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Abstract
All sectors of livestock production are in the process of shifting from small populations on many farms to
large populations on fewer farms. A concurrent shift has occurred in the number of livestock moved
across political boundaries. The unintended consequence of these changes has been the appearance of
multifactorial diseases that are resistant to traditional methods of prevention and control. The need to
understand complex animal health conditions mandates a shift toward the collection of longitudinal ani-
mal health data. Historically, collection of such data has frustrated and challenged animal health specia-
lists. A promising trend in the evolution toward more efficient and effective livestock disease surveillance
is the increased use of aggregate samples, e.g. bulk tank milk and oral fluid specimens. These sample types
provide the means to monitor disease, estimate herd prevalence, and evaluate spatiotemporal trends in
disease distribution. Thus, this article provides an overview of the use of bulk tank milk and pen-
based oral fluids in the surveillance of livestock populations for infectious diseases.
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Introduction

Globally and locally, achieving the control of historically impact-
ful infectious diseases of livestock continues to frustrate produ-
cers and challenge animal health specialists. A core requirement
of a successful control program is the ongoing collection of dis-
ease data from populations. Schwabe (1982) describes this as the
process of establishing baseline levels ‘against which effects of
intervention (control) efforts can be measured’.

The ongoing burden of disease in endemic areas and the expan-
sion of infectious agents into previously free areas expose the frailty
of current surveillance and response/control programs (Backer
et al., 2009; Lee, 2015; Saeed et al., 2015; Neira et al., 2017).
Foot-and-mouth disease virus (FMDV) was identified in 1897,
but 116 years later, endemic FMDV losses were estimated at
$6.5–$21 billion dollars annually and only 66 of the 181 (36.5%)
OIE-member countries are ‘FMD free where vaccination is not
practiced’ (Longjam et al., 2011; Knight-Jones and Rushton,

2013; OIE, 2017a). Classical swine fever virus (CSFV) was iden-
tified in 1903 (de Schweinitz, Dorset, 1903), but in 2017, just 32
of the 181 (17.7%) OIE-member countries are considered free
of CSFV (OIE, 2017b). This, despite the profound global eco-
nomic burden of CSFV and the clear benefits of eradication, e.g.
the benefit:cost ratio of CSFV eradication in the USA was esti-
mated at≥13.2 (USDA, 1981; Pinto et al., 2011). Initially identified
on the basis of outbreaks of unknown origin in the 1980s, porcine
reproductive and respiratory syndrome virus (PRRSV) was isolated
in 1991 and has become endemic in most major pork-producing
regions of the world (Wensvoort et al., 1991; Zimmerman et al.,
2012). Holtkamp et al. (2013) estimated the US pork producers’
losses to PRRSV at $664million annually. Nathues et al. (2017) esti-
mated losses to European producers at €126.79 per sow per year
and €3.77 per pig marketed in herds with ‘slight’ PRRS.
A promising trend in the evolution toward more efficient and

effective livestock disease surveillance is the increased use of aggre-
gate samples (Thurmond and Perez, 2006; Strutzberg-Minder et al.,
2015; Gibert et al., 2017; Rotolo, et al., 2017). By definition, an
aggregate sample represents two or more animals at a specific loca-
tion and time, e.g. bulk tank milk and pen-based oral fluid samples.*Corresponding author: Marisa Rotolo, E-mail: mrotolo@iastate.edu
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As opposed to individual animal samples, e.g. probang samples,
swabs, or blood samples, aggregate samples can be collected with-
out animal restraint. The use of aggregate samples in veterinary sur-
veillance has grown in tandem with developments in diagnostic
technology, e.g. nucleic acid-based assays and antibody assays spe-
cifically adapted to these specimens. The purpose of this article is to
review the use of bulk tank milk and pen-based oral fluids in infec-
tious disease surveillance of livestock populations.

Bulk tank milk samples

Bulk tanks are designed to cool, agitate, and store milk in
bovine, ovine, and caprine grade A dairies. Among other
requirements of the Pasteurized Milk Ordinance (U.S. Food
and Drug Administration, 2015), bulk tanks must chill milk
(4.4–7°C) within 2 h of collection and maintain this range there-
after. The size and number of bulk tanks vary among farms as a
function of the number of animals in the herd or flock, but lar-
ger operations may have multiple tanks capable of storing thou-
sands of gallons of milk. Milk haulers may collect once a day,
more than once a day, or every other day, depending on the
farm’s storage capacity and milk production levels. Regardless
of the collection schedule, bulk tanks must be emptied, cleaned,
and sanitized at least every 72 h (Bickett-Weddle et al., 2011;
U.S. Food and Drug Administration, 2015).

In the context of disease surveillance, samples from bulk milk
tanks represent the lactating cows in the herd (Sekiya et al., 2013).

