as shown in Fig. 10(a).

2- If dmin is smaller than or equal to rgap as shown in Eq. (3), the robot is inside or on the obstacle
circles:

dmin ≤ rgap (3)

In this case, the robot, whether on the obstacle circle or inside the circle, can have any heading angle,
and its distance to the center of the obstacle circle is at least dmin. In this situation, for considering all
possible cases simultaneously, the algorithm creates a virtual circle with the center of the closest obstacle
coordinate and the radius of dmin with the same logic used for creating the obstacle circles, which was
using the minimum distance from the robot to the obstacles and using this distance as the margin between
them. The robot needs to update its heading angle recursively to track this curve, keeping/making itself
tangent to the curve. So the algorithm calculates the difference between the robot’s heading angle and
the angle of the vector �T , which is perpendicular to the radius, as shown in Fig. 12(a). This difference
angle would be the target heading angle (ϕAvoid) for the robot. Figure 12(b) demonstrates the robot’s
traveled path while tracking circular arcs inside the obstacle circle and recursively updating its heading
angle in the identical configuration as shown in Fig. 12(a).

3.3. Calculation of the final heading angle for each gap
After calculating the avoidance heading angle (ϕAvoid) from the previous steps, the algorithm is now able
to calculate the final heading angle. For this step, the algorithm uses the FGM’s final heading angle
equation as mentioned in Eq. (1). The only difference is, instead of using the angle to the gaps’ center
point, it uses avoidance heading angle (ϕAvoid).

To have a clear vision about the difference between the FGM and the newly proposed algorithm
FOCM, the simulation results of two different robot-obstacle configurations containing multiple obsta-
cles are visualized in Fig. 11. As shown in Fig. 13(a), the traveled paths for both FGM and FOCM
algorithms from the initial state until the moment where the robot detects the obstacle are identical.
After detecting the obstacle, the FOCM forms a proper obstacle circle and passes the obstacle by track-
ing the circle and keeping its margin (rgap) from the obstacle. However, FGM calculates the heading angle
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(a)

(b)

Figure 13. Comparison of the FGM and FOCM.

to the center of the largest gap instead. As a result, FGM enters the dangerous zone (inside the obstacle
circle). Although both algorithms reach the target state, the path caused by FOCM is safer than the path
created using the FGM. Figure 13(b) demonstrates a complex robot-obstacle configuration where the
newly proposed algorithm was tested multiple times during the travel. As shown in Fig. 13(b), the robot
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Figure 14. The flowchart of the methodology.

using the FGM entered into the obstacle circles, and consequently, it leads the robot to an unsafe path
compared with the FOCM.

3.4. Algorithm’s summary
FOCM is a practical safety-based obstacle avoidance algorithm. Gap selection and avoidance strategies
are improved comparing to FGM. A flowchart is represented in Fig. 14, which demonstrates the summary
of the proposed methodology.

4. Simulation results
To have a fair comparison between FOCM and the classical FGM, Monte Carlo simulations are per-
formed. A CAD model of differential drive wheelchair, which is identical to the real autonomous
wheelchair used in experimental tests, is prepared as shown in Fig. 15 and is used in simulations. Matlab
is used for developing a simulation environment with an area of 7 m × 14 m. The starting and the final
points’ coordinates are chosen as [11.8-13] and [16.5-13], respectively. A LIDAR sensor with a total of
180 degrees FOV is used in the simulations.

To obtain a fair benchmarking, both methods used the identical proportional and integral (PI) heading
angle controller during the simulations, and the linear velocity of both methods is selected as constant
0.15 m/s. This value is selected small similar to the output of a fuzzy-logic-based longitudinal velocity
planner, mentioned in ref. [35]. The mentioned heading angle controller is introduced in Eq. (4):

w = kp(ϕfinal − θrobot) + ki

(∫ (
ϕfinal − θrobot

)
dt (4)
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Figure 15. Differential drive wheelchair’s CAD model.

