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Abstract

We focus on the convergence rate of the alternating direction method of multipliers
(ADMM) in a complex domain. First, the complex form of variational inequality (VI) is
established by using the Wirtinger calculus technique. Second, the O(1/K) convergence
rate of the ADMM in a complex domain is provided. Third, the ADMM in a complex
domain is applied to the least absolute shrinkage and selectionator operator (LASSO).
Finally, numerical simulations are provided to show that ADMM in a complex domain
has the O(1/K) convergence rate and that it has certain advantages compared with the
ADMM in a real domain.

2010 Mathematics subject classification: primary 90C25; secondary 65K10, 93C83.

Keywords and phrases: the alternating direction method of multipliers, convergence
rate, Wirtinger calculus, least absolute shrinkage and selectionator operator.

1. Introduction

The augmented Lagrangian methods (ALMs) are a certain class of algorithms for
solving constrained optimization problems. They were originally known as the method
of multipliers (Hestenes [17]). In particular, a variant of the standard ALMs that
uses partial updates, also known as the alternating direction method of multipliers
(ADMM), has gained some attention. This was originally proposed by Gabay and
Mercier [11] in the 1970s, and its convergence has been explored by many authors,
including Gabay [10] and Eckstein [8]. Furthermore, the ADMM has been extensively
explored in recent years due to its broad applications and empirical performance in
a wide variety of problems such as image processing [27], machine learning and
statistics [2, 29], sparse optimizations [25], signal processing [18] and many other
relevant fields [1, 19–21].
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The convergence rate of the ADMM has been widely discussed. The O(1/K)
convergence rate of the ADMM with a separable two-block structure was shown by
Monteiro and Svaiter [26] with some additional assumptions (for example, matrix A
being full rank), and both two-block structures of ADMM were solved exactly. This
was the first time that the ergodic iteration-complexity of the classical ADMM for
a class of linearly constrained convex programming problems was established, with
proper closed convex objective functions. He and Yuan [15] provided a unified proof
of the O(1/K) convergence rate for both the original ADMM and its linearized variant
based on a variational inequality (VI) approach. A worst-case O(1/K) convergence
rate was proposed for the ADMM in a nonergodic sense by He and Yuan [16]. Lin
and Ma [23] showed that, under some easily verifiable and reasonable conditions, the
global linear convergence of the ADMM when N ≥ 3 can still be assured. This is
important, since the ADMM is a popular method for solving large-scale multi-block
optimization models, and it is known to perform very well in practice even when N ≥ 3.
Cai and Han [3] showed that for the three-block case in the ADMM, when one of them
is strongly convex, the direct extension of the ADMM is convergent and that the worst-
case convergence rate is also estimated in both the ergodic and nonergodic senses for
the direct extension of the ADMM.

Many nonlinear optimization problems in complex variables are commonly
encountered in the domain of applied mathematics and engineering applications,
for example signal processing and control theory. The usual method of analysing a
complex-valued optimization problem is to separate it into the real and imaginary
parts, and then to recast it into a equivalent real-valued optimization problem by
doubling the size of the constraint conditions (see [24, 31, 33] and the references
therein). Often, the classical optimization problem is dealt with by separating it into
real and imaginary parts, but, in this way, it may lose unknown coupling relationship
between the signals themselves [22, 30].

Recently, the ADMM in a complex domain (also denoted as the complex ADMM)
was studied by Li et al. [22]. Based on the theory of Wirtinger calculus, the Lagrange
function and the augmented Lagrangian function in a complex domain were studied,
and the convergence of the complex ADMM was obtained. In what follows, we briefly
recall the main ideas and the results considered in the earlier paper [22].

For convenience, we first explain some notation used. Let Re{z} and Im{z} denote
the real and imaginary part of z, respectively. The superscripts (·)T , ¯(·), (·)H and (·)−1 are
used for the transpose, complex conjugate, complex conjugate transpose and inverse
of a matrix, respectively. The one-norm and two-norm are denoted by ‖ � ‖1 and ‖ � ‖2,
respectively.

Consider the separable convex optimization problem of a real-valued function in a
complex domain with linear equality constraints

minimize
x,y

{ f (x) + g(y) | Ax + By = b, x ∈ Cn, y ∈ Cm}, (1.1)

where f : Cn → R ∪ {+∞} and g : Cm → R ∪ {+∞} are proper, closed and convex
functions (see, for example, [22]); A ∈ Cp×n and B ∈ Cp×m are given matrices and
b ∈ Cp is a given vector.
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The Lagrangian function L0(x, y, λ) and the augmented Lagrangian function
Lρ(x, y, λ) of (1.1) are [22]

L0(x, y, λ) = f (x) + g(y) + 2 Re{λH(Ax + By − b)} (1.2)

and

Lρ(x, y, λ) = f (x) + g(y) + 2 Re{λH(Ax + By − b)} + ρ‖Ax + By − b‖22, (1.3)

respectively, where λ ∈ Cp is the dual variable and ρ > 0 is the penalty parameter.
The iterative scheme of the complex ADMM for (1.1) is

xk+1 = arg min
x

Lρ(x, yk, λk) (1.4a)

yk+1 = arg min
y

Lρ(xk+1, y, λk) (1.4b)

λk+1 = λk + ρ(Axk+1 + Byk+1 − b). (1.4c)
Without loss of generality, we make the following two assumptions [22].

Assumption 1.1. The Lagrangian function L0(x, y, λ) given by (1.2) has a saddle point
(x∗, y∗, λ∗).

Assumption 1.2. The (extended-real-valued) functions f : Cn → R ∪ {+∞} and g :
Cm → R ∪ {+∞} are proper, closed and convex.

Theorem 1.3 [22]. Under Assumptions 1.1 and 1.2, the complex ADMM iterations
(1.4a)–(1.4c) have the following conclusions:

(1) residual convergence, that is, rk = Axk + Byk − b→ 0 as k→∞;
(2) objective convergence, that is, f (xk) + g(yk)→ f (x∗) + g(y∗) as k→∞; and
(3) dual variable convergence, that is, λk → λ∗ as k→∞.

