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1. Introduction 

Let Xt, i = 1, 2, 3, • • • be a sequence of independent and identically 
distributed random variables and write S„ = - X 1 + . X 2 + * * • +Xn. If the 
mean of Xt is finite and positive, we have Pr(Sn = x) -*• 0 as n -> co for 
all x, — co < x < co using the weak law of large numbers. It is our purpose 
in this paper to study the rate of convergence of Pr(Sn iS. x) to zero. Neces
sary and sufficient conditions are established for the convergence of the 
two series 

f>* Pr{Sn = x), — 0 0 < 3 ! < 0 0 
n=l 

where k is a non-negative integer, and 
00 

2 ern Pr(Sn ^ x), - c o < x < co 
n=l 

where r > 0. These conditions are applied to some first passage problems 
for sums of random variables. The former is also used in correcting a 
queueing Theorem of Finch [4]. 

2. Two Probability Theorems 

Let Xt, i = 1, 2, 3, • • • be independent and identically distributed 
random variables. We write Sn = Xl+Xi+ • • • +Xn, X~ = min (0, X() and Xf = Xi+Xj. 

We shall establish the following two Theorems: 

THEOREM A
 1. Suppose E\X\ < co, EX > 0 and let k be a non-negative 

1 My attention has been drawn to a statement of Theorem A without proof in Smith, 
W. L. "On the elementary renewal theorem for non-identically distributed random variables" 
Univ. North Carolina Mimeographed Notes No. 352 (Feb. 1963). Professor Smith states 
that a proof of this result will appear in a paper entitled "On functions of characteristic 
functions and their applications to some renewal-theoretic random walk problems". 
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[2] Two probability theorems 215 

integer. A necessary and sufficient condition for the convergence of the series 

f « * Pr(Sn <x), — co < x < oo, 

is that 7i|A:-|*+2 < co. 

THEOREM B. Suppose E\X\ < co and EX > 0. A necessary and suf
ficient condition for the convergence of the series 

%eTnPr(S„ <>x), - c o < a ; < c o , 
« - i 

for some r > 0 is that X~ has an analytic characteristic function i . 
(It is clear that analogous Theorems will hold in the case EX < 0). 

We defer the proofs of Theorems A and B until some Lemmas have been 
established. 

LEMMA 1. / / E\X\r < co for some integer r ^ 1 and EX > 0, then 

2 n"2 Pr(Sn ^ x) < co, — co < x < co. 

PROOF: Write EX = p. Using Katz [5], Theorem 1, we have 

2 nT~2 Pr{\S„—np\ ^ we} < co, every e > 0 

from which we obtain, in particular 

(1) 2>r - 2
 Pr{SK = (p—e)n) < oo, every e > 0. 

Now we choose e so small that E < p. We then have, for n sufficiently 

Pr (S . 3S *) = Pr(Sn = {p-e)n) 

and the result follows immediately from (1). 

LEMMA 2. Let E\X\ < oo and EX > 0 or else E\X\ = co and, in either 
case, E\X~\r < oo for some integer r 2j 1. Then 

2 nr~2 Pr(Sn = x) < 00, — 00 < X < 00. 

PROOF. We define a new random variable Y as follows 

Y = X if X < K 
= 0 otherwise, 

where the constant K ( > 0) is chosen so that EY > 0. Then, Y <^ X and 
E\Y\r < <• . It follows from Lemma 1 that 

* The term "analytic characteristic function" is used for a characteristic function which 
is analytic in a strip containing the origin as an interior point. 
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216 C. C. Heyde [3] 

2 nr~2 Pr{Y1-\-Yi-\ \-Yn ^ *) < oo, — oo < x < oo. 
Also, if A^+XjH \-Xn g x, then Y^Y^ \-Yn ^ x so that 

Pr • - • +Yn ̂ x) 2= P r ^ + X . - r - • • • +Xn^x) = Pr(Sn^x) 
and hence 

2 M ' - 2 i 3r(S„ < x) < oo, —oo < a: < oo. 

This completes the proof. 

LEMMA 3. Let E\X\ < oo, EX = u > 0 awo* 

2 »* ^ x) < oo, — o o < a ; < c o 

/or some non-negative integer k. Then 7i|X_|*+2 < oo. 
Our proof relies heavily on techniques used by Erdos [3]. 