Where θrobot is the robot’s momentary heading angle, and ϕfinal is the algorithm’s final guiding angle. Kp

and Ki are the PI gains, respectively. These values are tuned empirically by trial and error tests in our
previous wheelchair conversion study. [36] For a fair comparison of FOCM and FGM, same controller
coefficient values are used. Kp and Ki are selected as 0.3 and 0.5, respectively. Increasing the values of
Kp and Ki decreases the rising time and increases the overshoot, from a classical PI controller design
perspective. Although performing an impartial comparison between the two algorithms is challenging,
600 Monte Carlo simulations are performed to compare both methods. In these simulations, the obsta-
cles are spread uniformly where the positions are set randomly. A computer with the 10th generation
of i7 4.6 GHz Intel CPU and 16 GB of RAM, operating the Ubuntu 16.04 OS, was used to perform
the simulations. To have a clear vision of the proposed algorithm’s efficiency, multiple performance
measures such as obstacle avoidance safety metric and the travel’s average length are used. The obstacle
avoidance safety metric used in this study is given in Eq. (5) as it is used in ref. [37]. The p’th norm of
any f (t) function can be calculated using Eq. (6):

f (t) =
⎧⎨
⎩

1

dmin

− 1

d0

, for dmin < d0

0 , for dmin ≥ d0

(5)

‖f ‖p = (|f (t)|pdt)1/px (6)

where dmin is the shortest distance between the robot and the existing obstacles, and the scalar d0 stands
for the distance to an obstacle that is not dangerous for the robot. This is a user-defined analysis param-
eter and considering the indoor environment condition, d0 is selected as 2 m. This is a parameter for
analysis of the resulting paths in terms of the danger. While increasing d0 considers unnecessary distant
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Table I. Monte Carlo simulations result (α = 40)

Average safety metric Average traveled distance (m)
FGM 2.58 4.91
FOCM 2.27 5.07

measurements, decreasing d0 ignores critically close obstacles. This value can be higher for outdoor
conditions. The mentioned collision avoidance safety metric is inversely proportional to the closest dis-
tance between the obstacles and the robot. In other words, it is a penalizing function that penalizes the
robot when it gets closer to obstacles than the scalar d0, a smaller average value means a safer travel.
Same collision avoidance metric was previously used in refs. [28, 30, 34, 37]. Furthermore, in this study,
the infinity norm (p = ∞) of the obstacle avoidance safety metric is used for comparison.

Table I demonstrates the average of mentioned performance measures for the total 600 Monte Carlo
simulations of FGM and FOCM (α = 40, d0 = 2 m).

According to Table I, the newly proposed FOCM is 12.79% safer than the FGM, while the average
travel distance values are almost equal. The FOCM average traveled distance is 1.71%, longer than FGM.

In order to test the statistical significance of the algorithm in performing the safety of the obstacle
avoidance task, we apply Z test since the sample size (number of simulations: n = 600) is large enough.
This allows us to assume that the sampling distribution is approximately normal with the mean of FGM’s
safety metric μFGM, and its standard deviation of s = 2.732. We use the variable Z as the test statistic
under the hypothesis represented in Eq. (7):⎧⎨

⎩
H0, μFOCM ≥ μFGM (Null Hypothesis)

H1, μFOCM < μFGM (Alternative Hypothesis)
(7)

It is noteworthy to mention that the Z value is calculated as −2.4995, using the general Eq. (8), where x̄
is the mean score of FOCM’s safety metric (μFOCM) and μ is the mean score of the FGM’s safety metric
(μFGM).

Z = x̄ − μ
s√
n

(8)

The confidence level is chosen as c = 0.95, so the significance level is 0.05 which is a common selection
in most of the tests of statistically significance. The critical Z value, which represents the boundary
between rejection and acceptance of the null hypothesis H0 for the defined significance level, is −1.96.
Furthermore, p-value is a number which describes how likely it is that our data would have occurred
by random chance under the assumption of null hypothesis is true. In our case, for the calculated Z
value −2.7794, p-value is 0.0028. Since the calculated Z value falls outside the critical value which
means that the p-value is lower than the defined significance level (p < significance level), the H0 is
successfully rejected. This means that the mean of the safety metric of FOCM is significantly lower
than FGM, which shows the safety advantage of FOCM over FGM statistically. Figure 16 represents the
normal distribution, Z value, and critical value.

5. Experimental platform
After getting the satisfying results from the simulations, FOCM is implemented on the real autonomous
platform to test its real-time performance. The real system used in this study is a fully autonomous
electrical wheelchair testbed, which is designed and developed by the Autonomous Mobility Group of
Istanbul Technical University [36]. It is constituted with multiple sensors like three LIDARs, an RGB-D
camera, an IMU sensor, and wheel encoders. The computational hardware mounted on this wheelchair
includes Nvidia Jetson-TX2 and AAEON Intel Upboard for high-level operations. An embedded ST
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Figure 16. Visualization of the normal distribution, test statistic value, and critical value of left-tail
test.

Figure 17. Visualization of fully autonomous wheelchair and its components as an experimental
platform.
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Figure 18. Visualization of the communication architecture used in the experimental platform.

