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ON THE EXISTENCE OF PREMIXED LAMINAR FLAMES

ABDOLRAHMAN RAZANI

In this article, the existence of travelling wave solutions for premixed laminar flames
in a model of slow, "constant density" combustion is studied. The model is governed
by a simple system of an exothermic chemical reaction in a gas, via the reaction rate
function, which is very natural, as we do not impose the assumption of its continuity.
The existence of travelling waves is demonstrated and they are shown to be specific
heteroclinic orbits of a three dimensional system of ordinary differential equations,
connecting the unburned state points to a burned state point. The existence of
these solutions is based on some general topological arguments in ordinary differential
equations.

1. INTRODUCTION

One of the most important problems of combustion involves planar premixed flames,
that is, one-dimensional deflagration waves. In a case of a single-step reaction involv-
ing one reactant, it reduces to a system of two reaction diffusion equations ([10, 11]).
The existence of travelling wave solutions for this system has been established for both
positive and zero ignition temperature ([3, 4, 7, 11, 15, 16, 18, 19, 20]). Here, we
shall discuss the existence of travelling wave solutions in a model for slow, "constant
density" combustion. Alternatively, the travelling wave solutions for this model may be
derived from a more complicated system, assuming only a slow speed of propagation,
and weak temperature and pressure variation ([3, 4, 20]). The model is a simple model
of an exothermic chemical reaction in a gas and is as follows (for a background on the
physical motivation and derivation of the following model, see Buckmaster and Ludford
[6], Larrouturou [10], Wagner [19, 20] and Williams [23]):

\Tt = (X(Y, T)TX)X + qDY${T),

where T is the temperature and Y the mass fraction of the unburned gas. Note that the
completely unburned state corresponds to Y = Yf and a totally burned state corresponds
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to Y — 0. Also the physically desirable values of the unknowns Y and T are non-negative.
In fact, we consider 0 ^ Y < Yf and 0 ^ T ^ Tb (see [20]). The parameters v, A, D
and q are positive. The independent variables t and i are the time and space variables,
respectively. Finally, we encounter the well known cold boundary difficulty, that is,
the unburned state is not a stationary point of (1.1) since the "reaction rate function"
$(T) / 0, for T > 0. One resolution of the cold boundary difficulty can be based on
activation energy asymptotic (see [23]). However, in our analysis we use the common
mathematical idealisation of an ignition temperature, $ is modified such that (see [9, 13])

L.2) * (T)
• !

where $\{T) is a smooth positive function and TJ the "ignition temperature" of the re-
action. A typical example for $i{T) is the Arrhenius law, that is $i(T) = T*Te~(/1/:r) for
some positive constants 7 and A. Notice that $(T) is discontinuous at the point Tt. A
careful discussion of this assumption and its consequences for detonation and deflagration
wave (with one-step chemistry) can be found in [10] and [13].

The system (1.1), with $ (T) in a very simple form, has received extensive mathe-
matical treatment in recent years. Berestycki, Nicolaenko and Scheurer [3] proved the
existence of a solution of (1.1). Also in [4] they considered the deflagration wave prob-
lem for a compressible reacting gas, with one reactant involved in a single-step chemical
reaction. They showed how the one-dimensional travelling wave problem reduces to a
system of two reaction-diffusion equations. Wagner [20] obtained a sufficient condition
for the existence of travelling waves representing premixed laminar flames. In order to
do this, he used a topological method in his article. The necessary condition has been
given by Marion [11]. The existence of travelling wave solutions of (1.1) was established
by Terman [18] in the case 7} = 0. Also stability and instability results for the travelling
waves, where

have been obtained by Clavin [7], Sivashinsky [16], and Roquejoffre and Terman [15].
Avrin [1] studied the equations with initial data that are bounded, uniformly continuous,
and nonnegative but otherwise arbitrary. He established the existence of unique global
strong solutions satisfying appropriate a priori estimates. With a positivity condition
imposed on the initial data for the temperature, he showed that the concentration decays
exponentially. Also in [2] he studied the qualitative behaviour of solutions to the initial-
boundary value problem for the reaction-diffusion equations (1.1). In both cases where T
and Y satisfy zero Neumann boundary conditions or fixed Dirichlet boundary conditions,
extensive qualitative results have been given concerning complete asymptotic burning and
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eventual quenching. Weber, Mercer, Sidhu and Gray [22] considered (1.1) and assumed

that the chemical reaction can be represented by the Arrhenius rate law. They applied a

different non-dimensionalisation, and used the ratio of the activation energy to the heat

of the reaction as a large parameter around which an asymptotic analysis was based.