PROOF. Write X* = Xt-/t and Z „ = J,tixt- We then have 

Pr(Sn £x) = Pr{Zn ^ x-n/t) ^ Pr(Zn ^ - « c ) 
for c > n and M sufficiently large. 

Now from the fact that E\X\ < oo, it follows by a simple rearrangement 
that 

ZPr(X*< ~{c+e)n) < oo, 
n- l 

for arbitrary £ > 0. Also, since the terms in this series are non-increasing, 
we have 

(2) nPr{X* < —(c+e)n) 0 as » -»• oo. 
Write { £ } for the event E and { £ } for the complement of {E}. We have 

{Zn = -ne)2U [{X? < -»( '+*)} « • • • +Xt-i+Xt+i+ • • • 
+X*\ < (n-l)e}], 

and for the sake of brevity, we put 

Af = {X* < -n{c+e)}, 
Bi = {\X*+ • • • +x:_1+X*+1+ • • -+X*\ < (n-l)e}, 

i = 1, 2, 3, • • •, n. Thus, 
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= Pr[ U {(At n By) n(A2nB2)n---n (A(_y n Bt_y) n(A{n B{)}] 
i=l 

= I Pr[(Ay n By)n • • • n(A(_y n BH)n(^ n B,)] 
<-i 

(3) ^ i P r ( i 1 n i 2 n - - n i H n / l i n B j ) 
i=l 

^ 2 [Pr{At n B ^ - P r ^ u A2 u • • • u A{_y) n A J] 
1=1 

=S 2 LPriBJ-li-VPrlAMPriAt) 
1=1 

^ J [Pr(Bt)-n Pr{Ay)]Pr{At). 

Now take arbitrary p,0 < p <1 and c5 > 0 such that 1—25 3: p. It follows 
from the weak law of large numbers that we can find an integer Ny such that 

Pr(Bf) > 1-6 for n ^Ny. 

Also, from (2), we can find an integer iSSg-such that 

n Pr(Ay) < <5 for n Si N2• 

Thus, for n Si max {Nlt N2), we have from (3) 

(4) Pr(Zn < -nc) Si np Pr(X* < —(c+e)n), 

and hence 

Pr{X* < ~{c+e)n) < oo. 

We now introduce the random variable Y defined by 

Y = X* if X* < 0 
= 0 otherwise, 

and obtain 

2 Pr{Y < ~{c+e)n) < oo. 
It follows from this, by a simple rearrangement, that £|Y|*+2 < oo and 
hence that E\X~\*+i < oo. This completes the proof. 

PROOF OF THEOREM A. Theorem A follows immediately from Lemmas 2 
and 3. 

We now go on to give two Lemmas leading up to a proof of Theorem B. 

Pr(Zn^-nc)^Pr[\J (AtnBt)] 
•=i 
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218 C. C. Heyde [5] 

The development of the proof is similar to that used above in the proof 
of Theorem A. 

LEMMA 4. Suppose X~ has an analytic characteristic function and either 
E\X\ < oo and EX > 0 or E\X\ — oo. There exists a constant R > 0 
such that 

2,ernPr(Sn ^x) < oo 
for every x, —oo < x < oo and every r, 0 < r < R. 

PROOF. Since X~ has an analytic characteristic function, there exists a 
constant K > 0 such that 

0(8) - E(e~ex) < oo 

for all 8 in 0 5g 8 < K. Now for such a 8, a well-known Chebyshev type 
inequality gives 

Pr(Sn = x) ^ eBx E(e-9S«) = ee"{0(8)}n. 

Also, in view of our assumption that E\X~\ < oo and either E\X\ < oo 
and EX > 0 or E\X\ = oo, we must have 0(6) < 1 for sufficiently small 
positive 6. We then choose R so small that eR0(8) < 1 and for all r, 
0 <r < R, 

^ V " Pr(Sn ^ a) < oo. 

This completes the proof of the Lemma. I am indebted to the referee for 
this direct proof. My original proof was based on Baum, Katz and Read 
[1], Theorem 2, 190. 