Although the convergence of the complex ADMM has been achieved and the linear
convergence rate in a real domain was shown by He and Yuan [15], the convergence
rate for the complex ADMM was not obtained. An interesting question is whether
we can generalize the O(1/K) convergence rate for the ADMM in a real domain to
the complex ADMM. As we will see later, this extension is by no means obvious or
expected.

The purpose of this paper is to establish the O(1/K) convergence rate for the
complex ADMM. By means of the Wirtinger calculus technique, we give the form of
VI in a complex domain, and then obtain the O(1/K) convergence rate for the complex
ADMM. Furthermore, the complex ADMM is applied to the standard and generalized
least absolute shrinkage and selectionator operator (LASSO) models. Some numerical
simulation results are reported to show that the complex ADMM has the O(1/K)
convergence rate and is indeed more efficient.

The outline of the paper is as follows. In Section 2, the form of VI in a complex
domain is given by using the Wirtinger calculus technique. In Section 3, we establish
the O(1/K) convergence rate for the complex ADMM, and, in Section 4, the complex
ADMM is applied to the LASSO model. In Section 5, some numerical simulations are
provided. Finally, we make some concluding remarks in Section 6.
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2. VI in a complex domain

VI is an inequality involving a function, which has to be solved for all possible
values of a given variable, belonging to a convex set [6]. The mathematical theory of VI
was initially developed to deal with equilibrium problems; the Signorini problem [9],
to be precise. The applicability of the theory has since been expanded to include
problems from economics, finance, optimization and game theory [5, 12, 34]. In this
section, the form of VI in a complex domain will be presented.

2.1. VI of convex optimization with linear equality constraints in a complex
domain We consider the following convex optimization problem for a real-valued
function in complex domain with linear equality constraints, namely,

min
x
{ f (x) | Ax = b, x ∈ Cn}, (2.1)

where f is a real-valued convex function with complex variables x ∈ Cn, A ∈ Cp×n

is a given matrix and b ∈ Cp is a given vector. An equivalent form of (2.1) (see for
example, [22]) is

min
x
{ f (x) | Acxc = bc}, (2.2)

where

Ac =

(A 0
0 A

)
∈ C2p×2n, xc =

(x
x̄

)
∈ C2n and bc =

(b
b̄

)
∈ C2p.

The Lagrangian function L0(x, λ) of the optimization problem (2.2) is

L0(x, λ) = f (x) + (λc)H(Acxc − bc) = f (x) + 2 Re{λH(Ax − b)}. (2.3)

Similarly to Assumption 1.1, we make the following assumption.

Assumption 2.1. The Lagrangian function L0(x, λ) given by (2.3) has a saddle point,
that is, there exists (x∗, λ∗) for which

L0(x∗, λ) ≤ L0(x∗, λ∗) ≤ L0(x, λ∗)

holds for all x and λ.

This can be expressed as {
L0(x, λ∗) − L0(x∗, λ∗) ≥ 0
L0(x∗, λ∗) − L0(x∗, λ) ≥ 0. (2.4)

An equivalent expression of (2.4) is the following VI, namely,{
x∗ ∈ Cn, f (x) − f (x∗) + 2 Re{(x − x∗)H(AHλ∗)} ≥ 0 for all x ∈ Cn,
λ∗ ∈ Cm, 2 Re{(λ − λ∗)H[−(Ax∗ − b)]} ≥ 0 for all λ ∈ Cm.

(2.5)

An optimal condition of (2.5) can be characterized as finding a µ∗ that satisfies

f (x) − f (x∗) + 2 Re{(µ − µ∗)HΨ(µ∗)} ≥ 0 for all µ ∈ Ω2,

where

µ =

(x
λ

)
, Ψ(µ) =

(
AHλ

−(Ax − b)

)
and Ω2 = Cn ×Cp.

https://doi.org/10.1017/S1446181118000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000184


[5] On the O(1/K) convergence rate of complex ADMM 99

2.2. VI of separable convex optimization with linear equality constraints in a
complex domain By Assumption 1.1, the Lagrangian function L0(x, y, λ) given by
(1.2) has a saddle point, that is, there exists (x∗, y∗, λ∗), for which

L0(x∗, y∗, λ) ≤ L0(x∗, y∗, λ∗) ≤ L0(x, y, λ∗) (2.6)

holds for all x, y, λ.
An equivalent expression of (2.6) is the following VI, namely,

L0(x, y∗, λ∗) − L0(x∗, y∗, λ∗) ≥ 0 for all x ∈ Cn

L0(x∗, y, λ∗) − L0(x∗, y∗, λ∗) ≥ 0 for all y ∈ Cm

L0(x∗, y∗, λ∗) − L0(x∗, y∗, λ) ≥ 0 for all λ ∈ Cp.
(2.7)

To simplify (2.7),
f (x) − f (x∗) + 2 Re{(x − x∗)H(AHλ∗)} ≥ 0 for all x ∈ Cn

g(y) − g(y∗) + 2 Re{(y − y∗)H(BHλ∗)} ≥ 0 for all y ∈ Cm

2 Re{(λ − λ∗)H[−(Ax∗ + By∗ − b)]} ≥ 0 for all λ ∈ Cp.
(2.8)

This implies that the VI reformulation of (2.8) is to find a w∗ = (x∗, y∗, λ∗) ∈ Ω3 such
that

Φ(µ) − Φ(µ∗) + 2 Re{(w − w∗)HΨ(w∗)} ≥ 0 for all w ∈ Ω3, (2.9)

where

µ =

(x
y

)
, ω =

x
y
λ

 , Ψ(ω) =

 AHλ
BHλ

−(Ax + By − b)

 ,
Φ(µ) = f (x) + g(y), Ω3 = Cn ×Cm ×Cp.