Depending on the governmental standards or ordinances, tanks
are agitated for ≥10 min after which samples are collected asep-
tically from the top of the tank using a sterile pipette, syringe, or
sanitized dipper (Bickett-Weddle et al., 2011; U.S. Food and
Drug Administration, 2015). Although bulk tank milk samples
do not represent dry cows or cows on milk withhold, they pro-
vide an economical, convenient, and timely approach for the
detection of specific pathogens and/or estimation of herd preva-
lence (Olde Riekerink et al., 2006; Sekiya et al., 2013; Lanyon et al.,
2014; Collins et al., 2017). Economically significant pathogens
detectable in bulk tank milk samples and reported in the refereed
literature are discussed below and listed in Table 1.

Schmallenberg virus

Schmallenberg virus (SBV) is an arthropod vector-borne ortho-
bunyavirus first detected in dairy herds in Germany and the
Netherlands in 2011 (Balmer et al., 2014; Gubbins et al., 2014;
Johnson et al., 2014; Daly et al., 2015). SBV infection causes
abortions, congenital malformations, diarrhea, and fever in
bovine, ovine, and caprine species (Johnson et al., 2014; Daly
et al., 2015; Collins et al., 2017). The duration of SBV viremia
is relatively short, i.e. an average of 3–4 days (Gubbins et al.,
2014), but SBV serum-neutralizing antibodies can be detected
in cattle for as long as 24 months post-infection (Elbers et al.,
2014). The detection of SBV nucleic acid has not been reported

Table 1. Pathogens detected in bulk tank milk

Method Reference

Nucleic acid detection
Border disease virus Berriatua et al. (2006)
Bovine viral diarrhea virus Drew et al. (1999); Houe (1999); Kramps et al. (1999); Lanyon et al. (2014); Radwan et al.

(1995); Renshaw et al. (2000)
Coxiella burnetti Astobiza et al. (2012); Muskens et al. (2011); Rodolakis et al. (2007)
Foot-and-mouth disease virus Reid et al. (2006); Thurmond and Perez (2006)
Mycobacterium avium

subspecies paratuberculosis
Cousins et al. (1999); Jayaro et al. (2004); Slana et al. (2008);
Tasara et al. (2005)

Mycoplasma bovis Arcangioli et al. (2011); Justice-Allen et al. (2011); Maunsell et al. (2011)
Staphylococcus aureus Haran et al. (2012); Zanardi et al. (2014)
Streptococcus agalactiae Phuektes et al. (2003); Soltau et al. (2017)

Antibody detection
Border disease virus Berriatua et al. (2006); Corbiere et al. (2012); Garcia-Perez et al. (2010)
Bovine viral diarrhea virus Foddai et al. (2015); Houe (1999); Hanon et al. (2017); Kramps et al. (1999); Lanyon et al.

(2014); Renshaw et al. (2000)
C. burnetti Muskens et al. (2011); van den Brom et al. (2012)
Foot-and-mouth disease virus Armstrong et al. (1997a, 1997b); Armstrong, Mathew (2001)
M. avium subspecies

paratuberculosis
Beaver et al. (2016); Nielsen et al. (2000); van Weering et al. (2007);
Wilson et al. (2010)

M. bovis Nielsen et al. (2015)
Schmallenberg virus Balmer et al. (2014); Collins et al. (2017); Daly et al. (2015);

Johnson et al. (2014)

Culture or isolation
M. avium subspecies
paratuberculosis

Slana et al. (2008)

M. bovis Justice-Allen et al. (2011); Maunsell et al. (2011); Parker et al. (2017a,b)
S. aureus Olde Riekerink et al. (2006, 2010)
S. agalactiae Keefe (1997)
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in milk, but antibodies to SBV can be detected in an individual
cow and bulk tank milk samples using commercial indirect
enzyme-linked immunosorbent assay (ELISAs) (Balmer et al.,
2014; Johnson et al., 2014; Daly et al., 2015). Although test per-
formance estimates are not available (diagnostic sensitivity, diag-
nostic specificity), results of bulk tank milk ELISA testing were
predictive of within-herd seroprevalence and herd immunity
(Collins et al., 2017). Analyses based on bulk tank milk testing
results have been used to assess the spatial distribution, rate of
spread, direction of the spread, and effect of farm altitude on
the prevalence of SBV (Balmer et al., 2014; Johnson et al., 2014).

Bovine viral diarrhea virus

First described in the 1940s, bovine viral diarrhea virus (BVDV)
is a pestivirus transmitted through direct contact or fetal (in utero)
infection (Goens, 2002). Clinical signs of BVDV include watery
and/or bloody diarrhea, dehydration, pyrexia, tenesmus, tachyp-
nea, and ulcers of the muzzle, lips, oral cavity, and/or nares
(Goens, 2002).

