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Introduction

Ninomiya, in his thesis [13] on the potential theory with respect to a

positive symmetric continuous kernel G on a locally compact Hausdorff space

i2, proves that G satisfies the balayage (resp. equilibrium) principle if and only

if G satisfies the domination (resp. maximum) principle. He starts from the

Gauss-Ninomiya variation and shows that for any given compact set K in Ω

and any positive upper semi-continuous function u on K% there exists a positive

measure μ on K such that its potential Gμ is < u on the support of μ and

Gμ > u on K almost everywhere with respect to any positive measure with

finite energy.

His method can not be applied to non-symmetric kernels, because for those

kernels the Gauss-Ninomiya variation is useless in its original form.

In this paper we shall prove that the above existence theorem is valid for

non-symmetric kernels under certain additional conditions—separability of a

compact set K and the continuity principle for adjoint kernels. We first prove

it in a reduced form on a compact space consisting of a finite number of points

and then extend it to a kernel on a locally compact Hausdorff space.

Using our existence theorem, we shall prove that if G and its adjoint G

satisfy the continuity principle, then G satisfies the balayage (resp. equilibrium)

principle when and only when G satisfies the domination (resp. maximum)

principle. It will be also shown that G satisfies the balayage principle if and

only if 6 does. Other maximum principles which are closely connected with

the domination and maximum principles will be dealt with also. We shall give

an answer to a question, raised by Deny, which concerns with the complete

maximum principle.

A summary of this paper was published in [11].
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166 MASANORI KISHI

Definitions

Let Ω be a locally compact Hausdorff space and G(x,y) be a positive lower

semi-continuous kernel on Ω, that is, G(x, y) is defined on the product space

Ω x Ω and it is positive and lower semi-continuous as a function on Ω x Ω. The

kernel G defined by G(x, y) = G(y, x) is called the adjoint kernel of G. If

G = G, G is called symmetric. For a given positive measure μ, the potential

Gμ(x) and the adjoint potential Gμ(x) are defined by

Gμ(x)= §G(x, y)dμ(y) and Gμ(x) = jόU, y)dμ(y)

respectively. The G-energy of μ is defined by \Gμ(x) dμ{x).

We denote by 2ft0 the family of all positive measures μ such that its sup-

port, denoted by Sμ, is compact, and by $o = @ o(G) the family of all positive

measures in 9J?0 with finite G-energy. Evidently &o(G) = (£0(G). We say that

a property holds G-p.p.p. on a subset J c β when it holds on X almost every-

where with respect to any μ in %. A property holds G-p.p.p. on X if and

only if it holds G-p.p.p. on X. We say that G satisfies the continuity principle

when for any μ e 9J?o> the following implication holds *

[the restriction of Gμ(x) to Sμ is finite and continuous]

=* EGM#) is finite and continuous in the whole space J2J.

A seqnence {μn) of positive measures is said to converge vaguely to a positive

measure μ when for any finite continuous function / with compact support,

Chapter I. Existence theorem

1. In this chapter we shall prove the following existence theorem.

THEOREM I.I. Let G be a positive lower semi-continuous kernel on Ω such

that its adjoint kernel G satisfies the continuity principle. If K is a compact

separable subset of Ω and u(x) is a positive finite upper semi-continuous function

on Kt then there exists a positive measure μy supported by K, such that

Gμ{x)>u{x) G-p.p.p. on K,

Gμ(x) <u(x) everywhere on Sμ.

For symmetric kernels this is well-known. It is verified by using the
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Gauss-Ninomiya variation (cf. Frostman [7], Kametani [9], Ninomiya [13]).

Theorem I.I follows immediately from

THEOREM 1.2. Let G be a positive lower semi-continuous kernel on a

compact separable space Ω such that its adjoint G satisfies the continuity principle.

If u(x) is a positive finite upper semi-continuous function in Ω> then there exists

a positive measure μ such that

Gμ(x)>u{x) G-p.p.p. in Ω,

Gμ(x) < u(x) on Sμ.

Therefore it is sufficient to prove Theorem 1.2 and we suppose, throughout

this chapter, that Ω is compact separable, so that it is metriable.

2. First we consider the case that Ω consists of a finite number of points

and reduce Theorem 1.2 to the following

T H E O R E M 1 . 3 . Given positive finite numbers am and uu (k, ί = 1 , 2 , , . . , n ) y

there exist non-negative finite numbers ft, f2, . . . , £ « such t h a t

n

* Σ a k i t i > U k for k = l,2, . . . , n 9

n

'Σajiti = UJ for every j such that tj^O.
1 = 1

Let Rΐ be the convex cone in the w-dimensional Euclidean space Rn, con-

sisting of all points (uu Uo, . . . , un) with every w/>:0. We denote, for ί = l ,

2, . . . , n, by Ai the point (an, #21, . . . , and in Rn+ and, for m (l<m<n)

positive integers l<*Ί</ 2 < * ' <ίm<n, we denote by Cm ,n 12.../»» the set of all

points (wi, U2> . . . , un) e R*l such that

m

Uk = *Σakiptp for k = ίi, i2i . . . , im
p = l

m

ΰ<uj<*Σajivtp for j^iu fe, . . . ,im

where tp>0 and *Σtp = 1. The set Cm\i,.u...im is a convex set on a hyperplane

in Rn, which is parallel to the w/-axes (j^iu ii> . . , im) if m<n. We put.

