of course there may be repetitions if replacements are allowed. The part of the probable value due to this drawing is

$$rac{1}{N}(k_{lpha}+k_{eta}+\ldots+k_{\mu}),$$

and the total probable value is

$$rac{1}{N}\Sigma\left(k_{a}+k_{eta}+\,\ldots\,+\,k_{\mu}
ight)$$

where Σ denotes summation of N sets of m terms each, in all mN terms.

Now, since no coin is singled out for special favour, a will equally often be 1, 2, ..., or n; and the same is true of β , γ , ..., and μ . Hence in the sum above the expression $k_1 + k_2 + \ldots + k_n$ must occur a whole number of times, and this whole number must be mN/n. Thus finally, since the value of all the coins is P, the probable value in question is

$$\frac{1}{N} \cdot \frac{mN}{n} \cdot P = \frac{mP}{n}.$$

The invariant property of mathematical expectation is thus brought out. (For a rather similar result see Chrystal's Algebra, Part II, pp. 594-5.)

The case where the number of replacements allowed is not limited leads to an identity in combinatory analysis which is by no means obvious, namely

$$\sum_{r=1}^{m} \frac{m!}{m_1! m_2! \dots m_r!} (m_1 a_1 + m_2 a_2 + \dots + m_r a_r) = m n^{m-1} (a_1 + a_2 + \dots + a_r)$$

where $m_1 + m_2 + \ldots + m_r = m$, and Σ includes all *r*-part compositions (i.e. partitions in which order of parts is relevant) of m, associated with all *r*-ary combinations of 1, 2, ..., n.

A Simple Method of Finding Sums of Powers of the Natural Numbers

By I. M. H. ETHERINGTON.

Let $1^{\alpha} + 2^{\alpha} + 3^{\alpha} + \ldots + n^{\alpha}$ be denoted by S_{α} . It is well known that S_{α} can be expressed as a polynomial in *n* of degree $(\alpha + 1)$. The expressions for $S_1, S_2, S_3 \ldots$ can be found in succession by elementary methods, which also give numerous relations such as $S_3 = S_1^2$,

xvi

 $12S_2S_3 = 7S_6 + 5S_4$. The elegant method which I am about to explain is not original. It is due in essence to the Arabian mathematician Alkarkhi^{*} (circa 1000 B.C.).

The method consists of arranging numbers in a square, adding them up in two ways, and equating the results. An example will make it clear. To find S_4 , assuming that we know $S_1 = \frac{1}{2}n(n+1)$ and $S_2 = \frac{1}{6}n(n+1)(2n+1)$, consider this arrangement of numbers:

Adding up by rows or columns, the sum of all the numbers is seen to be $S_1 S_2$. But we can also add by gnomons, as indicated by the heavy lines. The sum of the numbers comprising the n^{th} gnomon, *i.e.* the last row and column,

$$= nS_2 + n^2 S_1 - n^3$$

= $\frac{1}{6} n^2 (n + 1)(2n + 1) + \frac{1}{2}n^3 (n + 1) - n^3$
= $\frac{5}{6}n^4 + \frac{1}{6}n^2$.

Thus the total is $\sum_{1}^{\infty} \left(\frac{5}{6}n^4 + \frac{1}{6}n^2\right)$ = $\frac{5}{6}S_4 + \frac{1}{6}S_2$.

Equating the results,

 $6S_1S_2 = 5S_4 + S_2,$

whence, substituting for S_1 and S_2 , we find:

$$S_4 = \frac{1}{30} n (n+1)(2n+1)(3n^2+3n-1).$$

*See his Fakhri (Woepcke, Paris, 1853), p. 61.

xvii.