Lemma 4 is a generalization of the well-known result of Stein [9] 
which deals with the case X~ = 0. It should be noted that although Stein's 
result is correct, his proof is invalidated by a misinterpretation of the 
Markov chain property of the sequence { S B } of sums. 

LEMMA 5. Let E\X\ < oo. Suppose EX = u > 0 and 

2 ern Pr(S„ = x) < oo 

for all r, 0 < r < R and all x, — oo < x < oo. Then X~ has an analytic 
characteristic function. 

PROOF. We retain the notation of Lemma 3. Proceeding precisely as 
in Lemma 3, we obtain (4) 

Pr(Zn = -nc) 3r nP Pr(Xf < -(c+s)n), 

so that certainly 

Y Pr(X; < -(c+e)n) < oo. 
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We now introduce the random variable Y defined by 

Y = X* if X* < 0 
= 0 otherwise, 

and obtain 
JTE,NPR(Y < —(C+E)N) < oo. 

It follows immediately, using Lukacs [7], Theorem 7.2.1, 137, that Y 
and hence X~ has an analytic characteristic function. This completes the 
proof of the Lemma. 

PROOF OF THEOREM B: Theorem B follows immediately from Lemmas 4 
and 5. 

It is worth remarking that it is quite likely that in Theorems A and 
B the condition E\X\ < oo, EX > 0 can be replaced by the condition 
E\X\ < oo, EX > 0 or E\X~\ < oo, E\X\ = oo. 

3. APPLICATION TO SOME FIRST PASSAGE PROBLEMS 

Let XU I = 1, 2, 3, • • • be independent and identically distributed 
random variables and write S„ = XJ+X2+ • • • +XN. Consider a single 
boundary at A(^0) so that if 

f 1 X 2: 0 

\ 0 X < 0, 

FX(X) = PRIS^X), 

FN(X) = PR(S„ ^ X; max SK ^ A), N > 1, 

the probability PN that the first passage time out of the interval (—oo, A] 
for the process S n is N is given by 

Pn = FN-X(A)-FN(A), N ^ 1-

This passage problem in the case A = 0 arises, for example, in the busy 
period distribution of the queue GI/G/1 which has been considered by various 
authors such as Finch [4]. 

We introduce the probability generating function P{K) = ^LIARPR 

for the first passage time distribution (henceforth abbreviated F.P.T.D.) 
PR(N = « ) = P N . We have formally 

00 

P ' ( 1 ) = E(N) = L+2FR(A) 

^"(1) =LR(R-\)PR = E(N*)-E(N) = 2ZRFR(A), 
f-2 r-1 
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and in general for k > 1, 

P (*>(1) = (a)* (the k-th. factorial moment of N) 

= ¿2 ( r ) ( t F r ( ^ ) = 2 s ( * , r ) £ ( i V 0 
r=*-l r=0 

where (»-)* = r(r— l)(r—2) • • • ( r — ¿ + 1 ) and s(A, r) are the Stirling 
numbers of the first kind. It is thus clear that E{NT) < co for some positive 
integer r if and only if ^n'-^F^A) < co. Also, the random variable 
N has an analytic characteristic function if and only if the radius of con
vergence of P{X) is greater than unity or equivalently if ]?eTnFn(A) < co 
for some r > 0. 

Now we write 

qn = Pr ( max Sk ^ 0), n > 1; qa = 1. 

Spitzer [8], 332, shows that 

(6) f ? B * » = e x p ( 2 ^ i V ( S B ^ 0 ) l , 

a result originally due, in a slightly different form, to E. Sparre Andersen. 
From this we obtain 

9 n > - Pr(Sn £ 0). n 
Thus, 

Pr(Sn =A)^Pr(mSLxSk^A) = F„(A) ^qn^- Pr(Sn = 0), 
1S*S» W 

and we readily obtain from Theorem B: 

THEOREM 1. The F.P.T.D. generated by the random variable X with 
E\X\ < co and EX > 0 has an analytic characteristic function if and only 
if X~ has an analytic characteristic function. 