BVDV antibodies can be detected in bulk tank milk samples
using blocking, indirect, or competitive ELISAs (Houe, 1999;
Kramps et al., 1999; Renshaw et al., 2000; Lanyon et al., 2014;
Foddai et al., 2015; Hanon et al., 2017). A Danish blocking
ELISA demonstrated a diagnostic sensitivity of 100% and diag-
nostic specificity of 62% when testing bulk tank milk samples
from herds with a BVDV prevalence of 26% (Foddai et al.,
2015). Diagnostic sensitivities and specificities of competitive
ELISAs were reported as 97–100% and 99%, respectively;
whereas the diagnostic sensitivities and specificities of indirect
ELISAs were reported as 94–100% and 98% (Hanon et al.,
2017). As with SBV, bulk tank milk ELISA results were highly
associated with herd seroprevalence (Lanyon et al., 2014).

Persistently infected (PI) animals, the result of fetal infection
during the first trimester of pregnancy (immunotolerance), serve
as a continuous source of infection (Houe, 1999; Fray et al.,
2000; Renshaw et al., 2000). PI cows produce little-to-no BVD
antibody, but continuously shed real-time reverse transcription
polymerase chain reaction (RT-rtPCR)-detectable levels of
BVDV in milk (Radwan et al., 1995; Kramps et al., 1999; Houe,
1999; Renshaw et al., 2000). Drew et al. (1999) reported 100%
diagnostic sensitivity and specificity for PCR-based detection of
BVDV RNA in bulk tank milk samples from herds with PI cows.

Strategically, antibody detection is used to identify the herds
with circulating BVDV, and nucleic acid detection is used to iden-
tify the herds with PI cattle (Lanyon et al., 2014). Monitoring
changes in antibody prevalence has been used to determine
whether a BVDV infection is ongoing or recent (Lanyon et al.,
2014). ELISA testing has also been used to monitor declining
antibody levels after removal of PI cattle (Houe, 1999).

Border disease virus

First reported in England and Wales in 1958 and closely related
to BVDV, border disease virus (BDV) is a pestivirus of ovine

and caprine species (Nettleton et al., 1998). BDV is transmitted
through direct contact or transplacentally, with infection during
early pregnancy resulting in PI offspring (Garcia-Perez et al.,
2010). Goats are susceptible to BDV, but infection is rare and
typically results in abortion (Nettleton et al., 1998). In sheep,
clinical signs of BDV include abortion, stillbirths, and non-
viable lambs.
As in the case of BVDV, PI animals shed BDV continuously

and do not produce antibodies. Bulk tank milk samples can be
tested for BDV by RT-rtPCR; however, estimates of diagnostic
performance have not been reported (Berriatua et al., 2006).
Immunocompetent animals produce antibodies detectable in
bulk tank milk (Garcia-Perez et al., 2010). In one study, the diag-
nostic sensitivity and specificity of a blocking ELISA for BDV
detection in bulk tank milk samples was reported as 100 and
85.2%, respectively (Corbiere et al., 2012). A high seroprevalence
of BDV in lactating animals suggests the presence of PI animals
(Berriatua et al., 2006). Thus, ELISA testing of bulk tank milk
samples provides the means to estimate the prevalence of
BDV in flocks and may indirectly reveal the presence of PI ani-
mals (Berriatua et al., 2006; Garcia-Perez et al., 2010).

Foot-and-mouth disease virus

FMDV is a highly impactful picornavirus of cloven-hoofed ani-
mals (Reid et al., 2006; Thurmond and Perez, 2006;
Knight-Jones and Rushton, 2013). FMDV can be transmitted
by direct or indirect contact (Bravo de Rueda et al., 2014).
Clinical signs of FMDV infection include vesicular lesions,
decrease in milk yield in lactating cattle, and pyrexia
(Armstrong and Mathew, 2001).
FMDV was detected in milk samples from individual cows by

RT-rtPCR for 23 days post-inoculation (Reid et al., 2006).
Estimates of the diagnostic sensitivity and specificity of
RT-rtPCR for the detection of FMDV in bulk tank milk sam-
ples has not been reported, but Thurmond and Perez (2006)
predicted that RT-rtPCR testing of bulk tank milk samples
would detect FMDV 4–7 days earlier than detection based on
the recognition/reporting of clinical signs.
FMDV antibodies may be detected in ovine and bovine milk

using blocking ELISAs (Armstrong, 1997a, 1997b). Estimates
for diagnostic sensitivity and specificity of these ELISAs are not
available, but Armstrong and Mathew found a statistically signifi-
cant correlation (r= 0.53) between serum and milk antibody titers
(Armstrong and Mathew, 2001). On this basis, these researchers
suggested that antibody testing of bulk tank milk samples would
be an effective approach for monitoring herd immunity and/or
evaluating population susceptibility to FMDV.

Mycobacterium avium subspecies paratuberculosis

Mycobacterium avium subspecies paratuberculosis (MAP) is the etio-
logic agent of Johne’s disease in ruminants (Mortier et al., 2014).
Most commonly acquired via fecal–oral transmission, Johne’s
disease is characterized by enteritis, decreased milk yield, weight
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loss, diarrhea, and death (Wilson et al., 2010; Mortier et al.,
2014). A causal role for MAP in Crohn’s disease has been pos-
tulated, but was neither confirmed nor rejected by an assessment
of the available data (Feller et al., 2007).