Mercer, Weber and Sidhu [12] then used this non-dimensionalisation to study the effects

of heat loss on the routes to extinction of the combustion wave, given tha t the activation

energy is large or that the heat of the reaction is small. Finally, Billingham and Mercer

[5] investigated (1.1). They used the method of matched asymptotic expansions to obtain

asymptotic approximations for the permanent form travelling wave solutions and their

results were confirmed numerically.

Now, assume the reaction is exothermic and the reaction rate function $ ( T ) is given

by (1.2). Furthermore, consider that the liberated energy, q depends on T. The existence

of premixed laminar flames is proved by the existence of travelling wave solutions. These

waves are heteroclinic orbits between specific rest points of a three dimensional system of

ordinary differential equations. The proof is carried out by using some general topological

arguments in ordinary differential equations. Finally, the uniqueness of these waves is

considered.

The rest of the paper is organised as follows. In Section 2, we introduce the hypothe-

ses and the problem, then make some observations related to the problem. In Section 3

we shall show that travelling wave solutions for premixed laminar flames exist.

2. T H E H Y P O T H E S E S AND T H E P R O B L E M

A solution (Y(x,t),T(x,t)) of (1.1) is called a travelling wave solution between

two states (Yi,T{)T and (YT,TT)T, if there is a constant s € R, which is called the speed

of combustion shock wave, satisfying "the jump and entropy conditions", moreover this

solution depends only on the variable £ = x + st [17]. This means that a travelling wave

solution of (1.1) has the following form:

(Y(x + st),T[x + st))T.

Thus in order to obtain travelling wave solutions, (1.1) reduces to the following system
of equations:

f
\

-DY*(T),

Let Z = vY^ — sY and Z\ = XT^ — sT be auxiliary variables, then we obtain:

' VY( = Z + sY,
(2 2) XT( = Zl + sT,
[ ' ] Zt = DY*(T),

ZH = -qDY9(T).

https://doi.org/10.1017/S0004972700036194 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036194


418 A. Razani [4]

From the two last equations of (2.2), we have:

(2.3) qZ( + ZH = 0.

The above equation can be integrated once to give:

(2.4) qZ + Zx = c,

where c is a constant of integration. Since V^(-oo) = Y((+oo) = T?(-oo) = T{(+oo) = 0,
it follows from (2.2) and (2.4), c = -sTb at the burned state and on the other hand
c = —qsYf at the unburned state, so we must have

(2.5) Tb=qYf.

By using the relations (2.4) and (2.5), (2.2) reduces to a three dimensional system of
ordinary differential equations as follows:

vY<: = Z + sY,
XT( = -sTb -qZ
ZK = DY${T).

sT,

For simplicity, we replace Y, Z and D by Y}(1 - X), sYf(W - 1) and /9"1. In this way
(2.6) becomes:

= s{X- W),
= s(T-TbW),

where "." means d/{d&. In order for a solution u(f) = (X(0 ,T(0 , W{£,))T to be a
travelling wave solution from the state vn = [Xi,Ti, W{f to the state ur = (Xr,TT, WT)T,

= uT. Thatsatisfying the jump condition we must have lim u(£) =
{-•-00

and lim
{—»+OO

is u; and uT must be two rest points of (2.7). Thus the existence of travelling wave
solutions of (2.7) is proved in two steps. Firstly, we must find all of the rest points of
(2.7) and secondly we must obtain all solutions of this system which connect a rest point
corresponding to 0 ̂  X < 1 to a rest point corresponding to X = 1 as £ increases from
-oc to +oo, whenever v > 0, A > 0,0 > 0. Now, for simplicity we let

(2.8)

Then (2.7) can be written as:

(2.9)

u = (X,

Gi(ti) =

G2{u) =

C (iA —
1*3 W —

Aii

T,W)T,
s{X - W),
s(T - TbW)

_f1 _ Y\fi>('
O

= G(u),
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where A=diag(//, A, /?) and G(u) = (G1{u),G2{u),G3(u))T.

At a rest point we must have:

s{X -W) = 0,
(2.10) { s(T-TbW)=0,

i(l - X)*(T) = 0,

The last equation of (2.10), at a rest point, will implies that X = 1 or T < Ti (notice
$(T) = 0 for T < Ti (Ti is the ignition temperature), and this set is contained in the
region 0 ̂  X < 1).

CASE 1. X = 1. First equation of (2.10) implies W — 1 and then from the second
equation of (2.10) we obtain T = Tb.