C = CCAi, A2, . . . , Anl = U U Cm.thh...im,

and we shall call it the 7*00/ determined by {Ah A2, . » . , An),
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168 MASANORI KISHI

Now let S*"1 be the unit sphere in Rn and put ST1 = S""1Π Rl, and consider

the projection τn from the origin 0 to ST1 in i?ΐ. Then we have

LEMMA I.I. The projection τn maps the roof C onto ST1
 ( Λ > 2 ) .

We shall give a proof of this lemma at the next section. Here we prove

Theorem 1.3 by using it. For any given point U= {uu tk, . . . , un) in Rn+, we

have, on the roof C determined by {Au A2, . . . , An), a point Uf = {ul, u'2y . . . ,

u'n) which is on the straight line passing U and the origin 0. Suppose that

IP is on Cm;iιii...im' Then there exist m non-negative t\x, tu_, , . . , t\m such that

akixtii + aki2ti2+ - + akimtim = ufk for k = iu fe, . - . , im*

(tjixt'h + aji2ti2+ + ajimtim>uj for j k, . . . , im.

Since £7' is on the straight line passing U and 0, there exists a positive number

a such that auu-Uk (l< k<n). Therefore putting tk = octk for k = ή, ι2, . ,

tm and f = 0 for y^ίΊ, ι2, . . . , im> we have

+ β^nίΛ = Uk for ^ with tk^0,

+ajntn'>:Uj for 7 = 1,2, . . . , w.

3. Proa/ 0/ Lemma 7.1.*) We shall prove it by induction. We can easily

verify that the statement is true for n = 2. Let us suppose that the statement

is true for n — \ and put

A\k) = (an, . . , tfjfe-i, , 0, Λjfe+it , . . . , and

for *, / = 1, 2, . . . , n. Then (/ι -1) points A[k\ . . . , ^^Λ, ^ £ 1 , . . • , A(

n

k) are

in i?ΐ n{«jfe = O} and

CΠ{uk = 0} = h(CίA[k\ . . . , ΛJ&, A{

k

kL . . . , Λi*}]),

where ίfe is the injection which maps Rn~x to RnΓϊ{uk = θ}. Hence by our

assumption the projection τT1 ( = the restriction of τn to IkiR71'1)) maps

cn{tfA = o} onto s Γ 1 n{f#* = o}.

On the other hand we have a homeomorphism /z which transforms S?"1

onto the (n — 1) dimensional ball Bn~x in such a way that U S ί ~ 1 Π { ^ = 0} is

transformed onto the boundary aJ5n-1 of β""1. Thus we have a continuous

*> This proof has been done in collaboration with Prof. N. Shimada.
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n

mapping f = h°τn: C-^B"'1 which maps UCΠ {«* = ()} onto dB"1'1.
fc=l

Next we construct a continuous onto mapping g'- Bn~1->C which maps
n

dBn~ι onto U C n { % = 0}. Let B1 be an (w-1) dimensional ball of radius

1/2, and J?i, B2y . . . , Bn be linearly independent w points on the boundary dB'

of Bf. We take a concentric ball B of radius 1 and we project Blt . . . , Bk-i,

Bk+u - - > Bn from J9& onto the boundary dB of 5. We denote Blk) the image

of Bi. We can decompose a£ into simplexes or cells with vertices B\k\ and

we can form a cell complex as follows. Take (w —1) points Z4υ, . . . ,B{k~ι\

Bkk+1), - . . , Bkn). By these points the simplex J1]k is determined. Next take

2(n-2) points B(/] (i^ku fe> j = ku fe). Then the cell J2;M2 is determined

by simplexes with vertices B{£1 and B{£ϊ (i^klt k2). We continue this process.

In general, take m(n-m) points Bjι) (i^ki, . . . , km,j = ku - » ^m .̂ Then

the cell Δm ,kι...km is determined by simplexes with vertices of these points.

With these dB is decomposed into cells. The number of these cells is 2(272"1 - 1).

Next we decompose dB1 into simplexes with vertices Bu B2, . . - , Bn.

Using the faces of these simplexes and the cell Δm]kι...km on dB, we can obtain

a decomposition of (BΠtfB') UdBf into cells Dm-.k^km such that Dmik1...kmn

dB = Δm kx...km and Dm, kx...km

 n ^B1 = simplex with vertices Z?̂ , . . . , Bkm. Thus

we obtain the decomposition of B: Dm k1...km (l<>m<n — l, l<kι< - - <km

< n) and a simplex Bf with vertices Bίt B2, . . . , Bn. The number of these

sets is 2n - 1.