MAP is detectable in milk via culture and PCR testing, but
culture of bulk tank milk samples is not practical because the
procedure is neither diagnostically sensitive nor timely, i.e. cul-
ture can take 18–52 weeks (Slana et al., 2008). The most com-
mon target of PCR assays is multiple copy insertion sequence
IS900 in the MAP genome (Slana et al., 2008). The analytical
sensitivity of the IS900 PCR is reported as 5–6 MAP cells
ml−1 of bulk tank milk versus 83 MAP cells ml−1 for a PCR
targeting F57. However, IS900 PCRs may have issues with ana-
lytical specificity because of the homology of this region across
mycobacteria species (Cousins et al., 1999; Tasara et al., 2005;
Slana et al., 2008). Jayaro et al. (2004) reported a diagnostic sen-
sitivity of 21% and diagnostic specificity of 50% for bulk tank
milk samples using an IS900 PCR. No estimates of diagnostic
sensitivity and specificity are available for F57-based PCRs.

ELISA-detectable MAP antibodies are present in bulk tank
milk samples, but interpretation of testing results has not been
clearly established (Nielsen et al., 2000; van Weering et al.,
2007; Wilson et al., 2010; Beaver et al., 2016). Regardless,
some researchers believe that ELISA testing of bulk tank milk
samples can be used effectively by monitoring changes over
time (van Weering et al., 2007; Beaver et al., 2016).
Alternatively, Beaver et al. (2016), suggested the concurrent
use of both assays for bulk tank milk monitoring programs
for MAP (Beaver et al., 2016). Thus, herds with positive PCR
results and high ELISA titers reflected active infection; whereas,
herds with positive PCR results but low ELISA titers reflected
environmental contamination (Beaver et al., 2016).

Coxiella burnetii (Q fever)

Coxiella burnetii is an obligate, intracellular rickettsial organism
and the cause of Q fever in animals and humans (Kim et al.,
2005). Infection with C. burnetii results in reproductive disease,
including metritis and infertility in cattle and abortion in goats
and sheep (Kim et al., 2005; Rodolakis et al., 2007). Shedding
patterns of C. burnetii in milk is species-dependent and varies
among cattle, sheep, and goats (Rodolakis et al., 2007). Cattle
shed C. burnetii in milk for several months, goats shed for a
shorter time, and sheep do not reliably shed in milk
(Rodolakis et al., 2007; Astobiza et al., 2012). Antibody to and
nucleic acids of C. burnetii are detectable in bulk tank milk sam-
ples with ELISA and PCR, respectively (Rodolakis et al., 2007;
van den Brom et al., 2012). Muskens et al. (2011) reported diag-
nostic sensitivity and specificity of 82 and 70%, respectively,
when testing bulk tank milk samples by a commercial real-time
PCR. The diagnostic sensitivity and specificity of a commercial
C. burnetii antibody ELISA for bulk tank milk was reported as
88.2 and 94.6%, respectively, using manufacturer-recommended
cutoffs (van den Brom et al., 2012). When used in combination,
ELISA testing of bulk tank milk samples can be used to deter-
mine herd exposure and estimate prevalence of C. burnetii, while

PCR testing can be used to determine shedding and prevalence
(Muskens et al., 2011; Astobiza et al., 2012).

Detection of bacterial pathogens associated with
mastitis

Streptococcus agalactiae is a highly contagious, obligate pathogen of
the bovine mammary gland and a cause of subclinical and clin-
ical mastitis (Keefe, 1997; Phuektes et al., 2003; Olde Riekerink
et al., 2006; Mweu et al., 2012). Streptococcus agalactiae may be
detected in bulk tank milk samples by culture or PCR (Keefe,
1997; Phuektes et al., 2003). As reviewed by Phuektes et al.
(2003), estimates of the diagnostic sensitivity of culture range
from 20 to 84%. Estimates of the diagnostic sensitivity and spe-
cificity are not available, but as would be expected, testing mul-
tiple bulk tank milk samples was shown to increase the
likelihood of detecting S. agalactiae by PCR (Phuektes et al.,
2003; Soltau et al., 2017). ELISA-detectable S. agalactiae anti-
bodies have been reported in individual milk samples, but this
approach has not been evaluated for bulk tank milk testing
(Logan et al., 1982).
Staphylococcus aureus is an opportunistic pathogen and a cause

of subclinical and clinical mastitis in cattle, sheep, and goats
(Olde Riekerink et al., 2006; Haran et al., 2012; Zanardi et al.,
2014; Merz et al., 2016). As reviewed by Olde Riekerink et al.
(2010), culture of bulk tank milk for S. aureus had an estimated
diagnostic sensitivity of 21–42% and a diagnostic specificity of
100%. Repeated sampling is recognized to improve the prob-
ability of detection by culture (Olde Riekerink et al., 2006,
2010). PCR testing of bulk tank milk samples can be used to
detect S. aureus, estimate herd prevalence of the infection, and
assess for the presence of methicillin-resistant strains (Haran
et al., 2012). The diagnostic sensitivity and specificity of PCR
testing for S. aureus in bulk tank milk samples is reported at
99 and 67%, respectively (Zanardi et al., 2014). Using individual
milk, ELISA testing for antibodies against S. aureus may be used
to as a screening tool to detect infected animals (Fox and
Adams, 2000).
Mycoplasma bovis is a highly pathogenic mycoplasma causing