3. O(1/K) convergence rate of the complex ADMM

3.1. Applying VI to the complex ADMM As noted by Boyed et al. [2], the
variable xk+1 is an intermediate variable during the complex ADMM iterations (2.7),
since it essentially requires only (yk, λk)T to generate the xk+1. Suppose νk = (yk, λk)T

and V∗ = {ν∗ = (y∗, λ∗)T | ω∗ = (x∗, y∗, λ∗)T ∈ Ω∗}. Here, we use Ω∗ to denote the
solution set of (2.9).

Lemma 3.1. Let ωk+1 = (xk+1, yk+1, λk+1)T given by (1.4a)–(1.4c). Then, for all ω ∈ Ω,

Φ(µ) −Φ(µk+1) + 2 Re{(ω −ωk+1)H[Ψ(ωk+1) + Γ(yk, yk+1) + P0(νk+1 − νk)]} ≥ 0, (3.1)

where

Γ(yk, yk+1) = ρ

AH

BH

0

 B(yk − yk+1), P0 =

 0 0
ρBH B 0

0 Ip/ρ

 ,
with ρ as in equation (1.3).
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Proof. From (1.4a) and (1.4b), we can conclude that xk+1 and yk+1 satisfy

f (x) − f (xk+1) + 2ρRe
{
(x − xk+1)HAH

(
Axk+1 + Byk − b +

λk

ρ

)}
≥ 0 (3.2)

and

g(y) − g(yk+1) + 2ρRe
{
(y − yk+1)H BH

(
Axk+1 + Byk+1 − b +

λk

ρ

)}
≥ 0, (3.3)

respectively.
Substituting

λk+1 = λk + ρ(Axk+1 + Byk+1 − b)

into (3.2) and (3.3) gives

f (x) − f (xk+1) + 2 Re{(x − xk+1)H[AHλk+1 + ρAH B(yk − yk+1)]} ≥ 0 (3.4)

and
g(y) − g(yk+1) + 2 Re{(y − yk+1)H BHλk+1} ≥ 0, (3.5)

respectively.
Reforming (3.4) and (3.5) yields

Φ(µ) − Φ(µ)k+1 + 2 Re
{ (

x − xk+1

y − yk+1

)H [ (
AHλk+1

BHλk+1

)
+ ρ

(
AH

BH

)
B(yk − yk+1) +

(
0 0
0 ρBH B

) (
xk+1 − xk

yk+1 − yk

) ]}
≥ 0.

Combining this with (1.4c) gives

Φ(µ) − Φ(µ)k+1 + 2 Re


x − xk+1

y − yk+1

λ − λk+1


H 

 AHλk+1

BHλk+1

−(Axk+1 + Byk+1 − b)


+ ρ

AH

BH

0

 B(yk − yk+1) +

 0 0
ρBH B 0

0 Ip/ρ


(
yk+1 − yk

λk+1 − λk

)
 ≥ 0.

This completes the proof. �

Lemma 3.2. Let ωk+1 = (xk+1, yk+1, λk+1)T be given by (1.4a)–(1.4c). Then

Re{(νk+1 − ν∗)HP(νk − νk+1)} ≥ Re{(ωk+1 − ω∗)HΓ(yk, yk+1)}. (3.6)

Proof. Substituting ω∗ ∈ Ω∗ into (3.1) yields

Φ(µ∗) − Φ(µk+1) + 2 Re{(ω∗ − ωk+1)H[Ψ(ωk+1) + Γ(yk, yk+1) + P0(νk+1 − νk)]} ≥ 0.

Regrouping it gives

2 Re{(νk+1 − ν∗)HP(νk − νk+1)} ≥ Φ(µk+1) − Φ(µ∗) + 2 Re{(ωk+1 − ω∗)HΓ(yk, yk+1)
+ (ωk+1 − ω∗)HΨ(ωk+1)}. (3.7)

https://doi.org/10.1017/S1446181118000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000184


[7] On the O(1/K) convergence rate of complex ADMM 101

Since Ψ is a monotone mapping, it can be written as

Φ(µk+1) − Φ(µ∗) + 2 Re{ωk+1 − ω∗)HΨ(ωk+1)} ≥ Φ(µk+1) − Φ(µ∗)
+ 2 Re{ωk+1 − ω∗)HΨ(ω∗)}

≥ 0. (3.8)

Substituting (3.8) into (3.7), we get the conclusion. This completes the proof. �

Lemma 3.3. Let ωk+1 = (xk+1, yk+1, λk+1)T be given by (1.4a)–(1.4c). Then

Re{(ωk+1 − ω∗)HΓ(yk, yk+1)} = Re{(λk+1 − λk)H B(yk − yk+1)} (3.9)

and
Re{(νk+1 − ν∗)HP(νk − νk+1)} ≥ 0 for all ν∗ ∈ V∗,

where P =
(
ρBH B 0

0 Ip/ρ

)
.

Proof. Since Ax∗ + By∗ = b and λk+1 = λk + ρ(Axk+1 + Byk+1 − b),

Re{(ωk+1 − ω∗)HΓ(yk, yk+1)} = Re{[(ωk+1 − ω∗)HΓ(yk, yk+1)]H}

= Re{[B(yk − yk+1)]Hρ[(Axk+1 + Byk+1) − (Ax∗ + By∗)]}
= Re{(λk+1 − λk)H B(yk − yk+1)}.

It follows from (3.5) that

g(y) − g(yk+1) + 2 Re{(y − yk+1)BHλk+1} ≥ 0 (3.10)

and
g(y) − g(yk) + 2 Re{(y − yk)BHλk} ≥ 0. (3.11)

Setting y for yk in (3.10) and yk+1 in (3.11), and then adding the two resulting
inequalities gives

Re{(λk+1 − λk)H B(yk − yk+1)} ≥ 0. (3.12)

Combining (3.6), (3.9) and (3.12) gives

Re{(νk+1 − ν∗)HP(νk − νk+1)} ≥ 0 for all ν∗ ∈ V∗. (3.13)

This completes the proof. �

Because matrix P is positive semidefinite, we can define P-norm of vectors as

‖ν − ν∗‖2P = (ν − ν∗)HP(ν − ν∗) = ρ‖B(y − y∗)‖2 +
1
ρ
‖λ − λ∗‖2.