Now we construct a continuous onto mapping g' B-+C which transforms

dB onto UCn{wjfe = 0}.
fc = l

At the first step we define a continuous mapping go from the simplex B'

with vertices Blf B2, . . . , Bn onto Cn-,\2...n such that the simplex with vertices

Biιt . . . , Bim is transformed onto the simplex with vertices Ailt . . . , Aim for

1 < i'i < < im < n. At the second step we define a homeomorphism gx. k from

Di,k onto Ci jfe such that Bk and ^ z ) are transformed to Ak and Aj.0 (i^fk)
n

respectively, and Δu k to U Ci; Λ Π {w, = 0}. Nex twe define a continuous mapping
ί = l

g2ik1k2 D2;kLk2-*C2]kxk2 such that g2 ,kxk2 = gv,ki on the face with vertices B%

(ί = l, 2; j^kiy h2) and g2 ,k,k2 = ga on the face on 95' with vertices Z? ,̂ Z?*2

and Δ2;kxk2 is mapped onto U C 2 ; ^ 2 Π { M / = 0}. We continue this process, and
t = 1

we obtain continuous mappings gm;k1...km

: Dm;k1...km-J>Cm;k1...km (I
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170 MASANORI KISHI

1 < & I < * φ <km<n) such that the mapping g} defined by

On Dm;kι...km{ gm; kχ...km

on B',
n

is a continuous onto mapping B->C which maps B onto UCΠ{% = 0}.

Then we consider the composed continuous mapping ψ = f°g. This trans-

foms the (n — 1) dimensional ball Bn~x to itself and the boundary BB71'1 onto

3Bn'\ As easily seen, the degree of the restriction of ψ on BBn~x is 1 (resp.

-1) if it is sense preserving (resp. sense reversing). Hence by Kronecker's

existence theorem (cf. [1] p. 467) ψ is an onto mapping. Therefore τn is an

onto mapping. This completes the proof.

4, Now we go back to a compact separable space Ω. When G(x, y) is

finite continuous everywhere in Ω x Ω, we shall say that G is a finite continuous

kernel. For later use we state some properties on finite continuous kernels.

LEMMA 1.2. Let G be a finite continuous kernel and {μa) (a ^ A) be a

family of positive measures such that \dμ(i<M< + °°. Then Gμa(x) (a <a A)

is equi-continuous in Ω.

This is evident, since G{x, y) is finite and continuous on ΩxΩ.

LEMMA 1.3. Let G be a finite continuous kernel. If {xn) converges to x0 and

a sequence {μn) of positive measures converges vaguely to μo, then

Gμo(Xo) = lim Gμn(Xn).

Proof By the preceding lemma, for any positive e, there exists a neigh-

borhood ω(xo) of XQ such that

\Gμm(xo) - Gμm(x) I <e/2 for any # e ω(x0) and m.

Therefore there exists n± such that for any n>ni

\Gμn{Xo)-Gμn(Xn)\<ε/2.

On the other hand, by the continuity of G(x0, y) and the vague convergence

of {μn) there exists nz such that

- Gμn(Xo) |<e/2 for any n>n2.

Consequently for any w>max (nu tk)
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\Gμo(Xo)-Gμn(Xn)\<e.

THEOREM 1.4. Assume that G is a finite continuous kernel on a compact

separable space Ω. If u(x) is positive finite continuous on Ω, then there exists

a positive measure μ with properties:

Gμ(x)>u(x) on Ω

Gμ(x) = « ( # ) on Sμ.

Proof. Let D be a dense subset of Ω which consists of countably many

points xn (n = 1, 2, . . . ) and Dn be the subset {xu &,..., Xn). By Theorem

1.3, there exists a positive measure μn on Dn such that

Gμn(x)>u(x) on Dn,

Gμn(x) = u(x) on Sμn.

Denoting by a and β min Ω X Ω G(X> y) and maxΩ u(x) respectively, we have

, y)dμn(y) = Gμn(x) = u(x) < β.

Therefore the total masses of μn are bounded and a subsequence of {μn) con-

verges vaguely to positive measure μ. Without loss of generality we may

suppose that {μn) itself converges vaguely to μ. This μ is what we want.

In fact, let x be a point and e be a positive number. Then by Lemma 1.2 and

the continuity of u(x), there exists a neighborhood ω of x such that

(1) Gμn(x) + ε/3> Gμn(x') for any χf e ω and any #,

(2) «(*') +e/3>«U) for any x'e ω.

Since {̂ «} converges vaguely to ^,

(3) Gμ(x) + ε/3>Gμn(x) for any sufficiently large n.

D being dense in Ω, for any sufficiently large n, D M ί lω^0 and

(4) Gμn(xr) > wUO for any ^ ' ε f t Π ω.

By (1), (2), (3) and (4), Gμ{x) + ε>u(x) and hence Gμ(x)>:u(x).

Now let ΛΓ be a point of Sμ. Then a sequence of points xn e Sμn must

converge to A: and

u(x) - lim «(^n) = lim Gμn(Xn) = Gμ(x)

by Lemma I. 3. This completes the proof.
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COROLLARY. Assume the same for G and Ω as Theorem 1.4. If u(x) is

positive finite upper semi-continuous on Ωy then we have the same conclusion

as Theorem L 4.