CASE 2. $(T) = 0. In this case, at the rest point, we must have T <T{. Then the first
two equations of (2.10) give a set of rest points. To find this set, put X = m, 0 ̂  m < 1,
in the last equation of (2.10) then the first of the two equations will imply that W = m
and consequently Tm = mTb for every 0 < m < 1. Also from now on, we assume that the
ignition temperature, Tj satisfies the inequalities:

(2.11) 0 < Ti < Tb.

By considering the above results, the rest points of (2.7) are:

(2 12) U = (l,7Uf,
\um = (m,Tm,m)T, 0^m<l,Tm<Ti.

In the next section, we show that for a general discontinuous reaction rate function ${T),
the travelling wave solutions for premixed laminar flames exist. In another words, there
is a heteroclinic orbit of (2.10) which is running from ui to um for some 0 ̂  m < 1.

3. EXISTENCE OF TRAVELLING WAVES FOR PREMIXED LAMINAR FLAMES

In this section we shall show that the travelling waves for premixed laminar flames
exist. In order to do this, we make some observations related to the nature of the stable
manifold of (2.7) at the rest point U\. For this, the linearised system of (2.7) at the rest
point u\, can be written as

ii = M(u - Ui),

where

M =

s
V

0

—L$

0
s

0

s •

ThS
— —

0
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Notice that the entries of the matrix are considered at the rest point u\. Let f(r]) be the
characteristic polynomial of this matrix. So we have:

(3.1)

This shows that the eigenvalues of the matrix M are:

s

(3-2)

From now on, we assume s > 0, then we shall have r/i > 0, % > 0 and r)3 < 0. Thus the
following theorem is proved.

THEOREM 3 . 1 . Let r]k, 1 ^ k ^ 3, be t ie eigenvalues of the matrix M at the
rest point u\ = (1, Tb, 1) and s > 0. Then T?I > 0, 772 > 0 and 773 < 0.

Concerning the eigenvectors at this rest point we have the following theorem.

THEOREM 3 . 2 . Let (2/1,3/2, Vz)T be an eigenvector corresponding to the negative
eigenvalue 773, then either y\ > 0, y2 > 0 and y3 > 0 or the reverse inequalities hold.

PROOF: The eigenvector (2/1,2/2,2/3)T must satisfy the following equations at the rest
point tti.

(3.3)
s \ sTb( X -773 )2 /2 -—2 /3 = 0,

( - — * i ( T 6 ) ) y i -7731/3 = 0.

From the last equation of (3.3) we have sgnyi = sgny3. By considering the second

equation of (3.3) we have sgny2 = sgnj/3. Thus sgnyi =sgny2= sgny3. D

In order to show the existence of travelling waves we define

D = {u € K3 : Gi(u) > 0, G2(u) > 0, 0 < X < 1, 0 < W < 1, T ^ Tb}.

Notice that the rest point Ui is located on 3D. Moreover, by Theorem 3.1, the stable
manifold at ui is one dimensional. Concerning this manifold we have the following lemma.

LEMMA 3 . 1 . Let D be as above. Then the stable manifold at u\ intersects D on

a curve.
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P R O O F : AS we have shown before, the linearised system of (2.7) at the rest point
ui has the following form:

(3.4)

or briefly,

= i{X-\)- Uw - 1) = S-{X - W) =: Gu(u),

= j(T- 71) - t£(W - 1) = |(T - TbW) =: G2l(u),

{X{X l)^(Tb) =

u = M(u- m) = (Gu(ti), G2l(u), G3l(u))T.

Let (j/i, y2,y3)
T be an eigenvector corresponding to the negative eigenvalue

773 = (s- Js2 + — $i(7i,)) 2v. Now consider the solution:

of the linear system (3.4). Then u(^) e D4 where

Ds = {u e R3 : Gu(u) > 0, G2l{u) > 0, G3;(u) > 0}.