Theorem 3.4. Letωk+1 = (xk+1, yk+1, λk+1)T be given by (1.4a)–(1.4c), and νk = (yk, λk).
Then

‖νk+1 − ν∗‖2P ≤ ‖ν
k − ν∗‖2P − ‖ν

k − νk+1‖2P for all ν∗ ∈ V∗.
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Proof. From (3.13),

‖νk − ν∗‖2P = ‖(νk+1 − ν∗) + (νk − νk+1)‖2P
= ‖νk+1 − ν∗‖2P + 2 Re{(νk+1 − ν∗)HP(νk − νk+1)} + ‖νk − νk+1‖2P

≥ ‖νk+1 − ν∗‖2P + ‖νk − νk+1‖2P.

By rewriting this, the conclusion follows directly. This completes the proof. �

Theorem 3.4 implies the contractive property of the complex ADMM; for example,
the residual ‖νk+1 − ν∗‖2P decreases in each iteration.

3.2. Construction and depiction of instrumental variables ω̃ Let

ω̃k =


x̃k

ỹk

λ̃k

 =

 xk+1

yk+1

λk + ρ(Axk+1 + Byk − b)

 . (3.14)

By comparing [ ] ωk+1 and ω̃k, we find that only the dual variable λk+1 is different
from λ̃k. From (3.14), (

yk+1

λk+1

)
=

(
yk

λk

)
−

(
Im 0
ρB Ip

) (
yk − ỹk

λk − λ̃k

)
,

which can be represented as

νk+1 = νk − M(νk − ν̃k), (3.15)

where M =
(

Im 0
ρB Ip

)
.

Lemma 3.5. Let ωk+1 = (xk+1, yk+1, λk+1)T and ω̃k be given by (1.4a)–(1.4c) and (3.14),
respectively. Then

Φ(µ) − Φ(̃µk) + 2 Re{(ω − ω̃k)H(Ψ(ω̃k) + Q0(̃νk − νk))} ≥ 0 for all ω ∈ Ω, (3.16)

where Q0 =

( 0 0
ρBH B 0

B Ip/ρ

)
.

Proof. By (3.14),

xk+1 = x̃k, yk+1 = ỹk and λk+1 = λ̃k − ρB(yk − yk+1),

Ψ(ωk+1) + Γ(yk, yk+1) =

 AHλ̃k

BHλ̃k

−(AH x̃k + BH ỹk − b)

 = Ψ(ω̃k) (3.17)

and

P0(νk+1 − νk) =


0 0

ρBH B 0
0 Ip/ρ


(
yk+1 − yk

λk+1 − λk

)

=


0 0

ρBH B 0
B Ip/ρ

 ( ν̃k − νk). (3.18)
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It follows from (3.17), (3.18) and Lemma 3.1 that the conclusion (3.16) can be
obtained. This completes the proof. �

Lemma 3.6. The solution set of VI given by (2.9) is convex and it can be characterized
as

Ω∗ =
⋂
ω∈Ω

{ω̃ ∈ Ω | Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω) ≥ 0)}}.

Proof. Let ω̃ ∈ Ω∗. Then

Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω̃)} ≥ 0 for all ω ∈ Ω.

Since the mapping Ψ is monotonous on Ω,

Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω)} ≥ 0 for all ω ∈ Ω.

This implies that ω̃ belongs to the right-hand set in (3.6).
Let ω ∈ Ω. Then the vector

ω̄ = αω̃ + (1 − α)ω for all α ∈ (0, 1)

belongs to Ω. Furthermore, we can conclude that

Φ(µ̄) − Φ(̃µ) + 2 Re{(ω̄ − ω̃)HΨ(ω̄)} ≥ 0.

On the other hand, since the function Φ is convex,

Φ(µ̄) ≤ αΦ(̃µ) + (1 − α)Φ(µ, for all α ∈ (0, 1)).

Therefore,

Φ(µ) − Φ(̃µ) + 2Re{(ω − ω̃)HΨ(αω̃ + (1 − α)ω)} ≥ 0.

Let α→ 1. Then

Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω̃)} ≥ 0,

which implies that ω̃ ∈ Ω∗.
For all ω ∈ Ω, the set

{ω̃ ∈ Ω | Φ(̃µ) + 2 Re{ω̃HΨ(ω)} ≤ Φ(µ) + 2 Re{ωHΨ(ω)}}

and its equivalent form

{ω̃ ∈ Ω | Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω)} ≥ 0, for all ω ∈ Ω}

is convex. Since the intersection of any number of convex sets is convex, it follows
that the solution set of Ω∗ is convex. This completes the proof. �

Lemma 3.6 implies that ω̃ ∈ Ω is an approximate solution of Ω∗ with the accuracy
ε > 0, namely,

Φ(µ) − Φ(̃µ) + 2 Re{(ω − ω̃)HΨ(ω)} ≥ −ε for all ω ∈ Ω.
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Theorem 3.7. Let ωk+1 = (xk+1, yk+1, λk+1) and ω̃k be given by (1.4a)–(1.4c) and (3.14),
respectively. Then

Re{(ν − ν̃k)HPM(νk − ν̃k)} ≥ 1
2 (‖ν − νk+1‖2P − ‖ν − ν

k‖2P) for all ν ∈ V.

Proof. It follows from (3.15) that M(νk − ν̃k) = (νk − νk+1). Then

Re{(ν − ν̃k)HPM(νk − ν̃k)} = Re{(ν − ν̃k)HP(νk − νk+1)}. (3.19)

To get (3.7), we only need to prove that

Re{(ν − ν̃k)HP(νk − νk+1)} ≥ 1
2 (‖ν − νk+1‖2P − ‖ν − ν

k‖2P) for all ν ∈ V∗.

