ON THE CHARACTERS OF THE PROLONGED DIFFERENTIAL SYSTEM

ISAO HAYASHI

§1. Introduction

Let $M = M(D, \pi)$ be a (real analytic) fibered manifold of dimension *n* over a manifold *D* of dimension *p*, with projection π . We denote by $M'(D, \alpha)$ the prolonged fibered manifold of $M(D, \pi)$. Every point of M' is a *p*-dimensional contact element of *M*, and a *p*-dimensional contact element *X* of *M* belongs to M' if and only if $\pi_*X = T_{\pi(x)}(D)$, where *x* is the origin of *X*. We write x = $\beta(X)$ and $\alpha = \pi \circ \beta$. We also denote by $M''(D, \alpha')$ the prolonged fibered manifold of $M'(D, \alpha)$, where $\alpha' = \alpha \circ \beta'$ and β' is the projection of each $X' \in M''$ to its origin in M'.

Let \mathfrak{A} be a (homogeneous and *d*-closed real analytic) differential system on the fibered manifold $M(D, \pi)$. Then, on the fibered manifold $M'(D, \alpha)$, the prolonged differential system of \mathfrak{A} is well defined. We denote it by \mathfrak{A}' . Let $X' \in M''$ and $X \in M'$ be integral elements of \mathfrak{A}' and \mathfrak{A} respectively. We denote their characters by $s'_k(X')$ and $s_k(X)$ $k = 0, 1, \ldots, p$. The following theorem was first proved by E. Cartan [1] in the special case and later by Matsushima [3] in the general case.

THEOREM. If X' is an integral element of \mathfrak{A}' such that $X = \beta'(X')$ is an ordinary integral element of \mathfrak{A} , then X' is also an ordinary integral element of \mathfrak{A}' and the characters satisfy the following relations

(1)
$$s'_k(X') = \sum_{j=k}^p s_j(X), \quad k = 1, 2, \ldots, p-1.$$

In this note we investigate the case where it is not assumed that X is ordinary. In this case we have the inequalities (2) instead of (1). In fact, we can prove the following theorem.

THEOREM. Let X' be an arbitrary integral element of \mathfrak{A}' and let X be its origin.

Received November 30, 1965.

Then the following inequaities hold:

(2)
$$s'_k(X') \leq \sum_{j=k}^p s_j(X), \quad k=0, 1, \ldots, p.$$

Further, if the sets of 0-forms of \mathfrak{A}' and \mathfrak{A} are regular at X and $x = \beta(X)$ respectively, then the element X is an ordinary integral element of \mathfrak{A} if and only if (1) hold for all $k = 0, 1, \ldots, p$.

In [§] 2, we state some definitions and lemmas and in [§] 3 give a proof of our theorem.

§2. Definitions and Lemmas

Let $X \in M'$ be an integral element of \mathfrak{A} , and E^k be a k-dimensional element in X. We denote by $t(E^k)$ the rank of the polar system for E^k , and by $t_k(X)$ the maximum value of $t(E^k)$ for arbitrary $E^k \subset X$. Then, as is well known, there is a flag $\beta(X) = E^0 \subset E^1 \subset \cdots \subset E^{p^{-1}} \subset X$, such that $t_k(X) = t(E^k)$ for $k = 0, 1, \ldots, p-1$. Such a flag $\{E^k\}$ is called a non-singular flag in X. Let $x = \beta(X), \ \overline{x} = \pi(x)$ and $\pi_* E^k = \overline{E}^k$. Then we have a flag $\{\overline{E}^k\}$ in $T_{\overline{x}}(D)$. Conversely, for any flag $\{\overline{E}^k\}$ in $T_{\overline{x}}(D)$, there is a unique flag $\{E^k\}$ in the given X, which is over the flag $\{\overline{E}^k\}$. An ordered coordinate system (x^1, \ldots, x^p) at \overline{x} in D is called non-singular for X, if and only if the flag in X, which is over the flag $\{(\overline{\partial}_1, \ldots, \overline{\partial}_k)\}$, is non-singular (We denote by $(\overline{\partial}_1, \ldots, \overline{\partial}_k)$) the element spanned by vectors $\overline{\partial}_j = (\partial/\partial x^j)_{\overline{x}}, j = 1, \ldots, k$).