To see this notice that:

where M is the coefficient matrix of (3.4). By Theorem 3.2, we may assume that
Hi < 0> 2/2 < 0 and 2/3 < 0. Since 773 < 0, it follows from the last equality that
(Gu{u),G2i{u),G3i(u)) € Ds. This means that the stable manifold of (3.4), at the
rest point ux, which is the line:

lies in Ds for c > 0 and lies in D for c > 0 and small. Thus the stable manifold of (2.7)
at the rest point ui intersects D o n a curve. D

Now consider the following system of ordinary differential equations

(3.5) I
( ) ^ ( ) 3 ( )

S

where Gk{u), k = 1,2. are defined by (2.8) and $i(T) by (1.2). Notice that the above
system is, mathematically, well defined for all X > 0, T > 0 and W > 0, moreover it is
the same with (2.7) for 0 < X < 1 and T > Tt. This system leads us to the proof of the
existence of travelling waves for premixed laminar flames. In order to do this, we shall
prove the next Lemma which is similar to [8, Lemma 3.4].
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LEMMA 3 . 2 . Let D be as above. Then there is a unique orbit of (3.5) which
lies in D, its u-limit set is u1; and this orbit intersects the set A = {u € JD : Gi(u)
> 0, G2(u) > 0 and W = 0}. Along this orbit X{Z),T{0 and W(£) are increasing.

PROOF: The proof is organised in the following steps.

STEP 1. The system (3.5) is gradient-like with respect to h(u) = W in D and is locally
Lipschitz in a neighbourhood of D.

STEP 2. Notice that D is homeomorphic to the cylinder {V € K3 : v\ + v\ < 1, 0
< v3 < 1} and so {u € D : h(u) = c} corresponds to the set {V £ Rz : v\-\-v\ < 1, v3

— c} for c 6 [0,1] under the homeomorphism.

STEP 3. The rest point Ui is the only rest point of (3.3) which is located in the set
{uelD : h{u) = l}.

STEP 4. The flow goes out of D on {u 6 dD : 0 < h{u) < l } . To see this, let
UQ 6 {u € dD : 0 < W < 1}. Then Gi(u0) = 0 or G2(u0) = 0 or X = 0 or X = 1 or
T = Tfc. Now, suppose Gi(uo) = 0. If we differentiate Gi(u) along the orbits of (3.5) we
obtain:

S lc,(uo)=0

Thus the flow goes out of D on Gi(u0) = 0. Let G2(u0) = 0 and differentiate G2(u) along
the orbits to obtain:

dG2(u) sTb~
= G

<% lC 2 ( u o ,=o X

Hence, the flow goes out of D on G2(uo) = 0. If we differentiate T along the orbits we
get:

^ =-(Tb-TbW) = -Tb(l-W)>0.

Hence, the flow goes out of D on T = Tb, and also if we differentiate X along the orbits
to obtain:

2± = £(0 _ w) = _£w < o,

Therefore the flow goes out of D on X = 0 and X = 1.

STEP 5. The stable manifold of (3.5) at the rest point ux intersects D in a nonempty
set.

Proof of the next step is similar to the proof of [14, Theorem 3.1].

STEP 6. Consider Steps 1-5, then there is a point p G {u € dD : h(u) = 0} such that
lim p.£ = U].
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PROOF O F S T E P 6: Let q be a point on the stable manifold of (3.5) at the rest point

ui which is located in D. Then lim q.£ = u\. Moreover, the orbit q.f is defined for f < 0

as long as this orbit lies in D. Since h(q) > 0, this orbit cannot approach to the surface

{u 6 3D : h(u) — 1} as £ decreases from 0. On the other hand, by Step 4, this orbit

cannot approach to the surface {u € 3D : 0 < h(u) < l } either, as £ decreases. Finally,

this orbit cannot stay in D for all £ < 0, otherwise there must be a rest point of (3.5) in

{u € D : 0 ^ h(q) ^ h(u) < l } . But step 3 shows that such a rest point is disallowed to

exist. Therefore there is a ft < 0 such that g.ft S {u € 3D : h(u) = 0} . Let p = g.ft.

Then p.f is the desired orbit.

Thus by the step 6, there must be an orbit of (3.5) lying in D, initiating a t a point

on the surface W = 0 and running to the point Ui as £ -> +oo. Finally, (3.5) and the set

D shows that along these orbits X(£),T(£) and W(£) are increasing. D

Let u(£)>£ € [£o]°°) be the orbit which is given by the above lemma. Then «(f0)

€ {u G D : W = 0} and lim u(£) = u\. Concerning the orbit u(£) we have the following

lemma.

LEMMA 3 . 3 . Let u{£,) be as above and u, X and 0 be positive. If/3 » max(A, is),

then the orbit u(£) meets the hypersurface T = 7} for some £ 6 (£o, oo) with 0 < X( | ) < 1

and 0 < H^(£) < 1.

PROOF: Let {Xi,Ti, Wi)T be the unique solution of the equation

X-W = 0, T- TbW = 0 and T = T{.

