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Abstract

Given k > 2, we show that there are at most finitely many rational numbers x and
y 6= 0 and integers ` > 2 (with (k, `) 6= (2, 2)) for which

x(x+ 1) · · · (x+ k − 1) = y`.

In particular, if we assume that ` is prime, then all such triples (x, y, `) satisfy either
y = 0 or ` < exp(3k).

1. Introduction

In a remarkable paper of 1975, Erdős and Selfridge [ES75] proved that the product of at least
two consecutive positive integers can never be a perfect power. In other words, the Diophantine
equation

x(x+ 1) · · · (x+ k − 1) = y` (1)

has no solutions in positive integers x, y, k and ` with k, ` > 2. Their proof, the culmination of
more than 40 years of work by Erdős, relied on an ingenious combination of elementary arguments
and a lemma on bipartite graphs.

For a fixed pair of positive integers (k, `), equation (1) defines a superelliptic curve of genus
at least (`−1)(k−2)/2. In particular, if `+k > 6, the genus exceeds 1, and by Faltings’ theorem
[Fal83], the number of rational points (x, y) is finite. Actually quantifying this result, for any
given curve, can be an extremely challenging problem.

In the case of integer points on superelliptic curves, one can typically prove much stronger
statements. In fact, given a polynomial f(x) with integer coefficients having at least two distinct
roots, a famous theorem of Schinzel and Tijdeman [ST76] asserts that the integer solutions to the
equation f(x) = y` satisfy either y ∈ {0,±1} or ` 6 `0 for some (effectively computable) constant
`0 = `0(f). Analogous absolute bounds upon exponents ` for which there exist non-trivial rational
points on superelliptic curves are very hard to come by (though conjectured to exist). Indeed,
such results for the curves defined by (1), for small fixed values of k, are among the very few
in the literature (other results are restricted to polynomials of the shape f(x) = g(h(x)), where
g(x) = x2 + 1 or x3 + 1 (see Darmon and Merel [DM97]) and to certain families of g of small
degree, treated in [BD13]). These curves corresponding to (1) admit a number of obvious rational
points, including ‘trivial’ ones with y = 0, and two infinite families:

(x, y, k, `) =

(
a2

b2 − a2
,

ab

b2 − a2
, 2, 2

)
, a 6= ±b, (2)
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and

(x, y, k, `) =

(
(1− 2j)

2
,
±1

2j

j∏
i=1

(2i− 1), 2j, 2

)
, (3)

where a, b and j are integers with j positive. Two further solutions are given by

(x, y, k, `) = (−4/3, 2/3, 3, 3) and (−2/3,−2/3, 3, 3). (4)

It may be that there are no other such points and, in particular, none whatsoever with ` > 4. This
is the content of a conjecture of Sander [San99] (with requisite corrections noted in [BBGH06]).

Conjecture (Sander). If k > 2 and ` > 2 are integers, then the only rational points on the
superelliptic curve defined by (1) satisfy either y = 0, or are as in (2), (3) or (4), for suitable
choices of the parameters a, b and j.

Sander [San99] proved this conjecture for 2 6 k 6 4 and, together with Lakhal [LS03], treated
the case k = 5. The conjecture was subsequently established for 2 6 k 6 11 by the first author
et al. [BBGH06] (see also [GHS04]) and for 2 6 k 6 34 by Győry et al. [GHP09].

In this short note, we will treat the case of arbitrary k. While we are not able to prove the
above conjecture in its entirety, we establish the following partial result.

Theorem 1. Let k > 2 be a positive integer. Then (1) has at most finitely many solutions in
rational numbers x and y, and integers ` > 2, with (k, `) 6= (2, 2) and y 6= 0. If we assume that `
is prime, all such solutions satisfy ` < exp(3k).

The reader will note that solutions (3) and (4) do satisfy the bound ` < exp(3k). As far as the
authors are aware, Theorem 1 is the first example of a rational analogue to the Schinzel–Tijdeman
theorem to be proved for a superelliptic curve f(x) = y`, where the polynomial f has arbitrarily
high degree and does not arise via composition from a polynomial of small degree.

2. A ternary equation of signature (`, `, `)

Lemma 2.1. Let k > 2 be an integer and ` > k be prime. Suppose the superelliptic curve (1) has
an (affine) rational point (x, y) with y 6= 0. Let k/2 < p 6 k be prime. Then there are non-zero
integers a, b, c, u, v, w satisfying

au` + bv` + cw` = 0 (5)

such that:

(i) the integers a, b and c are `th power free;

(ii) every prime divisor of abc is at most k;

(iii) p - abc;
(iv) p divides precisely one of u, v, w.

Proof. We write x = n/s and y = m/t where m 6= 0, the denominators s, t are positive integers
and gcd(n, s) = gcd(m, t) = 1. From (1), we have

n(n+ s)(n+ 2s) · · · (n+ (k − 1)s)

sk
=
m`

t`
.
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Our coprimality assumptions thus ensure that sk = t`. As ` and k are coprime, there is a positive
integer d such that s = d` and t = dk. We are thus led to consider the equation

n(n+ d`)(n+ 2d`) · · · (n+ (k − 1)d`) = m`, (6)

where now all our variables are integers. We write, for each i ∈ {0, 1, . . . , k − 1},

n+ id` = aiz
`
i , (7)

where ai is an `th power free integer. Since the greatest common divisor of n+ id` and n+ jd`

divides (i− j), each ai thus has the property that its prime divisors are bounded above by k.
Our argument relies on the basic fact that, given k consecutive terms in arithmetic

progression, each prime up to k necessarily divides either one of the terms or the modulus
of the progression. Fix a prime p with k/2 < p 6 k.