Let (x^i) be a non-singular coordinate system at $\overline{x} = \alpha(X)$ for an integral element X, such that $x^i(\overline{x}) = 0$. Then it is easily seen that there is an open and dense subset, say G, of GL(p), such that any coordinate system (y^i) at \overline{x} , defined by $y^i = \sum_j \alpha_j^i x^i$, is non-singular for X if $(\alpha_j^i) \in G$. By this remark, we can easily verify the following lemma.

LEMMA 1. Let $M_1(D, \pi_1)$ and $M_2(D, \pi_2)$ be fibered manifolds over the same manifold D, and let \mathfrak{A}_1 and \mathfrak{A}_2 be differential systems on $M_1(D, \pi_1)$ and M_2 (D, π_2) respectively. If X_1 and X_2 are integral elements of \mathfrak{A}_1 and \mathfrak{A}_2 respectively such that their origins are over the same point \overline{x} of D, then there exists a coordinate system (x^i) at \overline{x} , which is non-singular for both X_1 and X_2 .

For any integral element X of \mathfrak{A} , we denote by $t_{-1}(X)$ the rank of $d\mathfrak{A}_{\beta(X)}^{(\circ)}$, where $\mathfrak{A}^{(\circ)}$ is the set of 0-forms of \mathfrak{A} . We define the characters s_k (k=0, 1,..., p) by $s_k(X) = t_k(X) - t_{k-1}(X)$, for k = 0, ..., p-1, and by $s_p(X) = n - p - t_{p-1}(X)$. Our s_k are the same as the ones in [3] except s_0 .

Let $\{f\}$ be a set of (real analytic) functions defined on a neighborhood of a point a in a manifold and f(a) = 0 for every $f \in \{f\}$. We say that $\{f\}$ is regular at the point a, if there exist a subset $\{f_1, \ldots, f_m\}$ of $\{f\}$ and a neighborhood V of a, such that (i) $(df_1)_a, \ldots, (df_m)_a$ are linearly independent, and (ii) if $p \in V$ and $f_i(p) = 0$, $i = 1, \ldots, m$, then f(p) = 0 for any $f \in \{f\}$.

An integral element X of the differential system \mathfrak{A} on the fibered manifold $M(D, \pi)$ is called ordinary if and only if the following conditions (i) and (ii) are satisfied:

(i) $\mathfrak{A}^{(\circ)}$ and $\mathfrak{A}^{\prime(\circ)}$ are regular at $\beta(X)$ and X respectively,

(ii) the dimension of the submanifold of M', defined by the set of equations $\mathfrak{U}^{(\circ)} = 0$ in a neighborhood of X, is $n' - t_{-1}(X) + \sum_{k=1}^{\nu} ks_k(X)$, where $n' = \dim M'$ = n + p(n - p).

For later use, we state the following

LEMMA 2. Let V be a finite dimensional vector space and $V = V_0 + V_1 + \cdots$ + V_{p+1} be a direct sum decomposition of V. Denote by i_{k_1,\ldots,k_q} the identity map of $V_{k_1} + \cdots + V_{k_q}$ into V and suppose that a family of sets of linear functionals $\{\Psi^{(k)} | k = 0, 1, \ldots, p\}$ on V is given and each set of linear functionals $\Psi^{(k)}$ satisfies the condition $i_{k+1,k+2,\ldots,p+1}^* \Psi^{(k)} = \{0\}$. Then there exists a set of non-negative integers $\{\delta_0, \delta_1, \ldots, \delta_{p-1}\}$, such that

$$\operatorname{rank}\left(i_{k,k+1,\ldots,p+1}^{*}\left(\bigcup_{l=0}^{p} \boldsymbol{\varPsi}^{(l)}\right)\right) = \sum_{j=k-1}^{p-1} t_{j} + \sum_{j=k}^{p-1} \delta_{j}, \ k = 0, \ 1, \ \ldots, \ p,$$

where $t_{k-1} = \operatorname{rank}(i_{k}^{*}\Psi^{(k)}).$

This lemma is easily verified by applying the following Lemma 3 repeatedly.

