of course there may be repetitions if replacements are allowed. The part of the probable value due to this drawing is

$$
\frac{1}{N}\left(k_{\alpha}+k_{\beta}+\ldots+k_{\mu}\right)
$$

and the total probable value is

$$
\frac{1}{N} \Sigma\left(k_{a}+k_{\beta}+\ldots+k_{\mu}\right)
$$

where Σ denotes summation of N sets of m terms each, in all $m N$ terms.

Now, since no coin is singled out for special favour, a will equally often be $1,2, \ldots$, or n; and the same is true of β, γ, \ldots, and μ. Hence in the sum above the expression $k_{1}+k_{2}+\ldots .+k_{n}$ must occur a whole number of times, and this whole number must be $m N / n$. Thus finally, since the value of all the coins is P, the probable value in question is

$$
\frac{1}{N} \cdot \frac{m N}{n} \cdot P=\frac{m P}{n} .
$$

The invariant property of mathematical expectation is thus brought out. (For a rather similar result see Chrystal's Algebra, Part II, pp. 594-5.)

The case where the number of replacements allowed is not limited leads to an identity in combinatory analysis which is by no means obvious, namely

$$
\sum_{r=1}^{m} \frac{m!}{m_{1}!m_{2}!\ldots m_{r}!}\left(m_{1} a_{1}+m_{2} a_{2}+\ldots+m_{r} a_{r}\right)=m n^{m-1}\left(a_{1}+a_{2}+\ldots+a_{1}\right.
$$

where $m_{1}+m_{2}+\ldots+m_{r}=m$, and Σ includes all r-part compositions (i.e. partitions in which order of parts is relevant) of m, associated with all r-ary combinations of $1,2, \ldots, n$.

A Simple Method of Finding Sums of Powers of the Natural Numbers

By I. M. H. Etherington.

Let $1^{a}+2^{a}+3^{a}+\ldots+n^{a}$ be denoted by S_{a}. It is well known that S_{α} can be expressed as a polynomial in n of degree $(\alpha+1)$. The expressions for $S_{1}, S_{2}, S_{3} \ldots$ can be found in succession by elementary methods, which also give numerous relations such as $S_{3}=S_{1}^{2}$,
$12 S_{2} S_{3}=7 S_{6}+5 S_{i}$. The elegant method which I am about to explain is not original. It is due in essence to the Arabian mathematician Alkarkhi* (circa 1000 B.c.).

The method consists of arranging numbers in a square, adding them up in two ways, and equating the results. An example will make it clear. To find S_{4}, assuming that we know $S_{1}=\frac{1}{2} n(n+1)$ and $S_{2}=\frac{1}{6} n(n+1)(2 n+1)$, consider this arrangement of numbers:

1.1^{2}	1.2^{2}	1.3^{2}	$\ldots \ldots \ldots \ldots$	$1 . n^{2}$
2.1^{2}	2.2^{2}	2.3^{2}	$\ldots \ldots \ldots \ldots$	$2 . n^{2}$
3.1^{2}	3.2^{2}	3.3^{2}	$\ldots \ldots \ldots \ldots$	$3 . n^{2}$
\vdots	\vdots	\vdots	\ddots	
\vdots	\vdots	\vdots	\ddots	\vdots
\vdots	\vdots	\vdots		\ddots
\vdots	\vdots	\vdots		\vdots
$n .1^{2}$	$n .2^{2}$	$n .3^{2}$	$\cdots \cdots \cdots \cdots \cdots$	$n . n^{2}$

Adding up by rows or columns, the sum of all the numbers is seen to be $S_{1} S_{2}$. But we can also add by gnomons, as indicated by the heavy lines. The sum of the numbers comprising the $n^{\text {th }}$ gnomon, i.e. the last row and column,

$$
\begin{aligned}
& =n S_{2}+n^{2} S_{1}-n^{3} \\
& =\frac{1}{6} n^{2}(n+1)(2 n+1)+\frac{1}{2} n^{3}(n+1)-n^{3} \\
& =\frac{5}{6} n^{4}+\frac{1}{6} n^{2} .
\end{aligned}
$$

Thus the total is $\sum_{1}^{n}\left(\frac{5}{6} n^{4}+\frac{1}{6} n^{2}\right)$

$$
=\frac{5}{6} S_{t}+\frac{1}{6} S_{2} .
$$

Equating the results,

$$
6 S_{1} S_{2}=5 S_{4}+S_{2},
$$

whence, substituting for S_{1} and S_{2}, we find:

$$
S_{4}=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) .
$$

[^0]xviii
In general, by taking $a^{\alpha} b^{\beta}$ as the occupant of the cell in the $a^{\text {th }}$ row and $b^{\text {th }}$ column, we obtain:
$$
S_{\alpha} S_{\beta}=\sum_{1}^{n}\left(n^{\alpha} S_{\beta}+n^{\beta} S_{\alpha}-n^{\alpha+\beta}\right)
$$