In general, by taking $a^{\alpha} b^{\beta}$ as the occupant of the cell in the a^{th} row and b^{th} column, we obtain:

$$S_{a} S_{\beta} = \sum_{1}^{n} (n^{a} S_{\beta} + n^{\beta} S_{a} - n^{a+\beta}).$$

Assuming that we know the expressions for S_{α} and S_{β} , we can substitute these in the right hand side. Then:

$$S_a S_{\beta} = A_1 S_1 + A_2 S_2 + \ldots + A_{a+\beta+1} S_{a+\beta+1}$$

where $A_1, A_2, \ldots, A_{a+\beta+1}$ are numbers which depend on the coefficients in the expressions for S_a , S_β . Actually, (provided $a, \beta \neq 0$) $A_{a+\beta}$ always vanishes, and the last coefficient $A_{a+\beta+1}$ is $(a + \beta + 2)/(a + 1)(\beta + 1)$. These follow from the fact that the polynomial for S_r always begins $\frac{n^{r+1}}{r+1} + \frac{n^r}{2} + \ldots$

Thus we can find $S_{\alpha+\beta+1}$ if we know the expressions for $S_1, S_2, \ldots, S_{\alpha+\beta-1}$.

An interesting case arises when $\beta = 0$. Since $S_0 = n$, we then obtain:

$$nS_{a} = \sum_{1}^{n} (n^{a+1} + S_{a} - n^{a})$$
$$= S_{a+1} + \sum_{1}^{n} S_{a} - S_{a},$$

giving the useful formula

$$S_{a+1} + \sum_{1}^{n} S_{a} = (n+1) S_{a}.$$

The method may be extended by generalising the square to t dimensions and filling it with numbers of the form

$$a_1^{a_1} a_2^{a_2} \ldots a_t^{a_t}$$

where a_1, a_2, \ldots, a_t are fixed, while a_1, a_2, \ldots, a_t vary independently from 1 to n. The analogous result is:

$$S_{a_1}S_{a_2}\ldots S_{a_t}=\sum_{1}^n G_n$$

where $G_n = [n^{a_1} S_{a_2} S_{a_3} \dots S_{a_t} + n^{a_2} S_{a_1} S_{a_3} \dots S_{a_t} + \dots]$ $- [n^{a_1 + a_2} S_{a_3} \dots S_{a_t} + \dots] + [n^{a_1 + a_2 + a_3} S_{a_4} \dots S_{a_t} + \dots]$ $- \dots \pm n^{a_1 + a_2 + \dots + a_t}.$

Assuming that the expressions for $S_{a_1}, S_{a_2}, \ldots, S_{a_t}$ are known, we can substitute polynomials in *n* for the S's, and obtain for G_n a polynomial of degree $a_1 + a_2 + \ldots + a_t + t - 1$. Thus $S_{a_1} S_{a_2} \ldots S_{a_t}$ can be expressed linearly in terms of S_1, S_2, \ldots, S_d , where

$$d=a_1+a_2+\ldots+a_t+t-1;$$

xviii

and the expression can be calculated if the polynomial expressions for $S_{a_1}, S_{a_2}, \ldots, S_{a_r}$ are known.

As an example, let $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, t = 3. Then $G_n = nS_2S_3 + n^2S_3S_1 + n^3S_1S_2 - n^5S_1 - n^4S_2 - n^3S_3 + n^6$ $= n \cdot \frac{1}{6}n(n+1)(2n+1) \cdot \frac{1}{4}n^2(n+1)^2 + \text{etc.},$

reducing to

 $G_n = \frac{3}{8}n^8 + \frac{7}{12}n^6 + \frac{1}{24}n^4.$

Hence

$$= \frac{3}{8}n^{8} + \frac{7}{12}n^{6} + \frac{1}{24}n^{4}.$$

24S₁S₂S₃ = 9S₈ + 14S₆ + S₄.

A few further results, easily proved in this way, or by repeated applications of the square method, may be quoted :---

$S_{1}^{2}=~S_{3},$	$6S_1S_2 = 5S_4 + S_2,$
$4S_1^3=3S_5+S_3,$	$12S_1^2S_2=~7S_6~+~5S_4$,
$2S_1^4 = S_7 + S_5,$	$24S_1^3S_2=~9S_8+14S_6+~S_4,$
$16S_1^5 = 5S_9 + 10S_7 + S_5,$	$48S_1^4S_2 = 11S_{10} + 30S_8 + 7S_6.$