Proof. Let {un) be a sequence of positive finite continuous functions such

that un\u. By Theorem I. 4, there exist positive measures μn such that

Gμn(x)>un(x) on Ω,

Gμn(x) -Unix) On Sμn.

As is easily seen, the total masses of μn are bounded and a subsequence con-

verges vaguely to a positive measure μ. Without loss of generality we may

suppose that {μn} converges vaguely to μ. Then we have

Gμ(x) = lim Gμn(x) >lim un(x) = u(x)

in Ω. On the other hand, for a point x on Sμ, a sequence {xn} of points on

Sμn converges to x and

Gμ(x) = lim Gμn{xn) = lίm un(xn) <. u(x).

Thus the existence of a wanted positive measure μ has been shown.

5. Now we consider a kernel G which is not necessarily finite and

continuous.

LEMMA 1.4 (cf. Brelot and Choquet [2], Ohtsuka [16]). Assume that the

adjoint kernel G satisfies the continuity principle. If a sequence {μn) of positive

measures converges vaguely to μ> then

lim Gμn(x) = Gμ(x) G-pφ.p. in Ω.

Proof. Since {μn) converges vaguely to μ, lim Gμn(x)>Gμ(x) everywhere

in Ω. Therefore it is sufficient to show that lim Gμn(x)< Gμ(x) G-p.p.p. in Ω.

If we deny this, we can find a unit measure v with finite G-energy such that

lim Gμn{x)>Gμ(x) on Sυ.

Since \όvdv = \Gvdv< + °°, Gv is finite continuous on a compact subset

i£iC Sv, and hence by the continuity principle, the potential Ovχ of the restriction

of v to Kx is finite continuous in Ω. Consequently

https://doi.org/10.1017/S0027763000011247 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011247


MAXIMUM PRINCIPLES ΪN THE POTENTIAL THEORY

n = \Gvidμ = \Gμdvi.

This is a contradiction, which completes the proof.

6. Now we can prove Theorem 1.2. Let us take positive finite continuous

kernels Gn of Ω such that Gn/G. Then we have, by Corollary of Theorem

1.4, a positive measure μn such that

Gnμn(x)>u{x) on i?,

Gnμn(x) = #(#) on

The total masses of μ* are bounded and a subsequence converges vaguely to

a positive measure μ. Without loss of generality we may suppose that {μn}

itself converges vaguely to μ. Then by Lemma 1.4,

Gμ(x) = lim Gμn(x) >: Hm Gnμn(x) >

G-p.p.p. on Ω. On the other hand, for any point x on Sμ, a sequence {xn}

(xn^Sμn) converges to x and for any fixed nύ

u(x) >flm w(ΛTn) = ίίm

Therefore u(x)>Gμ(x). Consequently Gμ{x) has all the properties of our

theorem. This completes the proof.

Remark. Theorem 1.1 is false, unless we assume the continuity principle

for the adjoint kernel it is shown by a simple counter-example.

Chapter II. Maximum principles

1. In this chapter we suppose that Ω is a locally compact Hausdorff space

every compact subset of which is separable and that G is a positive lower

semi-continuous kernel on Ω such that G(x, y) is locally bounded at every

point (x, y) e Ω x Ω with x ̂ ey.

Let us start from the following principles.

Let u(x) be a positive finite upper semi-continuous function or a positive

lower semi-continuous function which is * + °° in Ω, and v(x) be a positive

$ + °° function in Ω such that u(x) < v(x) everywhere.
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(/) (u, v)-relative equilibrium principle. For any compact set K, there

exists a positive measure μe9Jί0, supported by K, such that

Gμ(x)>u(x) G-p.p.p. on if,

Gμ(x) < v(x) in Ω.

(II) (u, v)-relative domination principle. For a positive measure

an inequality Gμ(x) < u{x) on Sμ implies the inequality Gμ(x) < v(x) in Ω.

Choquet and Deny [4] introduced these principles with u = υ. Ohtsuka

[16] dealt with similar principles.

THEOREM II. 1. Let G and G satisfy the continuity principle. Then G

satisfies the (u> v)-relative equilibrium principle if and only if G satisfies the

iu, υ)-relative domination principle.

Proof. (I)-* (II). Let G satisfy the (w, #)-relative equilibrium principle

and let μ be a positive measure in ©0 such that Gμ<>u on Sμ. Take a point

x in Ω - Sμ and a sequence of positive finite continuous functions fn on Sμ

such that fnfόεXy where εx is the unit measure such that fdεx = fix) for any

finite continuous function / in Ω. Then by the existence theorem (Theorem

I.I) we have positive measures vn on Sμ such that

Gvn>fn G-p.p.p. on Sμ,

Ovn<fn On Svn^-Sμ.

From the first inequality it follows that

Gμ(x) =]Gμdεx = }Gεxdμ = limyndμ

<limjGvndμ = lim

Let μ'n be (w, #)-relative equilibrium measures on Svn. Then each μn is sup-

ported by Svn and Gμn > u G-p.p.p. on Svn and Gμf

n < v in Ω. Hence

= \Gμndεx< \vdεx = #(#),

where the first inequality follows from the fact that \Gvndvn<\fndvn< + °°.
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Consequently lim\udvn< vix) and Gμ(x) < υ(x).

