Determinantal Systems of Points.

By Dr Willam P. Milne.

(Read and Received 9th June 1916).
The following interesting system of points presented itself while I was investigating certain properties of the cubic curve. What I have called a "Determinantal System of Nine Points" is really a generalisation of the nine points defined by two systems of three parallel lines crossing one another.

The following definitions will be required in the sequel :-
Let $A B C$ be a given triangle, and let it be used as the triangle of reference. Let $P \equiv(X, Y, Z)$ be any assigned point. Then the polar line of P with respect to the given triangle is $\frac{x}{\bar{X}}+\frac{y}{\bar{Y}}+\frac{z}{Z}=0$, and the polar conic of P with respect to the given triangle is $\frac{X}{x}+\frac{Y}{y}+\frac{Z}{z}=0$. Also let the polar line and the polar conic of P with respect to $A B C$ intersect in the two points P^{\prime} and $P^{\prime \prime}$, whose coordinates are easily shewn to be ($\left.X, \omega Y, \omega^{2} Z\right)$ and $\left(X, \omega^{2} Y, \omega Z\right)$. We shall take $P^{\prime} \equiv\left(X, \omega Y, \omega^{2} Z\right)$ and $P^{\prime \prime} \equiv\left(X, \omega^{2} Y, \omega Z\right)$, with a similar notation for other points throughout the discussion.

Consider now any three assigned points $P_{1} Q_{2} R_{3}$. Let P_{1} be isolated, and let $Q_{2} P_{1}^{\prime}$ and $R_{3} P_{1}^{\prime \prime}$ intersect in Q_{3}. Let also $R_{3} P_{1}^{\prime}$ and $Q_{2} P_{1}^{\prime \prime}$ intersect in R_{2}. Let R_{1} and P_{3} be similarly defined by the isolation of Q_{2}; also P_{2} and Q_{1} by the isolation of R_{3}. We thus obtain the following scheme of points :-

defined by the leading term $P_{1} Q_{3} R_{3}$ (following the determinantal notation) along with the triangle $A B C$. The arrowheads and the
index letters u^{\prime} and $u^{\prime \prime}$ signify that given $P_{1} Q_{2} R_{3}$ and isolating P_{1}; $Q_{2} Q_{3}$ and $R_{2} R_{3}$ meet in P_{1}^{\prime}, while $Q_{2} R_{2}$ and $Q_{3} R_{3}$ meet in $P_{1}{ }^{\prime \prime}$. Similarly with the other intersections. The following schemes follow at once, where in each case $P_{1}{ }^{\prime} Q_{2}{ }^{\prime} R_{3}^{\prime}$ and $P_{1}{ }^{\prime \prime} Q_{2}{ }^{\prime \prime} R_{3}{ }^{\prime \prime}$ are the leading terms:-

We are now going to shew that if we had begun with any other triad of points defined by a term of the above determinantal expansion (I.), the same set of nine points would have been obtained. To establish this result we require the two following typical theorems involving the "assigned" points P_{1}, Q_{2}, R_{3} and the "derived" points $I_{2}, P_{3}, Q_{3}, Q_{1}, R_{1}, R_{2}$:-
(1) $P_{1}, P_{3}, Q_{3}^{\prime}$ are collinear.
(2) $P_{2}, P_{3}, Q_{1}^{\prime}$ are collinear.

It is to be noted that (1) involves an "assigned" point P_{1}, while (2) does not.

To prove $P_{1}, P_{2}, Q_{3}^{\prime}$ collinear is tantamount to proving $P_{1}{ }^{\prime \prime}, P_{2}{ }^{\prime \prime}, Q_{3}$ collinear, and this is true from the construction of Scheme (III.) above.