both mastitis and respiratory disease in adult cattle (Parker
et al., 2017a). Mycoplasma bovis is detectable in bulk tank milk
samples by culture, but the assay can take 7–10 days and over-
growth of bacteria is problematic (Parker et al., 2017a, 2017b).
The diagnostic sensitivity of M. bovis culture is reported as
50%, with diagnostic specificity estimates as high as 100%
(Justice-Allen et al., 2011; Maunsell et al., 2011). The diagnostic
sensitivity and specificity of M. bovis PCR for individual milk
samples is reportedly 100 and 99.3%, respectively, but estimates
of PCR performance for bulk tank milk samples have not been
reported (Cai et al., 2005). PCR testing allows for more rapid
detection of M. bovis versus culture and herd prevalence esti-
mates can be extrapolated from the results (Arcangioli et al.,
2011). A commercial antibody ELISA is available for bulk
tank milk testing, and estimates for diagnostic sensitivity and
specificity are 60.4 and 97.3%, respectively (Nielsen et al.,
2015). The combination of PCR and ELISA testing can reveal
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M. bovis infection in a herd and is an effective approach for sur-
veillance (Nielsen et al., 2015).

Oral fluid samples

Oral fluids are collected from swine or cattle by providing access
to a rope suspended in the pen, then recovering the sample for
diagnostic testing (Smith et al., 2004; Prickett et al., 2008a,
2008b; Stanford et al., 2009; Prickett et al., 2010). Oral fluid sam-
ples are an aggregate sample composed of saliva and transudate
originating from capillaries within the buccal and gingival mucosa
(Prickett et al., 2008a). Oral fluids contain both local and serum-
derived antibodies and pathogens (Prickett et al., 2008a, 2008b;
Prickett and Zimmerman, 2010). In addition, viruses, bacteria,
and other test analytes in feed, water, or the environment may
be present in oral fluids as a result of normal exploratory behav-
ior (Kittawornrat and Zimmerman, 2011; Johnson et al., 2012).
This explains the detection of porcine epidemic diarrhea virus
(PEDV) in swine oral fluid samples and Escherichia coli and sal-
monella in cattle (Smith et al., 2005a, 2005b; Renter et al., 2008;
Bjustrom-Kraft et al., 2016). In cattle, oral fluids have been
used in the observational studies in feedlot cattle (Renter et al.,
2008; Smith et al., 2005a, 2005b), but have not been routinely uti-
lized in surveillance. In contrast, oral fluids have been used exten-
sively for disease surveillance in swine populations. Therefore, the
remainder of this section will focus exclusively on this subject.

Oral fluids can be collected from groups or individual pigs
(White et al., 2014; Pepin et al., 2015a, 2015b). In group-housed
animals, oral fluids offer a higher probability of detection with
fewer samples when compared with individual serum samples
(Olsen et al., 2013). Sampling guidelines for oral fluid collection
at the barn or site level have been published (Rotolo et al., 2017).

Diagnostic assays optimized for swine oral fluid specimens
have been available in North American veterinary diagnostic
laboratories since 2010 (Olsen et al., 2013; Bjustrom-Kraft
et al., 2018). In three North American swine-interest veterinary
diagnostic laboratories, the number of oral fluid tests performed
increased from 20,963 in 2010 to 369,439 in 2016
(Bjustrom-Kraft et al., 2018). Pathogens detectable in oral fluid
samples and reported in the refereed literature are listed in
Table 2. Selected pathogens are reviewed below.

Foot-and-mouth-disease virus

Rapid screening of swine herds is critical in the control of
FMDV because pigs aerosolize a large amount of virus com-
pared with cattle and promulgate virus transmission (Stenfeldt
et al., 2016). Under experimental conditions, FMDV was iso-
lated from swine oral fluids on day post-inoculation (DPI) 1–
5 (Senthilkumaran et al., 2017). By RT-rtPCR, FMDV was
detected from one DPI, i.e. prior to the appearance of clinical
signs, and up to 21 DPI (Mouchantat et al., 2014;
Senthilkumaran et al., 2017). RNA was detected in oral fluids
one day earlier than oral or nasal swab samples and continued
∼7 days longer (Senthilkumaran et al., 2017). A field-deployable

reverse transcription-insulated isothermal PCR has also been
used to detect FMDV RNA in oral fluids (Ambagala et al.,
2016). FMDV antigens were detected in oral fluids 1–6
DPI using lateral flow immunochromatographic strip tests
and 2–3 DPI using a double-antibody sandwich ELISA
(Senthilkumaran et al., 2017). FMDV IgA was detected in oral
fluids using a solid-phase competitive ELISA beginning at 14
DPI (Senthilkumaran et al., 2017). Pacheco et al. (2010) were
not successful in detecting FMDV IgM or IgG in oral fluid sam-
ples. Estimates of diagnostic sensitivity and specificity have not
been reported for the assays reported in this paragraph.
Although FMDV oral fluid assay development is in its early
stages, preliminary results support the use of nucleic acid and
antibody detection as a method to rapidly screen herds
(Ambagala et al., 2016; Senthilkumaran et al., 2017).