(II) -»(I). Let G satisfy the {u, z>)-relative domination principle and K

be a compact set. We can take a sequence {un} of positive finite upper semi-

continuous functions with un/u on K. Then by the existence theorem there

exists a sequence {μn} of positive measures, supported K> such that

Gμn(x) > Unix) G-p.p.p. on K,

Gμn(x) <, Unix) on Sμn.

By the last inequality, μn belongs to ©0 and by the (u, #)-relative domination

principle,

in J2.

From this follows that the total masses of μn are bounded and a subsequence

converges vaguely to a positive measure μ supported by K. We may suppose

that μn->μ vaguely. Then

Gμix) = Hm Gμn(x) > urn un(x) == «(*)

G-p.p.p. on iΓ. Thus G satisfies the (u, υ)-relative equilibrium principle.

In the following sections we shall give applications of this theorem.

2. Domination principle. First application of the preceding theorem is on

the balayage principle.

(///) Balayage principle. For any compact set K and any μ s 2Jl0ι there

exists μf e 2Jίo such that μf is supported by K and

Gμ!{x)<Gμ(x) in Ω,

Gμ'{x)>Gμ{x) G-p.p.p. on K.

This measure μf is called a G-balayaged measure of μ on K.

ilV) Domination principle. For a positive measure ^ e ^ 0 and a positive

measure v e 3J?o, an inequality G^(ΛΓ) < GẐ (ΛΓ) on Sμ implies the same inequality

in the whole space Ω.

( V) Elementary domination principle. For a positive measure μ e (£α and

a point # not on Ŝ t, an inequality Gμ{z) < Gεx(z) on Sμ implies the same

inequality in Ω.

THEOREM II.2. If G and G satisfy the continuity principle, then the
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following four statements are equivalent.

(1) G satisfies the balayage principle,

(2) 6 satisfies the balayage principle,

(3) G satisfies the domination principle.,

(4) 0 satisfies the domination principle.

Ninomiya [12] first obtained this theorem for symmetric kernels, then Deny

[5] followed to show the equivalence between (1) and (4) for strictly increasing

diffusion kernels. For regular kernels on a compact space which consists of a

finite number of points, Theorem II. 2 was obtained by Choquent and Deny [4].

Proof of Theorem II. 2. (l)-> (4). Let μ be a positive measure in (£0 and

v be one in 93ΐ0 such that όμ < Gv on Sμ. Take a point x in Ω - Sμ and a

G-balayaged measure εx of εx on Sμ. Then

Gμ(x) = \όμdεx = §Gεxdμ = §Gε'xdμ

where the third equality, J Gεxdμ = JGeίέί«, follows from the facts that Gε* =

Gε'x G-p.p.p. on Sμ and μ belongs to (£0, so that Gεx = Gei ^-almost everywhere.

(3)~>(1). Let G satisfy the domination principle and let μ be a positive

measure in 9J?0. Putting u(x) = z>(#) =Gμ(#), we see that for any compact set

K> there exists a G-balayaged measure of μ on K by Theorem II. 1. Hence G

satisfies the balayage principle.

The implications (2)-»(3) and (4)-»(2) are duals of (l)-+(4) and (3)-*(l)

respectively. This completes the proof.

Remark. This theorem is valid for kernels which are not necessarily

locally bounded.

Now we shall give another characterization of the balayage principle, which

will be useful in applications.

THEOREM II. 3. Let G and G satisfy the continuity principle. Then the

following statements and (1) in Theorem II. 2 are equivalent.

(5) G satisfies the elementary domination principle,
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(6) ά satisfies the elementary domination principle.

Proof. (l)->(5). Let G satisfy the balayage principle. Then by the

preceding theorem G satisfies the domination principle, whence G does the

elementary domination principle.

(δ)->(l). Let G satisfy the elementary domination principle and μ be a

positive measure in 60 and z; be a positive measure in 9fl0 such that Gμ < Gv

on Sμ. Take a point x in Ω - Sμ. Then we have a G-balayaged measure λ of

εx on Sμ by the elementary domination principle and the existence theorem.

This λ belongs to ®0, since \Gλdλ<\Gεxdλ and Gεx is bounded on Sμ. Then

Consequently 0 satisfies the domination principle and G satisfies the balayage

principle.

The equivalence between (2) and (6) is dual of the one between (1) and

(5). Hence (1) and (6) are equivalent by Theorem II.2.

This theorem was obtained by Ninomiya [13] for symmetric kernels.

Remark. If G and G satisfy the continuity principle, G satisfies the

balayage principle when and only when one of the following statements is

true:

G-balayaged measures of point-masses exist always,

O-balayaged measures of point-masses exist always.

3. Dilated domination principle. Now let us consider the dilated domina-

tion principle after Ohtsuka [16].