Let x1, x2, x3, x4 ∈ Cm+p. Then

Re{(x1 − x2)HP(x3 − x4)} = 1
2 (‖x1 − x4‖

2
P − ‖x1 − x3‖

2
P)

+ 1
2 (‖x3 − x2‖

2
P − ‖x4 − x2‖

2
P). (3.20)

Substituting Re{(ν − ν̃k)HP(νk − νk+1)} into (3.20) gives

Re{(ν − ν̃k)HP(νk − νk+1)} = 1
2 (‖ν − νk+1‖2P − ‖ν − ν

k‖2P)

+ 1
2 (‖νk − ν̃k‖2P − ‖ν

k+1 − ν̃k‖2P). (3.21)

Since
‖νk − ν̃k‖2P = ρ‖B(yk − ỹk)‖2 +

1
ρ
‖λk − λ̃k)‖2

and
‖νk+1 − ν̃k‖2P =

1
ρ
‖λk+1 − λ̃k‖2 =

1
ρ
‖ρB(yk − ỹk)‖2 = ρ‖B(yk − ỹk)‖2,

we have
‖νk − ν̃k‖2P − ‖ν

k+1 − ν̃k‖2P =
1
ρ
‖λk − λ̃k‖2 ≥ 0.

It follows from (3.21) that

Re{(ν − ν̃k)HP(νk − νk+1)} ≥ 1
2 (‖ν − νk+1‖2P − ‖ν − ν

k‖2P). (3.22)

The conclusion follows directly by combining (3.19) and (3.22). This completes the
proof. �

3.3. O(1/K) Convergence rate of the complex ADMM

Theorem 3.8. Let wk and ω̃k be the sequences generated by (1.4a)–(1.4c) and (3.14)
respectively. For any integer K > 0, let

ω̃K =
1

K + 1

K∑
k=0

ω̃k. (3.23)

Then ω̃K ∈ Ω and

Φ(̃µK) − Φ(µ) + 2 Re{(ω̃K − ω)HΨ(ω)} ≤
1

2(K + 1)
‖ν − ν0‖2P for all ω ∈ Ω. (3.24)
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Proof. It follows from (3.14) and wk ∈ Ω that ω̃k ∈ Ω for all k ≥ 0. Then, by (3.23),

ω̃K ∈ Ω.

On the other hand, the inequalities (3.16) and (3.7) imply that

Φ(µ) − Φ(̃µk) + 2 Re{(ω − ω̃k)HΨ(ω)} + 1
2‖ν − ν

k‖2P ≥
1
2‖ν − ν

k+1‖2P for all ω ∈ Ω.
(3.25)

Summing the inequality (3.25) over k = 0, 1, . . . ,K gives

(K + 1)Φ(µ) −
K∑

k=0

Φ(̃µk) + 2 Re
{[

(K + 1)ω −
K∑

k=0

ω̃k
]H

Ψ(ω)
}

+ 1
2‖ω − ω

0‖2P ≥ 0

for all ω ∈ Ω. It follows from (3.23) that

1
K + 1

K∑
k=0

Φ(̃µk) −Φ(µ) + 2 Re{(ω̃K − ω)HΨ(ω)} ≤
1

2(K + 1)
‖ν − ν0‖2P for all ω ∈ Ω.

(3.26)
Since Ψ is convex and

µ̃K =
1

K + 1

K∑
k=0

µ̃k, (3.27)

we have

Φ(̃µK) =
1

K + 1

K∑
k=0

Φ(̃µk).

Combining (3.26) and (3.27), the result (3.24) follows directly. This completes the
proof. �

For a given compact set D ⊂ Ω, let d = sup{‖ω − ω0‖P | ω ∈ D}, where ω0 =

(x0, y0, λ0) is the initial iterate. Then, after K iterations of the complex ADMM (1.4a)–
(1.4c), the point w̃K ∈ Ω defined in (3.23) satisfies

sup
ω∈D
{Φ(̃µK) − Φ(µ) + 2 Re{(ω̃K − ω)HΨ(ω)}} ≤

d2

2(K + 1)
,

which means that ω̃K is an approximate solution of VI(Ω, F, θ) with the accuracy
O(1/K). That is, the convergence rate O(1/K) of the complex ADMM (1.4) is
established.

4. LASSO with the complex ADMM

In order to minimize deviation, due to the lack of independent variables, the model
will usually choose the independent variables as much as possible. The modelling
process, however, needs to find the explanatory power of the independent variables
on the dependent variables which are collected most often, and a good choice of
the independent variables is required to improve the explanatory and predictive
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precision of the model. Index selection is extremely important in the process of
statistical modelling problems. The LASSO is an effective estimation method to realize
index set to streamline. In typical applications, there are many more features than
training examples, and the goal is to find a parsimonious model for the data. (For
general background on the LASSO, see [32]). The LASSO has been widely applied,
particularly in the analysis of biological data, where only a small fraction of a huge
number of possible factors are actually predictive of some outcome of interest (see [14]
for a representative case study).

4.1. Standard LASSO with the complex ADMM An important special case of
l1 regularized loss minimization in a complex domain is regularized linear regression,
also called the LASSO [32]. This involves solving

minimize
x

{‖Ax − b‖22 + δ‖x‖1 | x ∈ Cn}, (4.1)

where A ∈ Cp×n is a given matrix, b ∈ Cp is a given vector and δ > 0 is a scalar
regularization parameter.

In the complex ADMM form, the LASSO problem (4.1) can be written as

minimize
x,y

{‖Ax − b‖22 + δ‖y‖1 | x = y, x, y ∈ Cn}. (4.2)

From (1.4a)–(1.4c), the iterations of the complex ADMM for (4.2) are
xk+1 = arg min

x
{‖Ax − b‖22 + ρ‖x − yk + τk‖22}, (4.3a)

yk+1 = arg min
y

{
‖y‖1 +

ρ

δ
‖xk+1 − y + τk‖22

}
, (4.3b)

τk+1 = τk + xk+1 − yk+1, (4.3c)

where ρ > 0 is the penalty parameter and τ = λ/ρ is a scaled dual variable.