Therefore Wt = T{/Tb and X{ = Ti/Tb. Then from 0 < T, < Tb we have 0 < X{

< 1,0 < Wi < 1 and {u £ D : d ( u ) = 0,G2(u) = 0,0 < W < Wi} C {u G 5 : T

^ TJ. Let 0 < Xo < Xu0 <W0< WUDO = {u € D : 0 < W < W0,T > Ti} and
5 = min [G2(u) + Gi(u)]. Then 6 > 0 (because if <5 = 0, then G2(u) = Gi{u) = 0 this

means X = P^ and T = TbW. Thus T = TbX. If T > T{ then T6X > T{ and then

X > Tj/Tj = Xj and this is a contradiction to the requirement that 0 < X < Xo < Xi).

Now suppose the orbit 5(f), f e [Coi+°o), does not meet the set {u e D : T

= Ti,0 < X < 1 and 0 < W < 1}. Then from G2(u) > 0 in D and lim f(£) > T{, we

have f (0 > Tt for all £ 6 [ft, +oo).

Let £i be the solution of the equation W(£) — Wo, where W(£) is the third com-

ponent of u(£). Since W > 0, thus W is increasing along the orbit u(£). Since

H^(ft) = 0,W(fc) = VK0, then ft > ft and for all £ € (ft,ft),0 < W(£) < WO, this

means that u(£) remains in Z?o for £ € (ft,ft).
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Now along the orbit u(£) in Do we must have:

\dT I dX)
Lde %\

1/ J

dW[ ( / e ) e %
rG2(u)
L()

where I/77 = max G3(u). Therefore

£>

^/fo TG2(S(O) + - C ? , ( 5 ( O ) d

_ wo P \G2{u) GM}

~Jo (i — A-)*x(r) L A + i/ r
(3-6) wo P \G2{u) GM}

r
>
^ max(A, v)

On the other hand f (oo) + X(oo) - f(e0) - ^(fo) = T6 + 1 - f(&,) - ^(?o)- Since
G2(w) > 0 and d ( u ) > 0 in D, thus T - TbW ^ 0 a n d A " - V ^ ^ 0 , respectively. This
shows that T + X ^ TbW + W or f(e0) + ^ (6) ^ ^^(^o) + W(£o) or - f (e0) - X(£o)
^ -TbW{£0) - W{£0). Finally, we have:

) ^ n +1 - f (e0) -

Since ^(^o) = 0, thus the above result and (3.6) will imply:

^ max(A,i/)'

Notice that this inequality is impossible for /? 2> max(A, u) (this inequality makes sense,
see [21, p. 1046] or [24]). Thus the proof is complete. D

From now on we assume that /? 3> max(A, u), or the orbit u(£) meets the surface
T - T{ at the point u; = {X{, fu Wi)T, where 0 < Xt < 1 and 0 < W{ < 1. We call the
point Ui the ignition point. Notice that this point is unique.

Now we have our main theorem as follows.

THEOREM 3 . 3 . Suppose that (2.7) admits the rest points Ui and um, for some
0 < m < 1. Then for given A. v, {3 > 0 with 0 3> max(A, i>), there is a unique orbit of
(2.7) which is running from um to u\, for some 0 ^ m < 1.

PROOF: In the region T < 7}, the last equation of (2.7) becomes W = 0. Thus, in
this region, along the orbits of this system W(£) is constant. Here we let W(£) — Wiy
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where Wt is the third component of Sj, the ignition point. On the surface W — Wt, (2.7)
reduces to the following two dimensional system of equations, in the region T ^ 2V

{ vie — s\X — W\
VX - s[X W4,
XT = s[T - TbWi).

The solution of this system is as follow:

Now consider the region

D' = {(X,T) eR2:X>Wi, T> TbW{ and T + X < Ti+Xt}.

Therefore each orbit of (3.7) initiating j i t a point on dD' n {{X, T) : T + X = Tt + X{}
lies in D' for ^ < 0 and goes to (Wi,Tj,Wi) as ^ tends to -oo. Note that along this orbit
X(£) and T(^) are increasing.

Now, consider again the ignition point Ui = (Xi,Ti, Wi). By the above argument,
there is a unique orbit of (2.7), say

with

u it) = {Xi,TitWi),
W ( 0 ^ Wi, for ^

and
lim u (f) = (Wi,TbW

Along this orbit X(£) and T(£) are increasing and W(£) is constant. This orbit lies in
D, the domain which is used in the proof of Lemma 3.1. Now define

Then u ( 0 is a complete orbit of (2.7) lying in D and is running from um to ux for some
0 ^ m < 1. This completes the proof. D
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