Classical swine fever virus

CSFV is a pestivirus with significant economic consequences
resulting from clinical disease, lost export markets, and costs
related to control and eradication efforts (Fernández-Carrión
et al., 2016). CSFV can be transmitted by direct or indirect con-
tact and, depending on the virulence of the strain, causes pyr-
exia, anorexia, lethargy, conjunctivitis, enlarged and discolored
lymph nodes, constipation, and diarrhea in affected pigs
(Moennig et al., 2003; Petrini et al., 2017). Under experimental
settings, CSFV was detected in oral fluids by RT-rtPCR from
seven up to 30 DPI, with a higher detection rate in oral fluid
than blood samples (40 vs 28%) (Dietze et al., 2017; Petrini
et al., 2017). Estimates of diagnostic sensitivity and specificity
have not been reported for these assays and, overall, research
on CSFV oral fluid diagnostics is in its initial phases.

African swine fever virus

Infection with African swine fever virus (ASFV), the only mem-
ber of family Asfarviridae, is a cause of fever, hemorrhage, and
mortality in domestic and feral pigs (Sanchez-Vizcaino and
Neira, 2012; Guinat et al., 2014; Gimenez-Lirola et al., 2016).
Transmitted through direct and indirect contact, ASFV is of
particular concern because, since its introduction into the
Democratic Republic of Georgia in 2007, it has steadily
advanced westwardly into Europe via feral swine and threatens
to spread eastwardly into China (Guinat et al., 2014; Vergne
et al., 2017).
Under experimental conditions, ASFV was detected in oral

fluid 3–5 DPI by PCR (Guinat et al., 2014; Grau et al., 2015).
ASFV antibodies were detected at 11 DPI in individual oral
fluid samples by indirect ELISA under experimental conditions
(Mur et al., 2013). The pattern of antibody response in oral fluids
was similar to the pattern seen in serum (Mur et al., 2013). ASFV
antibodies were also detected using a p30-based indirect ELISA
in oral fluids (Gimenez-Lirola et al., 2016). Diagnostic sensitiv-
ities and specificities for these assays have not been reported.
As in the cases of FMDV and CSFV, further studies are needed
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to optimize ASFV oral fluid assays and assess their use in the
field (Grau et al., 2015).

Porcine reproductive and respiratory syndrome virus

PRRSV is an arterivirus transmitted through direct and indirect
contact (Zimmerman et al., 2012). Clinical signs of PRRSV vary
based on the age of the pig and the virulence of the isolate. In
sows, clinical signs include abortion, stillbirths, anorexia, and
mortality (Zimmerman et al., 2012). PRRSV is often an etio-
logical component of the porcine respiratory disease complex
in growing pigs (Zimmerman et al., 2012).

The detection of PRRSV nucleic acid in oral fluids has been
extensively documented under field and experimental conditions
(Prickett et al., 2008a, 2008b; Kittawornrat et al., 2010, 2014;
Ramirez et al., 2012; Pepin et al., 2015a, 2015b; Rotolo et al.,
2017). Kittawornrat et al. (2010) reported detection in ∼10%
of experimentally inoculated boars at 24 h post-inoculation by
RT-rtPCR. Olsen et al. (2013) evaluated test performance as a
function of within-pen prevalence. In pens holding 25 pigs,
the probability of detecting PRRSV RNA or PRRSV antibody
in pens containing ≥1 positive (4% prevalence) was 62 and
61%, respectively. PRRSV may also be sequenced from oral
fluids (Biernacka et al., 2016).

IgG, IgA, and IgM antibody isotypes were detected in oral
fluids collected from individual boars using a commercial
PRRS serum antibody indirect ELISA modified for oral fluids
(Kittawornrat et al., 2013). The pattern of PRRSV antibody
ontogeny was similar in serum and oral fluid, with IgM detected
in oral fluids at three DPI, IgA at seven DPI, and IgG at eight
DPI (Kittawornrat et al., 2013). Commercial PRRSV oral fluid
ELISAs have since become available. Antibodies were also
detected in oral fluid using a fluorescent microsphere

immunoassay with a reported diagnostic sensitivity of 92%
and diagnostic specificity of 91% (Langenhorst et al., 2012).
Testing of oral fluids can be used to assess the effectiveness

of PRRSV control and elimination programs (Biernacka et al.,
2016; Rotolo et al., 2017). A distinct advantage of PRRSV oral
fluid-based surveillance is that pen-based oral fluid sampling
provides a higher probability of detection than individual animal
sampling using either RT-rtPCR or ELISA (Olsen et al., 2013).