Assuming that we know the expressions for S_{a} and S_{β}, we can substitute these in the right hand side. Then:

$$
S_{\alpha} S_{\beta}=A_{1} S_{1}+A_{2} S_{2}+\ldots+A_{\alpha+\beta+1} S_{\alpha+\beta+1}
$$

where $A_{1}, A_{2}, \ldots, A_{a+\beta+1}$ are numbers which depend on the coefficients in the expressions for S_{a}, S_{β}. Actually, (provided $a, \beta \neq 0) A_{a+\beta}$ always vanishes, and the last coefficient $A_{a+\beta+1}$ is $(\alpha+\beta+2) /(\alpha+1)(\beta+1)$. These follow from the fact that the polynomial for S_{r} always begins $\frac{n^{r+1}}{r+1}+\frac{n^{n}}{2}+\ldots$

Thus we can find $S_{\alpha+\beta+1}$ if we know the expressions for $S_{1}, S_{2}, \ldots, S_{\alpha+\beta-1}$.

An interesting case arises when $\beta=0$. Since $S_{0}=n$, we then obtain:

$$
\begin{aligned}
n S_{\alpha} & =\sum_{1}^{n}\left(n^{a+1}+S_{\alpha}-n^{\alpha}\right) \\
& =S_{\alpha+1}+\sum_{1}^{n} S_{a}-S_{a},
\end{aligned}
$$

giving the useful formula

$$
S_{\alpha+1}+\sum_{1}^{n} S_{\alpha}=(n+1) S_{\alpha}
$$

The method may be extended by generalising the square to t dimensions and filling it with numbers of the form

$$
a_{1}^{a_{1}} a_{2_{2}^{\alpha_{2}}} \ldots a_{t^{\alpha_{t}}}
$$

where $a_{1}, a_{2}, \ldots, a_{t}$ are fixed, while $a_{1}, a_{2}, \ldots, a_{t}$ vary independently from l to n. The analogous result is:

$$
\begin{aligned}
& S_{a_{1}} S_{a_{2}} \ldots S_{a_{t}}=\sum_{1}^{\ddot{1}} G_{n} \\
& \text { where } \quad G_{n}=\left[n^{\alpha_{1}} S_{a_{2}} S_{\alpha_{i}} \ldots S_{\alpha_{t}}+n^{\alpha_{2}} S_{\alpha_{1}} S_{a_{3}} \ldots S_{a_{q}}+\ldots .\right] \\
& -\left[n^{\alpha_{1}+\alpha_{z}} S_{\alpha_{3}} \ldots S_{a_{t}}+\ldots .\right]+\left[n^{\alpha_{1}+\alpha_{t}+\alpha_{i}} S_{\alpha_{t}} \ldots S_{\alpha t}+\ldots .\right] \\
& -\ldots \pm n^{a_{1}+a_{2}+\ldots+a_{t}} .
\end{aligned}
$$

Assuming that the expressions for $S_{\alpha_{1}}, S_{a_{y}}, \ldots S_{\alpha_{t}}$ are known, we can substitute polynomials in n for the S 's, and obtain for G_{n} a polynomial of degree $a_{1}+\alpha_{2}+\ldots+a_{t}+t-1$. Thus $S_{a_{1}} S_{a_{2}} \ldots S_{a_{t}}$ can be expressed linearly in terms of $S_{1}, S_{2}, \ldots S_{d}$, where

$$
d=a_{1}+\alpha_{2}+\ldots+\alpha_{\imath}+t-1
$$

and the expression can be calculated if the polynomial expressions for $S_{\alpha_{1}}, S_{a_{v}}, \ldots S_{\alpha_{t}}$ are known.

As an example, let $a_{1}=1, a_{2}=2, a_{3}=3, t=3$.
Then $\quad G_{n}=n S_{2} S_{3}+n^{2} S_{3} S_{1}+n^{3} S_{1} S_{2}-n^{5} S_{1}-n^{4} S_{2}-n^{3} S_{3}+n^{6}$

$$
=n \cdot \frac{1}{6} n(n+1)(2 n+1) \cdot \frac{1}{4} n^{2}(n+1)^{2}+\text { etc. }
$$

reducing to

$$
G_{n}=\frac{3}{8} n^{8}+\frac{\tau_{1}^{2}}{12} n^{6}+\frac{1}{24} n^{4} .
$$

Hence $\quad 24 S_{1} S_{2} S_{3}=9 S_{8}+14 S_{6}+S_{4}$.
A few further results, easily proved in this way, or by repeated applications of the square method, may be quoted:-

$$
\begin{array}{rlrl}
S_{1}^{2} & =S_{3}, & 6 S_{1} S_{2}=5 S_{4}+S_{2}, \\
4 S_{1}^{3} & =3 S_{5}+S_{3}, & 12 S_{1}^{2} S_{2}=7 S_{6}+5 S_{4}, \\
2 S_{1}^{4} & =S_{7}+S_{5}, & 24 S_{1}^{3} S_{2}=9 S_{5}+14 S_{6}+S_{4}, \\
16 S_{1}^{5} & =5 S_{9}+10 S_{7}+S_{5}, & & 48 S_{\mathrm{r}}^{4} S_{2}=11 S_{10}+30 S_{8}+7 S_{6} .
\end{array}
$$

[^0]: * See his Falhri (Woepcke, Paris, 1853), p. 61.