LEMMA 3. Let $V = V_0 + V_1$ be a direct sum decomposition of a finite dimensional vector space V, and Ψ_0 and Ψ_1 be sets of linear functionals on V such that $i_1^*\Psi_0 = \{0\}$, rank $(i_0^*\Psi_0) = t_0$ and rank $(i_1^*\Psi_1) = t_1$. Then, for some $\delta \ge 0$, rank $(\Psi_0 \cup \Psi_1) = t_0 + t_1 + \delta$.

This lemma is obvious.

§3. Proof of Theorem

Let X' be an integral element of $\mathfrak{A}', \beta'(X') = X$ and $\beta(X) = x$. By Lemma

ISAO HAYASHI

1, we can find a coordinate system (x^i) at $\pi(x)$ in D, which is non-singular for both X' and X. Since $M(D, \pi)$ is a fibered manifold, there is a coordinate system $(x^i \circ \pi, x^{\lambda}), i = 1, \ldots, p; \lambda = p + 1, \ldots, n$, defined on a neighborhood U of $x \in M$. We shall use the notation x^i instead of $x^i \circ \pi$, and adopt such conventions in the sequel. Let $U' = \beta^{-1}(U)$. The coordinate system (x^i, x^{λ}) on U introduces the canonical coordinate system $(x^i, x^{\lambda}, l_i^{\lambda})$ on U'.

We write $\partial_i = \partial/\partial x^i$, $\partial_\lambda = \partial/\partial x^\lambda$, $\partial_\lambda^i = \partial/\partial l_i^\lambda$ and put $e_i = \partial_i + \sum_{\lambda} l_i^\lambda \partial_\lambda$, $e_\lambda = \partial_\lambda$. These are vector fields on U', and every $X \in U'$ is spanned by $\beta_*(e_i)_X$, $i = 1, \dots, p$.

We suppose that $\{\theta_{\alpha}^{(k)} | \alpha \in A_k, k = 0, 1, ..., p\}$ is a local expression of \mathfrak{A} on U where $\{\theta_{\alpha}^{(k)} | \alpha \in A_k\}$ is the set of k-forms and $\{d\theta_{\alpha}^{(k)} | \alpha \in A_k\} \subset \{\theta_{\alpha}^{(k+1)} | \alpha \in A_{k+1}\}$. $(A_k \text{ are sets of indices})$. For vector fields e_{j_1}, \ldots, e_{j_k} $(1 \leq j_1, \ldots, j_k \leq n)$ defined above, $\langle \beta^* \theta_{\alpha}^{(k)}, e_{j_1} \wedge \cdots \wedge e_{j_k} \rangle$ is a function on U'. We denote it by $H_{\alpha j_1 \cdots j_k}^{(k)}$. (In particular, $H_{\alpha}^{(\circ)} = \beta^* \theta_{\alpha}^{(\circ)}$). We consider a set

$$\Theta = \{H_{\alpha i_1 \cdots i_k}^{(R)} | 1 \leq i_1 < \cdots < i_k \leq p, \ \alpha \in A_k, \ k = 0, 1, \ldots, p\},\$$

of functions on U' and a set of 1-forms $\varphi^{\lambda} = dx^{\lambda} - \sum_{i} l_{i}^{\lambda} dx^{i}$, $(\lambda = p + 1, ..., n)$ on U'. Then

$$(3) \qquad \qquad \Theta \cup d\Theta \cup \{\varphi^{\lambda}\} \cup \{d\varphi^{\lambda}\}$$

is a local expression of \mathfrak{A}' on U'.