Theorem 4.1. The analytical solution of (4.3a) is

xk+1 = (AHA + ρI)−1{AHb + ρ(yk − τk)}.

Proof. It follows from the first-order optimality condition of (4.3a) that

2AH(Ax − b) + 2ρ(x − yk + τk) = 0.

Simplifying it gives

xk+1 = (AHA + ρI)−1{AHb + ρ(yk − τk)}.

This completes the proof. �

If the optimization problem (4.3a) is in real domain, then

xk+1 = (AT A + ρI)−1(AT b + ρ(yk − τk)),

which is the same as in [2, Section 6.4].
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The optimization problem (4.3b) can be solved by the soft thresholding operator in
a complex domain, denoted by [22]

yk+1 = S δ/(2ρ)(xk+1 + τk).

From what has been discussed above, the iterations of the LASSO are
xk+1 = (AHA + ρI)−1(AHb + ρ(yk − τk))
yk+1 = S δ/(2ρ)(xk+1 + τk)
τk+1 = τk + xk+1 − yk+1.

(4.4)

For (4.4), rk = xk − yk can be viewed as a residual for the primal feasibility condition
and sk = −ρ(yk − yk−1) can be viewed as a residual for the dual feasibility condition.
When the two residuals are small, the error must be small [2]. Thus an appropriate
termination criterion is that the primal residuals rk and dual residuals sk are small
simultaneously, that is, ‖rk||2 ≤ ε

pri and ‖sk||2 ≤ ε
dual, where εpri and εdual are the

tolerances for the primal and dual feasibility, respectively.
These tolerances can be chosen using an absolute and relative criterion such as

εpri =
√

nεabs + εrel max{‖xk‖2, ‖yk‖2}, εdual =
√

nεabs + εrel‖ρτ‖2, where εabs > 0 is an
absolute tolerance and εrel > 0 is a relative tolerance [2].

4.2. Generalized LASSO with the complex ADMM The LASSO problem in a
complex domain can be generalized as

minimize
x

{‖Ax − b‖22 + δ‖Fx − c‖1 | x ∈ Cn}, (4.5)

where A ∈ Cp×n is a given matrix, b ∈ Cp is a given vector, δ > 0 is a scalar
regularization parameter and F ∈ Cm×n is an arbitrary linear transformation [2]. An
important special case is when F ∈ R(n−1)×n is the difference matrix, that is

Fi, j =


1 if j = i + 1,
−1 if j = i,
0 otherwise,

and A = I, in which case the generalization reduces to

minimize
x

{
‖x − b‖22 + δ

n−1∑
k=1

|xi+1 − xi| x ∈ Cn
}
.

Since the second term is the total variation of x, the problem is often called total
variation denoising, and its applications in signal processing can be referred to [28].

In the complex ADMM form, the problem (4.5) can be written as

minimize
x,y

{‖Ax − b‖22 + δ‖y‖1 | Fx − c = y, x ∈ Cn, y ∈ Cm}. (4.6)

Then the iterations of the complex ADMM for (4.6) are

xk+1 = arg min
x

(‖Ax − b‖22 + ρ‖Fx − c − yk + τk‖22)

yk+1 = arg min
y

(
‖y‖1 +

ρ

δ
‖Fxk+1 − c − y + τk‖22

)
τk+1 = τk + Fxk+1 − c − yk+1.
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Furthermore, the corresponding iterations of the generalized LASSO are
xk+1 = (AHA + ρFHF)−1(AHb + ρFH(yk + c − τk))
yk+1 = S δ/(2ρ)(Fxk+1 − c + τk)
τk+1 = τk + Fxk+1 − c − yk+1.

(4.7)

5. Numerical simulation

Here, we report some numerical simulation on the standard LASSO and the
generalized LASSO to illustrate the performance of the complex ADMM proposed
in this paper. All our numerical experiments are carried out on a PC with Intel(R)
Core(TM) i5-4200U CPU at 2.30 GHz and 8 GB of physical memory. The PC runs
MATLAB Version: R2017a on Window 7 Enterprise 64-bit operating system.

5.1. Numerical simulation of the complex ADMM for standard LASSO
Assume that xo ∈ Cn is a discrete complex signal generated by random N(0, 1) with
the length n = 2000. xo is r-sparse, which contains (at most) r = 200 nonzero entries
with r� n. The sparse ratio is 10%. Select p = 800 (p < n) measurements uniformly at
random matrix Ap×n via Ap×nx = b. Hence reconstructing signal x from measurement
b is generally an ill-posed problem, which is an undetermined system of linear
equations [4, 7]. This problem can be formulated as the standard LASSO in a complex
domain (4.1), namely,

minimize
x

{‖Ax − b‖22 + δ‖x‖1 | x ∈ Cn},

and its sparsest solution can be obtained from the LASSO iterations (4.4).

5.1.1 Influence of the penalty parameter ρ. It is well known that the penalty
parameter ρ influences the convergence rate of the ADMM in a real domain. In this
section, we consider the role of the penalty parameter ρ in the complex ADMM. For
this purpose, we repeated the same experiments on a set of 100 randomly generated
problems with the penalty parameter ρ from 1 to 100 with the interval step 1 by fixing
the other parameters as follows:

A = randn(800, 2000) + i · randn(800, 2000), b = Axo, δ = 1,

with the scaled dual variable τ = λ/ρ. In the algorithm, we chose the absolute tolerance
εabs = 10−5, the relative tolerance εrel = 10−5, the initial values of x, y and τ to be
all zeros, and the maximum number of iterations NcADMM = 5000. The number of
iterations and the time consumption with different values of the parameter ρ from 1
to 100 with interval step 1 are plotted in Figure 1, which shows that, when 20 ≤ ρ ≤ 40,
the performance of the complex ADMM is optimum.