Further, we obtain immediately from Theorem A: 

THEOREM 2. Let r > 1 be a positive integer. Consider the F.P.T.D. 
generated by the random variable X with E\X\ < co and EX > 0. // the 
F.P.T.D. has a finite r-th moment, then E\X~\T < co. If, on the other hand, 
E\X~\r < co, then the F.P.T.D. has finite moments at least up to the {r—l)th. 

In the particular case where A = 0, we can improve this Theorem 
by virtue of the relation (6). In fact, formally differentiating (6) (r — 1) times, 
we see that 

2,nr-*Pr(S„ = 0) < co if and only if J,n'-iqn < co. 
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Thus, in view of our comments above, the r-th moment of the F.P.T.D. 
exists if and only if 

2»r-2
 PR(SN £ 0) < oo. 

We therefore obtain immediately from Theorem A: 
THEOREM 3. LET R > 1 BE A POSITIVE INTEGER. THE ZERO-BARRIER F.P.T.D. 

GENERATED BY THE RANDOM VARIABLE X WITH E\X\ < oo AND EX > 0 HAS A 
FINITE R-TH MOMENT IF AND ONLY IF X~ HAS A FINITE R-TH MOMENT. 

Before ending this section, it is worth remarking that Derman and 
Robbins [2] show that it is possible to have E\X*\ = oo, = oo and 
PR(SN > 0 i.o.) = 1, PR(SN ^ 0 i.o.) = 0 and hence, following Kemperman 
[6], Theorem 15.2, 81, 2 1/« PR(S„ > 0) = oo, 21/» PR(SN ^ 0) < oo. This 
provides us with a limitation on eventual improvements of the Theorems 
given above. 

4. Correction to a theorem of Finch [4] 

Let T] be the difference between the inter-arrival and service time 
in a GI/GJL queue. We refrain from stating the usual queueing assumptions 
for the sake of brevity. Let / / „ be the probability that N customers are 
served in a busy period. Then, as is well known, 

HI = PRHI > o) 

JI„ = P R ( max %+j j 2 - | 1-»?* ̂  0, R,N > 0), N > 1. 
lS*£n-l 

so that PR(T — N) = LTN is a zero-barrier F.P.T.D. 
Finch [4] gives the following Theorem (his Theorem 2, 223). 

THEOREM SUPPOSE THAT E\TJ\ < oo. WRITE II = JX-INI> N^ = 2 ^ i ? / 7

J . 

IF ER) Sr 0 

IF ER)<0 

IF ERI > 0 

IF ER) = 0 

IF EN < 0. 

It is the final part of the statement of this Theorem that is incorrect, 
namely that 

AND AN - PRFA+RJ^ \-N„ > 0). THEN, 

1 
OO 

l-exp{-2«_ 1«„} 
/7 = 

7V = 

e x p { 2 « - 1 ( l - « « ) } 
n=i 

oo 

2«„ exp{-2»-1«„} 
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N = 2 a » e x P { — 2 w _ 1 « n } < oo if En < 0. 
n—1 n—1 

In fact, under the condition Er] < 0, we see from a negative mean analogue 
of Theorem A that 2»=i an < 0 0 if a n < i O I U y if < Q 0 - Thus, N = oo 
if £»7 < 0 and 2i|»7+|2 < oo. Finch's error arises from an invalid application 
of the Borel zero-one criterion which yields Pr(Sn > 0 i.o.) = 0 or 1 
according as 2<*n < oo or = oo. Actually, using Kemperman [6], Theorem 
15.2, 81, Pr(S„ > 0 i.o.) = 0 or 1 according as 2 w _ 1 < l n < °o or = oo. 
Finch's Theorem and his proof of it can easily be repaired in terms of these 
comments. A correct statement of the Theorem is as follows: 

THEOREM. Suppose that E\n\ < oo. Write 17 = Y £ x /7,, N = 2S=i j'77,, 
and a„ = Prfa+n^ \-nn) > 0. Then 

n = 

N -

1 if En>0 
CO 

1—exp {— J if Er) <0 
n- l 

exp {2 n-\l-an)} ifEv>0 
n=l 

oo if En = 0 or En < 0 and i?|j?+| 2 = oo 
00 00 

2 a„ exp {— 2 if En < 0 and £|J?+|2 < oo. 
V n=l n=l 
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