B-F446E96B01A board is used for low-level control applications. Figure 17 illustrates the wheelchair
with its sensors and computational hardware. The autonomous wheelchair uses the robot operating sys-
tem (ROS) as the central platform for communicating and has the ability to be controlled semi/fully
autonomously and manually by an operator. Figure 18 visualizes the communication architecture used
for developing this wheelchair. More detailed information about the experimental platform can be found
in ref. [36].

6. Experimental results
Both FOCM and FGM are coded in Python as independent ROS nodes. The tunable parameter alpha
is chosen as 40 (α = 40) for both methods to have a fair comparison. The wheelchair uses identical PI
heading angle controller we used during the simulations. Since the tests are mostly done in challenging
environments, the linear velocity of both methods is selected similar to the output of a fuzzy-logic-based
longitudinal velocity planner in such complex scenarios. [35] The SICK LMS 151 LIDAR is used for
perception with a limited FOV of 150◦ and a limited maximum range of 3 m. The adaptive Monte Carlo
localization method [38] is used for localization during the experimental tests. Figure 19 represents the
real occupancy grid map of the Mechatronics Educational and Research Center (MEAM) of Istanbul
Technical University, which is chosen as the test field. Four complex scenarios are chosen to perform the
tests. The results of the first scenario of experimental tests are represented in Fig. 20. Figure 20(a) shows
the initial point of the autonomous wheelchair, the paths created by both FOCM and FGM algorithms,
the final point, and the obstacle measurements from the LIDAR sensor. As it can be seen in Fig. 20(b),
which is the zoomed version of Fig. 17(a), the wheelchair’s initial coordinate is selected as [8.2,10], and
the goal point’s coordinates is [9.1,3]. The path created by FGM is shown in red color, and the traveled
path caused by FOCM is represented in blue color. The purple and the green points are the obstacle
measurements coming from the LIDAR. The obstacle measurement clusters are not identical because
of the noise and the uncertainty that the LIDAR contains during the measurement. Figure 21 shows the
sequential recorded images of the wheelchair’s travel during the tests. Figure 21(a) depicts the test using
the FGM, whereas Fig. 21(b) illustrates the travel of the wheelchair using the newly purposed FOCM.
In order to show the safety effect of the proposed approach, Fig. 22. shows the merged image of both
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Table II. Experimental results of first scenario (α = 40)

Average Average traveled Standard deviation Standard deviation
safety metric distance (m) of safety metric of traveled distance

FGM 0.5875 7.52 0.0279 0.1438
FOCM 0.5370 7.64 0.0272 0.1402

Figure 19. The real occupancy grid map of the test field.

(a) (b)

Figure 20. The results of the first scenario of experimental test.

algorithms at the critical moment while overtaking the obstacle. Moreover, the real video of these tests
can be watched online by clicking here, or from Supplementary Material part of the submission.

Table II demonstrates the average and the standard deviation of the safety metric for the five tests of
FGM and FOCM in the first scenario (α = 40, d0 = 2 m).
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(a) (b)

Figure 21. The recorded images of the first scenario of the experimental tests (a): The experimental
test using the FGM; (b): The experimental test using the FOCM.

Figure 22. The merged image of both algorithms’ critical moment.

According to the real experimental tests, as shown in Table II, the newly proposed FOCM is 8.6%,
safer than FGM, while the average travel distance values are almost equal. The FOCM average traveled
distance is 1.57%, longer than FGM.

Figure 23 represents the second scenario of the experimental tests. As it can be seen in Fig. 23(b),
which is the zoomed version of Fig. 23(a), the wheelchair’s initial coordinate is selected as [9.8,10],
and the goal point’s coordinates is [8.5,3.5]. The path created by FGM is shown in red color, and the
traveled path caused by FOCM is represented in blue color. The purple and the green points are the
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Table III. Experimental results of second scenario (α =40)

Average Average traveled Standard deviation Standard deviation of
safety metric distance (m) of safety metric traveled distance

FGM 0.6413 7.93 0.0026 0.136
FOCM 0.5921 8.19 0.0031 0.131

(a) (b)

Figure 23. The results of the second scenario of experimental test.

(a) (b)

Figure 24. The recorded images of the second scenario of the experimental tests (a): The experimental
test using the FGM; (b): The experimental test using the FOCM.

obstacle measurements coming from the LIDAR. Figure 24 illustrates the sequential recorded images of
the wheelchair’s travel during the tests. Figure 24(a) depicts the test using the FGM, whereas Fig. 24(b)
shows the travel of the wheelchair using the FOCM. Moreover, Table III demonstrates the average and
the standard deviation of the safety metric for the five tests of FGM and FOCM in the second scenario.