Suppose first that p | d. Then p - m and thus p - aizi for all i. From (7) we have

d` + a0z
`
0 − a1z`1 = 0;

the proof of the lemma is complete in this case with a = 1, b = a0, c = −a1, u = d, v = z0,
w = z1.

We may thus suppose p - d. This fact, combined with the inequality p 6 k, therefore forces p
to divide n+ id` for some 0 6 i 6 k− 1. Suppose first that p does not divide any other factor on
the left-hand side of (6). Thus p - ajzj for j 6= i. Moreover, ordp(aiz

`
i ) = ordp(n+ id`) = ordp(m

`)
and so p - ai and p | zi (as ai is `th power free). By (7) we have

aiz
`
i − ai+1z

`
i+1 + d` = 0 if i < k − 1,

aiz
`
i − ai−1z`i−1 − d` = 0 if i = k − 1,

completing the proof in this case.
It remains to consider the case where p divides at least two factors of the left-hand side of

(6). In fact, as p > k/2 and p - d, precisely two factors are divisible by p and these have the form
n+ id` and n+ (i+ p)d`. Thus ordp((n+ id`)(n+ (i+ p)d`)) = ordp(m

`). We shall make use of
the identity

(n+ (i+ p)d`)(n+ id`)− (n+ (i+ p− 1)d`)(n+ (i+ 1)d`) + (p− 1)d2` = 0.

Substituting from (7) completes the proof. 2

3. Proof of Theorem 1

We now turn to the proof of Theorem 1. By previous work outlined in the introduction, we may
suppose that k > 35. We shall suppose that ` > k is prime. Fix a prime k/2 < p 6 k and suppose
that (1) has a rational solution (x, y) with y 6= 0. By Lemma 2.1, there are non-zero integers a,
b, c, u, v, w satisfying (5) and conditions (i)–(iv). By removing the greatest common factor, we
may suppose that the three terms in (5) are coprime without affecting conditions (i)–(iv). After
permuting the three terms and changing signs if necessary, we may suppose further that

au` ≡ −1 (mod 4), bv` ≡ 0 (mod 2).

Let E be the Frey elliptic curve

E : Y 2 = X(X − au`)(X + bv`).
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Write GQ = Gal(Q/Q). The action of GQ on the `-torsion of E gives rise to a representation

ρE,` : GQ → GL2(F`).

As ` > k > 35 and E has full 2-torsion, we know by Mazur [Maz78] that ρE,` is irreducible. By

the work of Kraus [Kra97] (which appeals to modularity [BCDT01] and Ribet’s level lowering

[Rib90]) the representation ρE,` arises from a newform f of weight 2 and level N ′, where

N ′ = 2r Rad2(abc);

here r 6 5 and Rad2(n) denotes the product of the distinct odd primes dividing n. By (ii) and

(iii) of Lemma 2.1 we find that

N ′ | 24 ·
∏

q6k,q 6=p

q, (8)

where the product is over prime q. We appeal to the following standard result (see, for example,

[Sik12, Proposition 5.1]).

Lemma 3.1. Let E/Q be an elliptic curve of conductor N and f = q +
∑

i>2 ciq
i be a newform

of weight 2 and level N ′ | N . Write K = Q(c1, c2, . . . ) for the totally real number field generated

by the Fourier coefficients of f . If ρE,` arises from f then there is some prime ideal λ | ` of K

such that for all primes q,

• if q - `NN ′ then aq(E) ≡ cq (mod λ);

• if q - `N ′ and q ‖ N then q + 1 ≡ ±cq (mod λ).

Note that ` > k > p and so ` 6= p. Moreover, from (8) we have p - N ′. Conclusion (iv) in

Lemma 2.1 ensures that E has multiplicative reduction at p and so p ‖ N . We apply Lemma 3.1

with q = p. Thus ` divides NormK/Q(p+ 1± cp). As cp (in any of the real embeddings of K) is

bounded by 2
√
p, this quantity is non-zero and hence provides an upper bound upon `:

` 6 (p+ 1 + 2
√
p)[K:Q] = (

√
p+ 1)2[K:Q].

It remains to establish that log ` < 3k. The degree [K : Q] is bounded by g+0 (N ′) which denotes

the dimension of the space of cuspidal newforms of weight 2 and level N ′. From Martin [Mar05],

we have

g+0 (N ′) 6
N ′ + 1

12
.

Thus

log ` 6
N ′ + 1

6
log (
√
p+ 1).

By Schoenfeld [Sch76], ∑
q6k

q prime

log q < 1.000 081k.

Finally, a routine computation making use of (8) and our assumption 17 < k/2 6 p 6 k allows

us to conclude that log ` < 3k.
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4. Concluding remark

It is worth observing that our arguments employed to prove Theorem 1 actually enable us to

reach a like conclusion for curves of the shape

x(x+ 1) · · · (x+ k − 1) = by`,

where b is any integer with the property that its prime factors do not exceed k/2.
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