To prove (2), we shall prove that $P_{2}, P_{3}, Q_{1}{ }^{\prime}, R_{1}^{\prime}$ are collinear.
Let $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right) ; Q_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right) ; R_{3} \equiv\left(x_{3}, y_{3}, z_{3}\right)$.
Let also $p \equiv y_{1} z_{2}-y_{2} z_{1}, q \equiv z_{1} x_{2}-z_{2} x_{1}, r \equiv x_{1} y_{2}-x_{2} y_{1}$

$$
\Delta \equiv\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

and $S \equiv x_{1} y_{3} z_{3}+y_{1} z_{3} x_{3}+z_{1} x_{3} y_{3}$.

Then regarding P_{2} as the intersection of the lines $P_{1} R_{2}^{\prime}$ and $Q_{2} R_{3}{ }^{\prime \prime}$, we obtain

$$
P_{2} \equiv\left(X_{1}+\omega X_{2}+\omega^{2} X_{3} ; Y_{1}+\omega Y_{2}+\omega^{2} Y_{3} ; Z_{1}+\omega Z_{2}+\omega^{2} Z_{3}\right)
$$

where

$$
\begin{aligned}
& X_{1} \equiv p x_{3}{ }^{2} \\
& X_{3} \equiv-\left(x_{2} S-q x_{3} y_{3}\right) \\
& X_{3} \equiv\left(x_{2} S+r z_{3} x_{3}\right) \\
& Y_{1} \equiv q y_{8}{ }^{2} \\
& Y_{2} \equiv-\left(y_{2} S-r y_{3} z_{3}\right) \\
& Y_{3} \cong\left(y_{2} S+p x_{3} y_{3}\right) \\
& Z_{1} \equiv r z_{3}^{2} \\
& Z_{2} \cong-\left(z_{2} S-p z_{3} x_{3}\right) \\
& Z_{3} \cong\left(z_{2} S+q y_{3} z_{3}\right) .
\end{aligned}
$$

Also, interchanging ω and ω^{2} in the coordinates of P_{2}, we obtain

$$
Q_{1} \equiv\left(X_{1}+\omega^{2} X_{2}+\omega X_{3} ; Y_{1}+\omega^{2} Y_{2}+\omega Y_{3} ; Z_{1}+\omega^{2} Z_{2}+\omega Z_{3}\right) .
$$

Hence

$$
Q_{1}^{\prime} \equiv\left(X_{1}+\omega^{2} X_{2}+\omega X_{3} ; \omega Y_{1}+Y_{2}+\omega^{2} Y_{3} ; \omega^{2} Z_{1}+\omega Z_{2}+Z_{3}\right) .
$$

Let us now form the line-coordinates of $P_{2} Q^{\prime}$, getting

$$
.\left(L_{1}+\omega L_{2}+\omega^{2} L_{3} ; M_{1}+\omega M_{2}+\omega^{2} M_{3} ; N_{1}+\omega N_{2}+\omega^{2} N_{3}\right),
$$

where

$$
\begin{aligned}
& L_{1} \equiv 0 \\
& L_{2}=-L_{3} \equiv\left|\begin{array}{ccc}
Y_{1} & Y_{3} & Y_{2} \\
Z_{3} & Z_{2} & Z_{1} \\
1 & 1 & 1
\end{array}\right| \\
& M_{2} \equiv 0 \\
& M_{3}=-M_{1} \equiv\left|\begin{array}{ccc}
Z_{1} & Z_{3} & Z_{2} \\
X_{3} & X_{2} & X_{1} \\
1 & 1 & 1
\end{array}\right| \\
& N_{3} \equiv 0 \\
& N_{1}=-N_{2} \equiv\left|\begin{array}{ccc}
X_{1} & X_{3} & X_{2} \\
Y_{3} & Y_{2} & Y_{1} \\
1 & 1 & 1
\end{array}\right|
\end{aligned}
$$

The line-coordinates of $P_{2} Q^{\prime}$ are therefore ($L_{2}, \omega M_{3}, \omega^{2} N_{1}$)