According to the experimental tests, as shown in Table III, FOCM average traveled distance is 3.1%,
longer than FGM, and FOCM is 7.7%, safer than FGM, while the average travel distance values are
almost equal.

Figure 25 visualizes the third and the most complex scenario available in the MEAM. As it can be seen
in Fig. 25(b), which is the zoomed version of Fig. 25(a), the wheelchair’s initial coordinate is selected
as [8.2,10], and the goal point’s coordinates is [9.2,3.2]. Similar to the previous tests, the path created
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Table IV. Experimental results of third scenario (α =40)

Average Average traveled Standard deviation Standard deviation
safety metric distance (m) of safety metric of traveled distance

FGM 0.9345 8.49 0.0037 0.156
FOCM 0.7961 8.46 0.0044 0.148

(a) (b)

Figure 25. The results of the third scenario of experimental test.

(a) (b)

Figure 26. The recorded images of third scenario of the experimental tests (a): The experimental test
using the FGM; (b): The experimental test using the FOCM.

by FGM is shown in red color, and the traveled path caused by FOCM is represented in blue color. The
purple and the green points are the obstacle measurements coming from the LIDAR. Figure 26 depicts
the sequential recorded images of the wheelchair’s travel during the tests. Figure 26(a) shows the test
using the FGM, whereas Fig. 26(b) shows the travel of the wheelchair using the FOCM. Furthermore,
Table IV demonstrates the average and the standard deviation of the safety metric for the five tests of
FGM and FOCM in the third scenario.

According to Table IV, the mean of traveled distance caused by FOCM is averagely 0.35% longer
than FGM; however, FOCM leads the robot to safer trajectories, and it is 14.81% safer than FGM, while
the average travel distance values are almost equal.
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(a) (b)

Figure 27. The results of the fourth scenario with the presence of the random dynamic obstacles, for
showing the capability of FOCM to handle the scenarios with the presence of dynamic obstacles.

Figure 28. The recorded images of the fourth scenario of the experimental tests using FOCM with the
presence of random dynamic obstacles.

Finally, comparing the FGM and FOCM with the presence of dynamic obstacles is challenging. It
is not realistic to provide the same scenarios (same position, velocity, and heading configuration of
dynamic obstacles for same time segments) for both algorithms. On the other hand, in order to show the
capability of FOCM to handle the scenarios with the presence of dynamic obstacles, we provided the
fourth test scenario represented in Fig. 27. As it can be seen in Fig. 27(b), which is the zoomed version
of Fig. 27(a), the wheelchair’s initial coordinate is selected as [9.2,10], and the goal point’s coordinates
are [9.0,3.2]. The traveled path caused by FOCM is represented in blue color. The green points are
the obstacle measurements coming from the LIDAR. Although the wheelchair’s path and the obstacle
measurements seem to intersect, they are not collisions since the robot and the obstacles are at the same
place in different times. This can be seen in Fig. 28. which illustrates the sequential recorded images of
the wheelchair’s travel during the tests using the FOCM.
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7. Conclusion
In this paper, a novel procedure is developed and applied to a fully autonomous wheelchair platform.
The proposed methodology improves FGM’s obstacle avoidance safety and brings a new solution to the
collision avoidance task. In the original FGM, it is possible to select the widest angular gap which is
not the safest one in terms of the width size. Moreover, heading towards the gap center for avoidance
can result with paths which are passing near the obstacle. This kind of problems has been illustrated in
the previous sections. In order to eliminate these problems, we propose a new mechanism for obstacle
avoidance task by introducing the ”obstacle circles” concept, instead of calculating the gap center vector.
Additionally, we select the gaps based on their width size instead of their angular value for safer paths.

Six hundred Monte Carlo simulations are used to assess the proposed procedure’s efficiency, where
the results declare that the newly proposed FOCM drives the robot to safer paths comparing with the
FGM, while the average traveled distance is almost the same. The results obtained from the newly pro-
posed algorithm show a statistically significant difference in safety metric in comparison with classical
FGM. Furthermore, multiple complex scenarios are used to perform the real-world experimental tests.
These tests show the real-time performance of the proposed method which is in parallel to the simulation
results.

Future studies may include improvements in behavior under dynamic obstacle scenarios and robust-
ness under measurement uncertainty. Furthermore, comparing various obstacle avoidance algorithms
and testing their potentials in multiple configurations can be another future work.
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