In addition, we took εabs = 10−3, εrel = 10−3, and we repeated the same experiments
on a set of 100 randomly generated problems with the penalty parameter ρ from 0.1
to 10 and the interval step 0.1 by fixing the other parameters, as above. The number
of the iterations and the time consumption with the different values of parameter ρ
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Figure 1. The convergence rate with different ρ for small tolerance.

Figure 2. The convergence rate with different ρ for large tolerance.

are plotted in Figure 2, which shows that when the penalty parameter ρ ≈ 0.8, the
performance of the complex ADMM is optimum. However, it is hard to reach a definite
conclusion about the role of the penalty parameter ρ in the complex ADMM from these
experiments. The above observations are indicative. For smaller values of the absolute
tolerance εabs and the relative tolerance εrel (for example, εabs = 10−5, εrel=10−5

), the
penalty parameter ρ needs to be be larger (for ρ = 20). Otherwise, smaller values of
the penalty parameter ρ give better results.

5.1.2 Numerical simulation of the complex ADMM with repeated experiments. We
repeated the random experiment with the penalty parameter ρ = 20 by fixing other
parameters.
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Figure 3. The objective function value by iteration k.

Figure 4. The primal residuals and the dual residuals by iteration k.

The performance of the objective function values in the process of the iteration is
shown in Figure 3, which implies that the objective function values decrease through
the iterations. In Figure 4(a), the full line describes the changes of the primal residuals
rk. In Figure 4(b), the full line describes the changes of the dual residuals sk. The
dotted lines in Figures 4(a) and 4(b) represent the absolute residual tolerance εpri and
dual relative residuals tolerance εdual, respectively. From Figure 4, we can see that
the two residuals descend linearly. In Figure 5, the original signal, the reconstructed
signal and their comparison are displayed. The real part and the imaginary part of the
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Figure 5. Comparison of the original signal and the reconstructed signal.

original signal (blue dots online) are shown in Figure 5(a) and 5(b), respectively. The
real part and the imaginary part of the reconstructed signal (red circles online) are
shown in Figure 5(c) and 5(d), respectively. A comparison of the real and imaginary
parts of the original signal and the reconstructed signal is given in Figure 5(e) and 5(f),
respectively. This shows that the reconstructed signal has restored the original signal
very well.

Keeping the parameters fixed, we repeated the same experiments on a set of 100
randomly generated problems with different random signals, and we recorded the
primal residual, the dual residual, the iteration number, the time consumption and
the relative errors Error(xre) and Error(xim) with maximum, minimum and average
values. The results are summarized in Table 1, which shows that the complex ADMM
is efficient and robust. In Table 1,

Error(xre) =
‖re(x − xo)‖2
‖re(xo)‖2

and Error(xim) =
‖im(x − xo)‖2
‖im(xo)‖2

indicate the relative error of the real and the imaginary parts of the reconstructed
signal x.

5.1.3 Comparison of the complex ADMM and the ADMM in a real domain. To
compare the efficiencies of the complex ADMM and the ADMM in a real domain,
we separated the standard LASSO in a complex domain into the real part and the
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Table 1. The 100 experimental results of the complex ADMM.

Parameter Maximum Minimum Average

Primal residual 6.5621 × 10−4 6.1572 × 10−4 6.4525 × 10−4

Dual residual 5.7315 × 10−4 1.0444 × 10−4 3.3526 × 10−4

Iteration number 345 321 331.4
Time consumption 9.0461 7.0766 7.5976
Error(xre) 4.9238 × 10−4 3.1661 × 10−4 3.9086 × 10−4

Error(xim) 4.9245 × 10−4 3.1790 × 10−4 3.8777 × 10−4

imaginary part, and then we recast it into an equivalent real-valued optimization
problem by doubling the size of the constraint conditions (see [24, 31, 33]).

Assume that random signal xo is same as in Section 5.1. Let xR
o = (xore

T , xoim
T )T
∈

R2n denote the real composite 2n-dimensional vector, where xore and xoim are the real
part and the imaginary part of the complex vector xo, respectively. Then the standard
LASSO in a complex domain (4.1) can be written as the standard LASSO in a real
domain, namely,

minimize
xR

{‖ARxR − bR‖22 + δ‖xR‖1 | xR ∈ R2n},

where

AR =

(
Are −Aim
Aim Are

)
∈ R2p×2n, bR = ARxR

o ∈ R2p, δ = 1,

and Are and Aim are the real part and the imaginary part of the complex matrix A,
the penalty parameter ρ = 20 and the scaled dual variable τ = λ/ρ. In the algorithm,
we chose the absolute tolerance εabs = 10−5, the relative tolerance εrel = 10−5, the
initial values of x, y and τ to be all zeros, and the maximum number of iterations
NADMM = 5000.

The real part and imaginary part of the reconstructed complex signal x are the first
half and second half of xR, respectively, for example,

x = xR(1 : n) + i · xR(n + 1 : 2n).

We repeated the same experiments on a set of 100 randomly generated problems
and recorded the primal residual, the dual residual, the iteration number, the
time consumption and the relative errors Error(xre) and Error(xim) with maximum,
minimum and average values. The results are summarized in Table 2.

It follows from Tables 1 and 2 that the relative errors Error(xre) and Error(xim) of the
complex ADMM are smaller than for the ADMM in a real domain, and other results
are similar.

5.1.4 Comparison of the complex ADMM and CVX. To compare the efficiencies
of the complex ADMM and the existing methods, we solved the optimization problem

https://doi.org/10.1017/S1446181118000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000184


[19] On the O(1/K) convergence rate of complex ADMM 113

Table 2. The 100 experimental results of the ADMM in a real domain.

Parameter Maximum Minimum Average

Primal residual 8.4144 × 10−4 8.1988 × 10−4 8.2504 × 10−4

Dual residual 9.7520 × 10−4 1.9255 × 10−4 5.9882 × 10−4

Iteration number 408 384 390.82
Time consumption 8.3651 7.0385 7.4040
Error(xre) 1.9039 × 10−3 1.2302 × 10−3 1.4758 × 10−3

Error(xim) 1.9559 × 10−3 1.1571 × 10−3 1.4913 × 10−3

Table 3. Comparison of the complex ADMM and CVX.