Influenza A virus

Influenza A virus (IAV) is an orthomyxovirus of human beings,
horses, sea mammals, birds, and pigs, transmitted via direct and
indirect contact (Hughes et al., 2015; Neira et al., 2016). IAV in
commercial swine herds results in chronic, endemic infection
with respiratory or reproductive clinical signs, as well as clinically
inapparent infections (Goodell et al., 2013; Panyasing et al.,
2013). IAV is an important pathogen to surveil in pigs because
of its zoonotic potential (Vincent et al., 2014; Hughes et al.,
2015).
Under experimental conditions, IAV RNA was detected in

swine oral fluids by one DPI and up to 69 DPI (Allerson
et al., 2014; Decorte et al., 2015). Decorte et al. (2015) reported
the duration of detection in oral fluids as 14 days longer than
detection in nasal swabs by RT-rtPCR (Decorte et al., 2015).
Compared with individual nasal swabs, the diagnostic sensitivity
and specificity of pen-based oral fluid RT-rtPCR testing was
estimated at 80 and 100%, respectively (Romagosa et al.,
2012). Although further optimization is necessary, IAV has
also been isolated from oral fluids (Goodell et al., 2013).
Sequencing of IAV from oral fluids has been reported
(Panyasing et al., 2014a). RT-rtPCR testing of oral fluids can

Table 2. Pathogens detected in oral fluid

Method Reference

Nucleic acid detection
African swine fever virus Grau et al. (2015); Guinat et al. (2014)
Classical swine fever virus Dietze et al. (2017); Petrini et al. (2017)
Foot-and-mouth disease Ambagala et al. (2016); Mouchantat et al. (2014); Senthilkumaran et al. (2017)
Influenza A virus Allerson et al. (2014); Decorte et al. (2015); Goodell et al. (2013); Romagosa et al. (2012)
Porcine deltacoronavirus Homwong et al. (2016); Sinha et al. (2015)
Porcine epidemic diarrhea virus Bjustrom-Kraft et al. (2016)
Porcine reproductive and

respiratory syndrome virus
Biernacka et al. (2016); Kittawornrat et al. (2010, 2014); Pepin et al. (2015a, 2015b);
Prickett et al. (2008a, 2008b); Olsen et al. (2013); Ramirez et al. (2012);
Rotolo et al. (2017)

Antigen detection
Foot-and-mouth disease Senthilkumaran et al. (2017)

Antibody detection
African swine fever virus Gimenez-Lirola et al. (2016); Mur et al. (2013)
Influenza A virus Panyasing et al. (2013, 2014b); Strutzberg-Minder et al. (2015)
Porcine epidemic diarrhea virus Bjustrom-Kraft et al. (2016)
Porcine reproductive and

respiratory syndrome virus
Kittawornrat et al. (2013); Langenhorst et al. (2012)

Culture or isolation
Influenza A virus Goodell et al. (2013)
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be used to track viral circulation and to monitor the effect of
vaccination and control programs in commercial swine herds
(Goodell et al., 2013).

Panyasing et al. (2013) reported the ontogeny of IAV IgM,
IgA, and IgG in pigs housed under experimental conditions,
using isotype-specific indirect ELISAs. Serum and oral fluid
IgG responses were highly correlated (r = 0.80) (Panyasing
et al., 2013). Detection of IAV antibody has also been reported
using blocking or competitive ELISA formats (Panyasing et al.,
2014b; Strutzberg-Minder et al., 2015). Diagnostic sensitivity and
specificity estimates have not been established for these assays.
Antibody detection in oral fluids allows for the detection of IAV
infection in the absence of clinical signs (Panyasing et al., 2013).

Coronaviruses

PEDV is an enteric coronavirus transmitted via the fecal–oral
route (Crawford et al., 2015; Bjustrom-Kraft et al., 2016).
Clinical signs of PEDV infection in swine include watery diar-
rhea, vomiting, and mortality in neonates (Bjustrom-Kraft
et al., 2016). In the field, Bjustrom-Kraft et al. (2016) reported
the detection of PEDV nucleic acid in oral fluids from 6 days
post-exposure (DPE) to 69 DPE. PEDV was detected 15
days longer in oral fluid samples compared with pen fecal sam-
ples, and, compared with individual rectal swabs, oral fluids
demonstrated a higher concentration of detectable virus and
higher rate of detection. In the same study, Bjustrom-Kraft
et al. (2016) reported the detection of PEDV antibody (IgG
and IgA) by 13 DPE in oral fluids. The diagnostic sensitivity
and specificity of a PEDV IgG oral fluid ELISA was reported
as 69 and 97%, respectively. In contrast, the diagnostic sensitiv-
ity and specificity of a PEDV IgA oral fluid ELISA were
reported as 100 and 100%, respectively (Bjustrom-Kraft et al.,
2016). Although estimates of diagnostic sensitivity and specifi-
city have not been reported, the oral fluid RT-rtPCR is an effect-
ive tool to monitor for PEDV presence in herds, and IgA
antibody testing offers an effective method to evaluate
herd-level immunity (Bjustrom-Kraft et al., 2016).

