
XVI

of course there may be repetitions if replacements are allowed. The
part of the probable value due to this drawing is

and the total probable value is

where S denotes summation of N sets of m terms each, in all mN
terms.

Now, since no coin is singled out for special favour, a will equally
often be 1,2, . . . . , or n; and the same is true of /3, y, . . . . , and /x.
Hence in the sum above the expression kL + k2 + • • • • + kn must
occur a whole number of times, and this whole number must be
mNjn. Thus finally, since the value of all the coins is P, the probable
value in question is

1 mN „ _ mP
N ' n ~ n '

The invariant property of mathematical expectation is thus
brought out. (For a rather similar result see Chrystal's Algebra,
Part II, pp. 594-5.)

The case where the number of replacements allowed is not
limited leads to an identity in combinatory analysis which is by no
means obvious, namely

m m I

m! m! m! '

where mi + m2 + . . . . + mr = m, and S includes all r-part composi-
tions (i.e. partitions in which order of parts is relevant) of m,
associated with all r-ary combinations of 1, 2, . . . . , n.

A Simple Method of Finding Sums of Powers of the
Natural Numbers

By I. M. H. ETHEEINGTON.

Let 1" + 2a + 3a + + na be denoted by Sa. It is well known
that Sa can be expressed as a polynomial in n of degree (a + 1). The
expressions for Si, S2, Ss .... can be found in succession by elemen-
tary methods, which also give numerous relations such as $<< = 8^,
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128 •> Ss = 7<S6 + 5/S4. The elegant method which I am about to
explain is not original. It is due in essence to the Arabian mathe-
matician Alkarkhi* (circa 1000 B.C.).

The method consists of arranging numbers in a square, adding
them up in two ways, and equating the results. An example will
make it clear. To find S4, assuming that we know S{ =\n(n + 1)
and Sn = ^n (n + 1)(2TJ + 1), consider this arrangement of numbers:

1.1*| 1.2*

« •

3.1a

2.2*

3.2a

71.2*

1.3*

2.3*

3.3*

7*3*

«*••••**••• * *

2.7*

3.na

Adding up by rows or columns, the sum of all the numbers is seen to
be Si S2. But we can also add by gnomons, as indicated by the heavy
lines. The sum of the numbers comprising the nth gnomon, i.e. the
last row and column,

= nS2 + n2S1- n3

= ini(n+ l)(2n + 1) + In3(n + 1) - n3

Thus the total is S (fn4 + \nr)

= %8t + iSs.

Equating the results,

681 £2 = 5S4 + 83,

whence, substituting for 81 and S2, we find:

S4 = ^ n (n + l)(2n + l)(3n2 + Zn — 1).

*See his Fakhri (Woepcke, Paris, 1853), p. 61.
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In genera], by taking a°63 as the occupant of the cell in the ath

row and bth column, we obtain:

? ( f i )

Assuming that we know the expressions for Sa and Sp, we can
substitute these in the right hand side. Then:

where Au Ait . . . . , Aa+fi+i are numbers which depend on the
coefficients in the expressions for 8a, Sp. Actually, (provided
a, /?=^=0) Aa+I3 always vanishes, and the last coefficient Aa+^+l is
(a + jS + 2)/(a + I)(j3 + 1). These follow from the fact that the

polynomial for 8r always begins —|— -| + • • • •

Thus we can find Sa+l3+i if we know the expressions for
Si, 82 /Sa + / 3_i .

An interesting case arises when y3 = 0. Since So = n, we then
obtain:

= 8a+1 + isa~ 8a,
i

giving the useful formula

<Sa+I +isa=(n+ l)Sa.
i

The method may be extended by generalising the square to t
dimensions and filling it with numbers of the form

aj- aj= . . . . ap

where a1; a-,, .. .., a, are fixed, while a]t a.,, . . .., ac vary independently
from 1 to n. The analogous result is:

sai s a , . . . . sat = i on

w h e r e On = [ n - S^ Sar . . . . 8 ^ + n«= Sai Sa3 .. .. 8^ + . . . . ]

Assuming that the expressions for Sai, 8a.,, .. .. Sa> are known, we
can substitute polynomials in n for the S's, and obtain for Gn a poly-
nomial of degree en + a2 + + a, + t — 1. Thus Sai Sa.... . . 5^ can
be expressed linearly in terms of Si, S2, . . . . Sd, where

d = a! + a2 + + a( -f < — 1;
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and the expression can be calculated if the polynomial expressions
for Sai, <Sv, .... Sa are known.

As an example, let a! = 1, a2 = 2, a3 = 3, t = 3.

Then Qn = nS? Ss + n2 S3 S, + ns Sx S2 - w5 Sx - n* S2 — na S3 + n6

= n . in (n + l)(2n + 1). £ra- (n + I)2 + etc.,

reducing to

Gn = |n 8 + TVw6 + i n 4 .

Hence 24,8, S2 Ss = 9S8 +

A few further results, easily proved in this way, or by repeated
applications of the square method, may be quoted:—

Si = $3, 6$i S2 = 5S± + S2,
4S\ = ZS5 + Ss, 1281S2 = 7S6 + 5Sit

2S\ = S, + 8it 248183 = 9^s + US6 + 8U

1681 = 5<S9 + 10AS7 + ig5, 48S\82 = U810+ 30Ss + IS,.
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