Now we write, for the given points X and $x = \beta(X)$, $e_j(x) = \beta_*(e_j)_x$ and $\varphi_x^{\lambda} = (dx^{\lambda})_x - \sum_i l_i^{\lambda}(X)(dx^i)_x$. Then $(e_i(x), e_{\lambda}(x))$ is a basis of the vector space $T_x(M)$, and $((dx^i)_x, \varphi_x^{\lambda})$ is the dual basis. Hence we have

$$(\theta_{\alpha}^{(l)})_{x} \sqcup (e_{i_{1}}(x) \wedge \cdots \wedge e_{i_{l-1}}(x)) = \sum_{i} \langle (\theta_{\alpha}^{(l)})_{x}, e_{i_{1}}(x) \wedge \cdots \wedge e_{i_{l-1}}(x)$$

$$\wedge e_{i}(x) \geq (dx^{i})_{x} + \sum_{\lambda} \langle (\theta_{\alpha}^{(l)})_{x}, e_{i_{1}}(x) \wedge \cdots \wedge e_{i_{l-1}}(x) \wedge e_{\lambda}(x) \geq \varphi_{x}^{\lambda}$$

$$= \sum_{i} H_{\alpha i_{l}, \dots, i_{l-l}\lambda}^{(l)}(X) \varphi_{x}^{\lambda}.$$

Therefore

(4)
$$\boldsymbol{\varphi}^{(k-1)} = \left\{ \sum H_{\alpha i_1 \cdots i_{l-1} \lambda}^{(l)}(X) \varphi_x^{\lambda} \mid 1 \leq i_1 < \cdots < i_{l-1} \leq k-1, \, \alpha \in A_l, \, l=1, \ldots, k \right\}$$

is the polar system for the (k-1)-dimensional element $(e_1(x), \ldots, e_{k-1}(x))$, for $k = 1, \ldots, p$. In addition, putting

(5)
$$\boldsymbol{\varphi}^{(-1)} = \{ (d\theta_{\alpha}^{(\circ)})_{\boldsymbol{x}} | \boldsymbol{\alpha} \in A_{\circ} \},$$

we have rank $(\mathbf{0}^{(k-1)}) = t_{k-1}(X)$ for $k = 0, 1, \ldots, p$.

We now proceed to examine the characters $s'_k(X')$. We suppose that X' is spanned by e'_1, \ldots, e'_p , where

$$e'_{i} = (\partial_{i})_{x} + \sum_{\Lambda} t^{\lambda}_{i}(\partial_{\lambda})_{x} + \sum_{\Lambda j} t^{\lambda}_{ij}(\partial^{i}_{\lambda})_{x}, \quad i = 1, \ldots, p.$$

Since X' is the integral element of \mathfrak{A}' with the origin X, we have $t_i^{\lambda} = l_i^{\lambda}(X)$, $t_{ij}^{\lambda} = t_{ji}^{\lambda}$ and $e_i'(H) = 0$ for any $H \in \Theta$. If we set $\psi^{\lambda} = (dx^{\lambda})_x - \sum_i t_i^{\lambda} (dx')_x$ and $\psi_i^{\lambda} = (dl_i^{\lambda})_x - \sum_j t_{ij}^{\lambda} (dx^j)_x$, we can see that the polar system for the (k-1)-dimensional element (e_1', \ldots, e_{k-1}') is given as follows:

(6)
$$\boldsymbol{\vartheta}^{(k-1)} = (d\boldsymbol{\Theta})_{\mathbf{x}} \cup \{\boldsymbol{\psi}^{\lambda} | \lambda = p+1, \ldots, n\} \cup \{\boldsymbol{\psi}^{\lambda}_{i} | i=1, \ldots, k-1; \\ \lambda = p+1, \ldots, n\}.$$

We have $(d\Theta)_x = \bigcup_{k=0}^p \Psi^{(k)}$ by setting

(7)
$$\Psi^{(\circ)} = \{ (dH_{\alpha}^{(\circ)})_X | \alpha \in A_{\circ} \}$$

and

(8)
$$\Psi^{(k)} = \{ (dH^{(l)}_{\alpha i_1 \cdots i_{l-1} k})_X | 1 \leq i_1 < \cdots < i_{l-1} \leq k-1, \alpha \in A_l, l = 1, \ldots, k \}.$$

Since $((dx^i)_x, \psi^{\lambda}, \psi^{\lambda}_i)$ is the dual basis of $(e'_i, (\partial_{\lambda})_x, (\partial'_{\lambda})_x)$ in $T_x(M')$, we have $(dH)_x = \sum_{\lambda} (\partial_{\lambda})_x (H) \psi^{\lambda} + \sum_{\lambda} (\partial^i_{\lambda})_x (H) \psi^{\lambda}_i$ for any $H \in \Theta$.