Like PEDV, porcine deltacoronavirus (PDCoV) is an enteric
coronavirus that causes diarrhea and vomiting in pigs
(Homwong et al., 2016). PDCoV can be detected in oral
fluids by RT-rtPCR, although estimates of diagnostic sensitivity
and specificity are not available (Sinha et al., 2015; Homwong
et al., 2016; Zhang, 2016). Homwong et al. (2016) reported
that the detection of PDCoV nucleic acid in oral fluids was
1.89 times more likely than detection in feces. PDCoV antibody
ontogeny in serum and oral fluids has not yet been reported.

Discussion

Globally, the production of livestock – poultry, cattle, and swine
– is in the process of shifting from small populations on many
farms to large populations on fewer farms (Hoban et al., 1997;
Marquer, 2010; Barkema et al., 2015; Gale, 2017). Readily access-
ible USDA data from the dairy and swine industries highlight this

trend. In 1982, ∼275,000 US dairy farms housed ∼11,000,000
dairy cows. By 2012, the number of dairy farms dropped to
∼64,000, while animal numbers remained relatively stable at
∼9,250,000 (USDA, 2014). Pork production has followed the
same trend. In 1982, ∼330,000 US farms housed ∼55,000,000
pigs in 1982. By 2012, the number of farms with pigs declined
to ∼63,000, while the number of pigs increased to
∼66,000,000 (USDA, 2014). Increases in herd size are important
to disease control because herd immunity becomes more difficult
to achieve as population increases, which in turn leads to patho-
gen endemicity (LeBlanc et al., 2006; Pitzer et al., 2016).
Over the same time period, a shift occurred in the movement

of livestock across political boundaries. In 1960, 13,500,000 live
cattle crossed US state lines for feeding or breeding purposes
(Hennessy et al., 2005). By 2015, this number had risen to
20,500,000 (USDA, 2017). Similarly, ∼2,500,000 pigs were
moved across US stateliness in 1960, in contrast to
∼52,500,000 moved in 2016 (Shields and Mathews, 2003;
USDA, 2017). Similar patterns have emerged in Europe. For
example, Denmark, France, Germany, Italy, the Netherlands,
Poland, and Spain cumulatively imported ∼910,000 live pigs
and exported ∼937,000 live pigs in 1961 (FAO, 2017). In con-
trast, these countries imported ∼22,000,000 live pigs and exported
∼27,000,000 in 2013 (FAO, 2017). Trends in livestock movement
are important because of the well-established role of animal trans-
port in the spread of disease, e.g. the 2001 FMDV outbreak in the
UK and, more recently, spread of PEDV throughout the Western
Hemisphere (Davies, 2015; Guinat et al., 2016).
The unintended consequences of changes in the structure

and management of livestock populations have manifested
themselves in the appearance of multifactorial diseases resist-
ant to traditional methods of prevention and control, e.g.
bovine and porcine respiratory disease complexes (Schwabe,
1982; Gardner et al., 2002; Hagglund et al., 2006; LeBlanc
et al., 2006; Bochev, 2007; Edwards, 2010; Pitzer et al.,
2016). The need to understand complex animal health condi-
tions mandates a shift toward the collection of longitudinal
animal health data. New intervention strategies or unantici-
pated events, e.g. the introduction of an exotic pathogen,
can then be evaluated in the context of their impact on
baseline values.
Cumulatively, peer-reviewed research supports the conclusion

that aggregate samples offer the opportunity to expand the
scope of applied surveillance. Testing of bulk tank milk samples
provides bovine and small ruminant practitioners and producers
the means to monitor disease and estimate herd prevalence and
provides animal health researchers the means to evaluate the
spatial distribution and rate of disease transmission (Berriatua
et al., 2006; Garcia-Perez et al., 2010; Balmer et al., 2014;
Johnson et al., 2014; Collins et al., 2017). Swine oral fluids
offer a more analytically sensitive detection system than individ-
ual pig samples, and at a lower cost (Goodell et al., 2013; Olsen
et al., 2013). Continued progress toward the goal of effective sur-
veillance using aggregate sampling requires research in two
areas: (1) continued development and adaption of diagnostic
technology for the most globally impactful diseases of animals
and human beings (zoonoses); (2) continued development of

Herd-level infectious disease surveillance of livestock populations using aggregate samples 59

https://doi.org/10.1017/S1466252318000038 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252318000038


statistically valid sampling guidelines including probability of
detection estimates by sample size, sampling allocation, and fre-
quency of sampling for farm and regional surveillance.
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