Evaluating L_{2}, M_{3}, N_{1} in terms of the expressions given above for X_{1}, Y_{1}, etc., we obtain

$$
\begin{gathered}
L_{2} \equiv S\left[\Delta\left(y_{2} z_{3}-y_{3} z_{2}\right)+3\left\{x_{1} y_{2} z_{2} y_{3} z_{3}-y_{1} z_{2} z_{3}\left(x_{2} y_{3}+x_{3} y_{2}\right)\right.\right. \\
\left.\left.-z_{1} y_{2} y_{3}\left(z_{2} x_{3}+z_{3} x_{2}\right)\right\}\right] \\
M_{3} \equiv S\left[\Delta\left(z_{2} x_{3}-z_{3} x_{2}\right)+3\left\{y_{1} z_{2} x_{2} z_{3} x_{3}-z_{1} x_{2} x_{3}\left(y_{2} z_{2}+y_{3} z_{2}\right)\right.\right. \\
\left.\left.-x_{1} z_{2} z_{3}\left(x_{2} y_{3}+x_{3} y_{2}\right)\right\}\right] \\
N_{1} \equiv S\left[\triangle\left(x_{2} y_{3}-x_{3} y_{2}\right)+3\left\{z_{1} x_{2} y_{2} x_{3} y_{3}-x_{1} y_{3} y_{3}\left(z_{2} x_{3}+z_{3} x_{2}\right)\right.\right. \\
\left.\left.-y_{1} x_{2} x_{3}\left(y_{2} z_{3}+y_{3} z_{2}\right)\right\}\right]
\end{gathered}
$$

Now, on the assumption that R_{3} does not lie on the polar conic of P_{1}, in which case S would vanish, we see that the line coordinates of $P_{2} Q_{1}^{\prime}$ are unaltered if we interchange the suffixes 2 and 3. Hence the line coordinates of $P_{3} R_{1}^{\prime}$ are proportional to those of $P_{2} Q_{1}^{\prime}$, proving that $P_{2}, P_{3}, Q_{1}^{\prime}, R_{1}^{\prime}$ are collinear.

Let us now consider the two triads of points $P_{1} Q_{3} R_{2}$ and $P_{2} Q_{3} R_{1}$, in the first of which P_{1} is an "assigned" point, while Q_{3} and R_{2} are "derived" points, whereas in the second of which all three are "derived" points. We wish to shew that if we take either of these triads as the "assigned" triad, the "assigned" triad together with the six "derived" points form the same system of nine points as above
(1) $P_{1} Q_{3} R_{2}$.

If we isolate P_{1}, and we know that $Q_{3} P_{1}^{\prime}$ and $R_{2} P_{1}^{\prime \prime}$ meet in Q_{2}, and that $R_{2} P_{1}^{\prime}$ and $Q_{3} P_{1}^{\prime \prime}$ meet in R_{3}.

Again, if we isolate Q_{3}, we know that $P_{1} Q_{3}{ }^{\prime}$ and $R_{2} Q_{3}{ }^{\prime \prime}$ intersect in P_{2}, since $P_{1} P_{2} Q_{3}^{\prime}$ and $P_{2} R_{2} Q_{3}^{\prime \prime}$ are collinear by what has been proved above. The rest follows immediately.
(2) $P_{3} Q_{3} R_{1}$.

If we isolate P_{2}, we know that $Q_{3} P_{2}^{\prime}$ and $R_{1} P_{2}^{\prime \prime}$ meet in Q_{1}, while $Q_{3} P_{2}^{\prime \prime}$ and $R_{1} P_{2}^{\prime}$ meet in R_{3}, by the theorems above proved.

We have thus proved that the scheme of points

$$
\begin{array}{lll}
P_{1} & P_{2} & P_{3} \\
Q_{1} & Q_{2} & Q_{3} \\
R_{1} & R_{2} & R_{3}
\end{array}
$$

form a closed system of nine points, and that the same system is
obtained from any of the six triads of points defined by the terms of the expansion of the above determinantal form by using the construction above defined.

In virtue of the above property, we have called the (P, Q, R) system of points a " Determinantal system of nine points with respect to the base triangle $A B C$."

Many further interesting properties of such systems would certainly be found on further investigation.