(///)' k'dilated balayage principle. For any compact set K and any

there exists μf e 9fl0 such that μf is supported by K and

Gμ'(x)<k Gμ(x) in Ω,

Gμf(x)>Gμ(x) G-p.p.p. on K.

{IV)1 k-dilated domination principle. For a positive measure μe(£0 and a
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positive measure v^Wo, an inequality Gμ(x) <Gv(x) on Sμ implies the

inequality Gμ{x) < k Gv(x) in Ω.

(V)f k-dilated elementary domination principle. For a positive measure

μe@o and a point x not on Sμ, an inequality Gμ(z) < Gεx(z) on Sμ implies

the inequality Gμ(z) <k'Gεx(z) in Ω.

Using just the same as in the preceding arguments we obtain

THEOREM II. 4. If G and G satisfy the continuity principle, then the following

statements are equivalent: G satisfies the k-dilated balayage principle, G satisfies

the k-dilated domination principle, G satisfies the k-dilated elementary domina-

tion principle, G satisfies the k-dilated balayage principle, G satisfies the k-

dilated domination principle, G satisfies the k dilated elementary domination

principle.

4. Maximum principle. Now we consider the equilibrium and maximum

principles.

(IV) Equilibrium principle. For any compact set K, there exists a positive

measure μ, supported by K, such that

Gμ(x) < 1 in Ω,

Gμ(x) = 1 G-p.p.p. on K.

This measure μ is called a G-equilibrium measure of K.

(VII) Maximum principle. For a positive measure μ e 9J?0, an inequality

Gμix) < 1 on Sμ implies the same inequality in Ω.

(VIIV k-dilated maximum principle. If Gμix) < 1 on Sμ for /iεϋίlo, then

Gμ{x)<k in Ω.

The following theorems are immediate consequences of Theorem II. 1.

THEOREM II. 5. Let G and 0 satisfy the continuity principle. Then G

satisfies the equilibrium principle if and only if G satisfies the maximum principle.

THEOREM II. 6. Let G and G satisfy the continuity principle. Then G

satisfies the k-dilated maximum principle when and only when for any 'compact

set K, there exists a positive measure μ, supported by K, such that

Gμ(χ)>l G-p.p.p. on K,

Gμ(x)<k in Ω,
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Remark. Contrary to the preceding equivalence (!)<•> (2), G does not

satisfy the equilibrium principle in general, although G satisfies it. The

equivalence holds for convolution kernels.

THEOREM II. 7. Assume that G and G satisfy the continuity principle. Then

G satisfies the equilibrium principle if and only if the following property [ $ ]

is fulfilled for the adjoint kernel 0.

[ $ ] For a positive measure μ e WQ and a point x which is not on Sμ, the

validity of an inequality Oμ<, Gεx on Sμ implies that \dμ<l.

THEOREM II. 8. Assume that G and G satisfy the continuity principle. Then

G satisfies the k-dilated maximum principle if and only if the following property

LQlk is fulfilled for the adjoint kernel G.

ίQlk for a positive measure μ^Ήo and a point x which is not on Sμ, the

validity of an inequality Gμ < Gεx on Sμ implies that \dμ< k.

For symmetric kernels Theorems II. 5 and 7 were obtained by Ninomiya

[13] and Theorems II. 6 and 8 were by Ohtsuka [16].

We shall prove Theorem II. 8. Let G satisfy the ^-dilated maximum principle

and μ be a positive measure in % such that (Sμ < Gεx on Sμ for a point x

which is not on Sμ. By Theorem II. 6 there exists a positive measure v on Sμ

such that

Gυ>l G-p.p.p. on Sμ,

Gv < k in Ω.

Then, μ being in

Conversely we suppose that ό fulfills the condition ίQlk and μ is a positive

measure in SJRO such that Gμ<l on Sμ. We take a point x in Ω — Sμ and a

sequence {un} of finite continuous functions on Sμ such that un/Gtx. Then

there exist positive measures vn, supported by Sμ, such that

Gvn>un G-p.p.p. on Sμ,

Gvn< Un On Svn.
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From the last inequality it follows that \dvn<k. Hence

Gμ(x) =

5. Complete maximum principle. Here we consider the complete maximum

principle and related principles. The complete maximum principle was first

introduced by Cartan and Deny [3]. Hunt [8] and many other probabilists

investigated it.

(VIII) Complete maximum principle. For a positive measure μ e @0,

a positive measure v e % and for a non-negative number tf, the validity

of an inequality Gμ(x) < Gp(x) Λ-a on Sμ implies the validity of the same

inequality in Ω.

(IX) Strong maximum principle. If μ is a positive measure in @0 and v is

a positive measure in 5J?0 such that Gμ<Gv + a on Sμ U Sz> with a non-negative

number <3, then the same inequality holds in Ω.

Evidently G satisfies the strong maximum principle, if it does the complete

maximum principle. Deny [6] asked a question wether the converse is true

under certain hypothesis on regularity. He solved in the affirmative for kernels

on a space of a finite number of points. We also give an affirmative answer

for our kernels.

THEOREM II. 9. Let ό satisfy the continuity principle. Then G satisfies the

complete maximum principle if G does the strong maximum principle.