Therefore we have

(9)
$$(dH_{ai_1\cdots i_{l-1}k}^{(l)})_X \equiv \sum_{\lambda} H_{ai_1\cdots i_{l-1}\lambda}^{(l)}(X) \, \phi_k^{\lambda} \quad (\text{mod } \phi^{\lambda}, \, \phi_{i_1}^{\lambda}, \dots, \, \phi_{i_{l-1}}^{\lambda}), \, l \ge 1.$$

We consider the direct sum decomposition $T_x(M') = V_0 + V_1 + \cdots + V_{p+1}$, where $V_0 = ((\partial_{p+1})_x, \ldots, (\partial_n)_x)$, $V_k = ((\partial_{p+1}^k)_x, \ldots, (\partial_n^k)_x)$, $k = 1, \ldots, p$, and $V_{p+1} = X'$. We can apply Lemma 2 to our vector space $T_x(M')$ and the family of sets of linear functionals $\{\Psi^{(k)}\}$ defined by (7) and (8). In fact, we can see $i_{k+1,\ldots,p+1}^* \Psi^{(k)} = \{0\}$ for $k = 0, 1, \ldots, p$, by (7), (8) and (9). Further we have, rank $(i_k^* \Psi^{(k)}) = t_{k-1}(X)$ for $k = 1, \ldots, p$ by (4), (8), (9) and for k = 0 by (5), (7). Therefore, by Lemma 2, there exists a set of non-negative integers $\{\delta_0, \ldots, \delta_{p-1}\}$ such that

$$t'_{-1}(X') = \operatorname{rank} ((d\Theta)_X) = \sum_{j=-1}^{n-1} t_j(X) + \sum_{j=0}^{p-1} \delta_j,$$

$$t_{k-1}(X') = \operatorname{rank} (\mathbf{\Phi}'^{(k-1)}) = k(n-p) + \operatorname{rank} (i_{k,\dots,p+1}^*(d\Theta)_X)$$

$$=k(n-p)+\sum_{j=k-1}^{p-1}t_j(X)+\sum_{j=k}^{p-1}\delta_j \text{ for } k=1,\ldots,p-1$$

and $t'_{p-1}(X') = p(n-p) + t_{p-1}(X)$.

Since by definition, $s'_k(X') = t'_k(X') - t'_{k-1}(X')$ for k = 0, 1, ..., p-1 and $s'_p(X') = n' - p - t'_{p-1}(X')$, we obtain

(10)
$$\begin{cases} s'_k(X') = \sum_{j=k}^p s_j(X) - \delta_k, \ k = 0, 1, \dots, p-1, \\ s'_p(X') = s_p(X). \end{cases}$$

Since $\delta_k \ge 0$, the inequalities (2) in the theorem are verified.

The latter half of the theorem also follows from the above computations. Since the set of functions Θ is regular at X by the assumption, the submanifold of M', defined by $\Theta = 0$ in a neighborhood of the point X, is of dimension n' $-t'_{-1}(X') = n - t_{-1}(X) + \sum_{k=1}^{p} ks_k(X) - \sum_{k=0}^{p-1} \delta_k$. Therefore X is ordinary if and only if $\sum_{k=0}^{p-1} \delta_k = 0$. We can see by (10) that this condition is equivalent to the equalities (1) for all $k = 0, 1, \ldots, p$. Thus the proof is complete.

REFERENCES

- E. Cartan, Sur la structure des groupes infinis de transformations (1904). Oeuvres completes. Partie 2. vol. 2, pp 571-624.
- [2] E. Cartan, Les systemes differentiels exterieurs et leurs applications geometriques. Paris. (1945).
- [3] Y. Matsushima, On a theorem concerning the prolongation of a differential system. Nagoya. Math. J. 6 (1953), pp 1-16.

Mathematical Institute Nagoya University