Complex ADMM cvx

Error(xre) 3.9086 × 10−4 7.4573 × 10−4

Error(xim) 3.8777 × 10−4 7.4595 × 10−4

Time consumption 7.5976 360.4572

(4.2) 100 times with the same scale data as in Section 5.1.2 by CVX, a package for
specifying and solving convex programs [13].

The average values of Error(xre), Error(xim) and the time consumption of the
complex ADMM and CVX are summarized in Table 3. It follows from Table 3 that
the relative errors of the complex ADMM are smaller than for CVX, and the time
consumed by the former is much less than by the latter.

5.2. Numerical simulation of the complex ADMM for generalized LASSO
Signal xo is a limited variation signal with length n = 2000, that is, signal xo is
constant in a random r = 50 continuous interval, and such a signal can be seen as
the image signal, as shown in Figure 8(a) and 8(b), respectively. Select p = 200
(p = 4r, p < n) measurements uniformly at random matrix Ap×n via Ap×nxo = b. Hence,
a reconstruction of signal xo from measurement b can be obtained by solving the
generalized LASSO model (4.6)

minimize
x,y

{‖Ax − b‖22 + δ‖y‖1 | Fx − c = y, x ∈ Cn, y ∈ Cp},

and its sparsest solution can be obtained from the LASSO iterations (4.7). We consider
the following random experiment:

A = randn(200, 2000) + i ∗ randn(200, 2000),

b = Axo, F1999×2000 =


1 if j = i + 1,
−1 if j = i,
0 otherwise,

with the penalty parameter ρ = 20, δ = 1 and the scaled dual variable τ = ρ/λ. In
the algorithm, we chose the absolute tolerance εabs = 10−5, the relative tolerance
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Figure 6. The objective function value by iteration k.

Figure 7. The primal residual and dual residual by iteration k.

εrel = 10−5, the initial values of x, y and τ to be all zeros, and the maximum number of
iterations NcADMM = 5000.

The objective function values in the process of iteration are plotted in Figure 6,
which shows that the objective function values decrease monotonously through the
iterations.

In Figure 7(a), the full line describes the changes in the primal residuals ‖rk‖2

and descends linearly. In Figure 7(b), the full line describes the changes in the
dual residuals ‖sk‖2 and descends linearly too. The dotted lines in Figures 7(a)
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Figure 8. Comparison of the original signal and the reconstructed signal.

Table 4. The 100 experimental results of the ADMM in a real domain.

Parameter Maximum Minimum Average

Primal residual 6.0874 × 10−4 1.8385 × 10−4 4.0680 × 10−4

Dual residual 6.0569 × 10−4 0.86990 × 10−4 5.0717 × 10−4

Iteration number 1743 443 652.6
Time(s) 130.3388 39.9726 62.0056
Error(xre) 0.1425 1.4711 × 10−4 0.0425
Error(xim) 0.1443 2.4059 × 10−3 0.0415

and 7(b) represent the primal residual tolerance εpri and the dual residual tolerance
εdul, respectively.

The original signals (blue lines online), the reconstructed signals (red lines online)
and their comparison are shown in Figure 8. This shows that the reconstructed signals
have restored the original signals very well. Keeping the parameters fixed, we repeated
the experiment 100 times with different random signals, and we recorded the average
relative error and the time. The results are given in Table 4, which shows that the
proposed complex ADMM is efficient.

6. Conclusions

In this paper, we explore the problem of convergence speed of the complex
ADMM. First, we present the VI of the separable convex optimization of real-valued
functions in a complex domain with linear equality constraints, based on the theory
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of complex analysis. Next, with the help of the contraction and the auxiliary variable
sequences of the complex ADMM, its O(1/K) convergence rate is established. Some
preliminary numerical simulations on the standard LASSO model and the generalized
LASSO model are also reported.
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[33] K. C. Toh, M. J. Todd and R. H. Tütüncü, “SDPT3 – a Matlab software package for semidefinite
programming, Version 1.3”, Optim. Methods Softw. 11 (1999) 545–581;
doi:10.1080/10556789908805762.

[34] L. Zhao and S. Dafermos, “General economic equilibrium and variational inequalities”, Oper. Res.
Lett. 10 (1991) 369–376; doi:10.1016/0167-6377(91)90037-P.

https://doi.org/10.1017/S1446181118000184 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF00927673
http://dx.doi.org/10.1109/TSP.2012.2215027
http://dx.doi.org/10.1109/TCST.2017.2713321
http://dx.doi.org/10.1016/j.apm.2017.10.034
http://dx.doi.org/10.1109/TII.2016.2632761
http://dx.doi.org/10.1155/2015/104531
http://dx.doi.org/10.1007/s40305-015-0092-0
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1007/s11045-010-0129-9
http://dx.doi.org/10.1137/110849468
http://dx.doi.org/10.1137/090774823
https://doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1137/110832124
http://dx.doi.org/10.1080/10556789908805766
http://www.jstor.org/stable/2346178
http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1016/0167-6377(91)90037-P
https://doi.org/10.1017/S1446181118000184

	Introduction
	VI in a complex domain
	VI of convex optimization with linear equality constraints in a complex domain
	VI of separable convex optimization with linear equality constraints in a complex domain

	O(1/K) convergence rate of the complex ADMM
	Applying VI to the complex ADMM
	Construction and depiction of instrumental variables  "0365
	O(1/K) Convergence rate of the complex ADMM

	LASSO with the complex ADMM
	Standard LASSO with the complex ADMM
	Generalized LASSO with the complex ADMM

	Numerical simulation
	Numerical simulation of the complex ADMM for standard LASSO
	Influence of the penalty parameter 
	Numerical simulation of the complex ADMM with repeated experiments
	Comparison of the complex ADMM and the ADMM in a real domain
	Comparison of the complex ADMM and CVX

	Numerical simulation of the complex ADMM for generalized LASSO

	Conclusions
	References