First we prove

LEMMA II. 1. If G satisfies the maximum principle, then it has the following

property: Let μ be a positive measure in 5K0 and x be a point in Ω - Sμ. Then

G(x, x) majorizes Gμ(z) for z&Ω, if Gεx(z) majorizes Gμ(z) for any z^Sμ.

Proof. We may suppose that G(x, x) is finite. Then by the maximum

principle, Gex( z) < G{x, x) in Ω. Therefore
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sup Gμ{z) < sup Gεx(z) < G(x, x).

Then again by the maximum principle, Gμ(z) < G(x, x) for any z^Ω.

THEOREM II. 10. Let G satisfy the continuity principle. Then G satisfies

the complete maximum principle if and only if G satisfies the domination and

maximum principles.

Proof. It is sufficient to prove that G satisfies the complete maximum

principle if it does the domination and maximum principles, since the converse

is evident. Let μ be in g0 and v be in % such that Gμ<GvΛ a on Sμ with

a > 0. Take a point x in Ω - Sμ. Since G satisfies the domination principle,

G satisfies it and there exists a (5-balayaged measure εx of εx on Sμ. Let λ be

a G-equilibrium measure of Sμ. Because εx belongs to $0,

Therefore

Gμ(x) =

Thus G satisfies the complete maximum principle.

Proof of Theorem II. 9. By Theorem 11.10 it is sufficient to show that if

G satisfies the strong maximum principle, then G fulfills the condition (5) in

Theorem II 3. Let μ be a positive measure in (£0 and x be a point not on Sμ

such that Gμ<Gεx on Sμ. Then by Lemma II. 2, this inequality holds at x

also. Hence by the strong maximum principle, it holds everywhere in Ω.

Consequently G satisfies the complete maximum principle.

A characterization of the complete maximum principle by the following

balayage principle with mass-diminution was given by Deny [6].

(X) Balayage principle with mass-diminution. The balayage principle with

the following property: the total mass of the balayaged measure μ1 of a
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positive measure μ with compact support onto a compact set is less than that

of μ.

THEOREM II. 11. If G satisfies the balayage principle with mass-diminution,

then G satisfies the complete maximum principle. The converse is true if G and

0 satisfy the continuity principle and G is regular in the sense of [10] p. 65.

Proof. Suppose that G satisfies the balayage principle with mass-diminution.

Let μ and v be positive measures with compact support such that \Gμdμ is

finite and Gμ <>GvΛ- a on Sμ with a > 0. Take a point x in Ω — Sμ. Since 6

satisfies the balayage principle with mass-diminution, there exists a G-

balayaged measure ei of εx on Sμ such that \dex<\. Then by the same com-

putation as in the proof of Theorem 11.10 we have Gμ(x) <Gv(x) + a.

Conversely suppose that G satisfies the complete maximum principle. Then

by Theorems II. 2 and 5, G satisfies the balayage principle and G satisfies the

equilibrium principle. Let μf be a G?-balayaged measure of a positive measure

μGΉQ on a compact set K, and let ^ be a G-equilibrium measure of a G-

regular compact set Kf^>K. Then

= ^Gμ'dv <§Gμdv =

Consequently 0 satisfies the balayage principle with mass-diminution.

Theorem II. 1 supplies another characterization of the complete maximum

principle.

(XI) Complete balayage principle. For any positive measure μ with compact

support, any compact set K and any a > 0, there exists a positive measure μf

f

supported by ϋf, such that

Gμf = Gμ + a G-p.p.p. on K,

Gμ' <Gμ + a in Ω.

THEOREM II. 12. Let G and 0 satisfy the continuity principle. Then G

satisfies the complete maximum principle if and only if G satisfies the complete

balayage principle.

This follows immediately from Theorem II. 1.

Now we state the dilated principles.
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( VIII)f (&i, k2) -dilated complete maximum principle. For a positive measure

μ G 60, a positive measure v e Wo and a non-negative number a, the validity of

the inequality Gμ(x) < Gv(x) + a on S/J implies the inequality Gμ(x)< kιGu(x)

Λ k2a in Ω.

{IX)1 (ku kz)-dilated strong maximum principle. If μ is a positive measure

in dr0 and v is a positive measure in Wl0 such that Gμ<Gv + a on Sμϋ Sv with

a non-negative number a, then Gμ<kιGv-\- k2a in £.

THEOREM II. 10'. Let G satisfy the continuity principle. Then G satisfies

the (klt kiki)-dilated complete maximum principle if G satisfies the ki-dilated

domination principle and the k2-dilated maximum principle.

THEOREM II. 9'. Let G satisfy the continuity principle. Then G satisfies

the (kikl, kikl)-dilated complete maximum principle if G satisfies the (ku k2)-

dilated strong maximum principle.

6. Weak domination principle. Let us add a few words to the weak

domination principle.

(XII) Weak domination principle. If μ is a positive measure in $0 and v

is a positive measure in % such that Gμ < Gv on Sμ U Sι>, then the same

inequality holds in Ω.

THEOREM II. 13. Assume that G and G satisfy the continuity principle and

that G satisfies the weak domination principle. If G satisfies the maximum

principle or G(x, x) = + °o for any x^Ω, then G satisfies the domination

principle.

Proof. By Theorem II. 3, it is sufficient to show that G satisfies the

elementary domination principle. Let μ be a positive measure in (£0 and x be

a point in Ω — Sμ such that Gμ < Gεx on Sμ. Then Gμ(x) < Gεx(x) if G satisfies

the maximum principle or G(x, x) = + o°. Hence by the weak domination

principle, Gμ < Gεx everywhere in Ω. Thus G satisfies the elementary domina-

tion principle.

THEOREM II. 13'. // G satisfies the continuity principle and G satisfies the

weak domination principle and the k-dilated maximum principle, then G satisfies

the k2-dilated domination principle, k2 can not be replaced by a smaller number*
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7. Domination principle with respect to N. Now let N be another positive

lower semi-continuous kernel on Ω, and consider the following principles after

Ninomiya C14, 15].

(XIII) Balayage principle with respect to N. For any compact set K and

any positive measure μ in 9J?0, there exists a positive measure μf, supported

by K, such that

Gμ'(x) ^Nμ(χ) G-p.p.p. on K,

Gμ'(x)<Nμ(x) in Ω.

(XIV) Domination principle with respect to N. For any positive measure

μ in @o = @o(G) and for any positive measure v in 9J?0, the inequality Gμ(x) <

Nv(x) on Sμ implies the same inequality in Ω.

(XV) Elementary domination principle with respect to N. For any positive

measure μ in @o = @o(G) and a point x not on Sμ, the inequality Gμ(z)<Gεx(z)

on Sμ implies the same inequality in Ω.

Ninomiya discussed the equivalence of these principles for symmetric

kernels.

THEOREM II. 14. Let G and G satisfy the continuity principle. Then G

satisfies the domination principle with respect to N, if and only if G satisfies

the balayage principles with respect to N.

This follows immediately from Theorem II. 1.

THEOREM II. 15. Let G and 0 satisfy the continuity principle. Then G

satisfies the domination principle with respect to N, if and only if its adjoint

G fulfills the following condition:

[A] For μ e g0 and v(=Wlo, if Gμ < Gv on Sμ, then tfμ <Nv in Ω,

or equivalently G fulfills the condition :

[B] For μ e (F<> and x0 $ Sμ, if Gμ< OεXo on Sμ, then Nμ <. NεXo in Ω.

Proof. G satisfies the domination principle with respect to N=$G fulfills

the condition [A], Assume that Gμ<Gv on Sμ for / J G © 0 and v^tylo, and

take an arbitrarily fixed point x in Ω. By Theorem II. 14, thi re exists a

positive measure εi, supported by Sμ, such that
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Gε'x = Nεx G-p.p.p. on Sμ,

Gεx<Nεx in Ω.

Then

Nμ(x) = \

ei<J

Consequently G fufills the condition [A].

G fulfills [A] =>G fulfills [B]. Evident.

G fulfills [B] =^G satisfies the domination principle with respect to N.

Assume that Gμ < NP on Sμ for μ e (£0 and z/G3Jί0 and take a point ΛΓ0 in J2 - Sμ.

Then we can take a sequence {un) of positive finite continuous functions on

Sμ such that unfGsχύ. By the existence theorem, there exist positive measures

λn> supported by Sμ> such that

6λn > Un G-p.ρ.p. on Sμ,

Gλn < Un On Sλn*

Then by the condition [B], Nλn<$leXo in β. Therefore

Gμ(Xo) - \ GμdεXo = \ GεXodμ = lim\undμ

and

n Λ < j iVε^^ = JiVi; rfe^

Consequently Gμ<Np in i?. This completes the proof.

Similarly we have

THEOREM II. 16. Let G and G satisfy the continuity principle. Then G

satisfies the elementary domination principle with respect to N, if and only if G

fulfills the condition:

[C] For a Positive measure ^eSo and a point AΓO ί Sμ, if Gμ < Ge*0 on Sμt

then ftμ<Nεx, in Ω - Sμ.
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Remark. Evidently G satisfies the elementary domination principle with

respect to N, if G satisfies the domination principle with respect to N. But

the converse is not true there is a simple counter-example. Thus we ask a

question: under what condition for G and/or N does the elementary domina-

tion principle with respect to N imply the domination principle with respect

to N? We can give only the following answer. Needless to say, the implication

holds if JV= G or iV=l and G and G satisfy the continuity principle.

THEOREM II. 17. Let G and G satisfy the continuity principle. If G(x, x) -

+ °° at every point # e i2, then the following implication is true for G: the

elementary domination principle with respect to N ==*the domination principle

respect with to N.

Proof. It is easy to see that for a compact set K and a point x $ K, there

exists a positive measure A, supported by K, such that

Gλ = Nεx G-p.p.p. on K,

Gλ ^ Nεx in Ω,

if G satisfies the elementary domination principle with respect to N. From

this remark follows our theorem.
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