MAXIMUM PRINCIPLES IN THE POTENTIAL THEORY
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To Professor Kinjiro Kunugi on the occasion of his 60th birthday

Introduction

Ninomiya, in his thesis [13] on the potential theory with respect to a
positive symmetric continuous kernel G on a locally compact Hausdorff space
£, proves that G satisfies the balayage (resp. equilibrium) principle if and only
if G satisfies the domination (resp. maximum) principle. He starts from the
Gauss-Ninomiya variation and shows that for any given compact set K in £
and any positive upper semi-continuous function # on K, there exists a positive
measure 2 on K such that its potential G is < # on the support of x and

Gu=wu on K almost everywhere with respect to any positive measure with
finite energy.

His method can not be applied to non-symmetric kernels, because for those
kernels the Gauss-Ninomiya variation is useless in its original form.

In this paper we shall prove that the above existence theorem is valid for
non-symmetric kernels under certain additional conditions—separability of a
compact set K and the continuity principle for adjoint kernels. We first prove
it in a reduced form on a compact space consisting of a finite number of points
and then extend it to a kernel on a locally compact Hausdorff space.

Using our existence theorem, we shall prove that if G and its adjoint G
satisfy the continuity principle, then G satisfies the balayage (resp. equilibrium)
principle when and only when G satisfies the domination (resp. maximum)
principle. It will be also shown that G satisfies the balayage principle if and
only if G does. Other maximum principles which are closely connected with
the domination and maximum principles will be dealt with also. We shall give
an answer to a question, raised by Deny, which concerns with the complete
maximum principle.

A summary of this paper was published in [11].
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Definitions

Let 2 be a locally compact Hausdorff space and G(x,y) be a positive lower
semi-continuous kernel on £, that is, G(x, ») is defined on the product space
2% 2 and it is positive and lower semi-continuous as a function on 2x 2. The
kernel G defined by G(x, y) =G(y, x) is called the adjoint kernel of G. If
G=G, G is called symmetric. For a given positive measure g, the potential
Gp(x) and the adjoint potential Gu(x) are defined by

Gu(x) =jG(x, ) du(y) and Gu(x) =S(§(x, y)du(y)

respectively. The G-energy of u is defined by SGu(x) du(x).

We denote by M, the family of all positive measures z such that its sup-
port, denoted by Sy, is compact, and by €,=E(G) the family of all positive
measures in M, with finite G-energy. Evidently €o(G) = €:(G). We say that
a propetrty holds G-p.p.p. on a subset XC 2 when it holds on X almost every-
where with respect to any x in €. A property holds G-p.p.p. on X if and
only if it holds G-p.p.p. on X. We say that G satisfies the continuity principle
when for any & M,, the following implication holds:

[the restriction of Gu(x) to Sy is finite and continuous]
= [Gu(x) is finite and continuous in the whole space 2.

A seqnence {us} of positive measures is said to converge vaguely to a positive
measure ¢ when for any finite continuous function f with compact support,

&/(x) dun(%) > gf(x)du(x).

Chapter I. Existence theorem
1. In this chapter we shall prove the following existence theorem.

Tueorem 1.1. Let G be a positive lower semi-continuous kernel on 9 such
that its adjoint kernel G satisfies the continuity principle. If K is a compact
separable subset of 2 and u(x) is a positive finite upper semi-continuous function

on K, then there exists a positive measure p, supported by K, such that

Gu(x) > ulx) G-p.p.p. on K,

Gu(x) < u(x) everywhere on Sp.

For symmetric kernels this is well-known. It is verified by using the
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Gauss-Ninomiya variation (cf. Frostman [7], Kametani [9], Ninomiya [13]).

Theorem 1.1 follows immediately from

TueoreMm 1.2. Let G be a positive lower semi-continuous kernel on a
compact separable space @ such that its adjoint G satisfies the continuity principle.
If u(x) is a positive finite upper semi-continuous function in 2, then there exists

a positive measure p such that

Gu(x) = u(x) G-p.p.p. in 9,
Gu(x) <u(x) on Sp.

Therefore it is sufficient to prove Theorem 1.2 and we suppose, throughout

this chapter, that £ is compact separable, so that it is metriable.

2. First we consider the case that £ consists of a finite number of points

and reduce Theorem I.2 to the following

TueoreM 1.3. Given positive finite numbers ari and wur (B, i=1,2, ... ,n),
there exist non-negative finite numbers t,, tz, . . ., tn such that
Sawti=we  for k=1,2,...,n,
i=1

Sajiti = uj for every j such that tj=0.
t=1

Let R} be the convex cone in the z-dimensional Euclidean space R", con-
sisting of all points (i, %, . .., #,) with every #;=>0. We denote, for i=1,
2, ...,n by A;the point (ayi, @i, ..., an) in R? and, for m (1< m<n)
positive integers 1< <#< + + * <in<n, we denote by Cum;iii...im the set of all

points (uy, %, . .., us) € R} such that
uk=;zzlaki,,tp ‘ for k=141, %, « . ., im
0< ujéélajiptp for j=iy, 4 ... ,tm
where #5=0 and > ¢, =1. The set Cum;i,i,...i,, is @ convex set on a hyperplane

in R", which is parallel to the wj-axes (j=41, %, . . ., ém) if m<n. We put.

n

C=C[A) A, ..., A ] =U U Com;iyig..ips

m=11=i{1<ip<-:+<im=n

and we shall call it the roof determined by {4;, A, ..., Anl.
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Now let S** be the unit sphere in R” and put St = S""'N R%, and consider

the projection " from the origin 0 to S} ' in R}. Then we have

Lemma 1.1. The projection <" maps the roof C onto St (n=2).

We shall give a proof of this lemma at the next section. Here we prove

Theorem 1.3 by using it. For any given point U= (u, %, . . . , us) in R}, we

have, on the roof C determined by {A;, A, ..., Ax}, a point U' = (ui, u}, . . .

uy) which is on the straight line passing U and the origin 0.

. . . A
U'is on Cu;iyi,...i Then there exist m non-negative ¢;,, t;l, .

bine

7 ! !

tin+ti,+ s +t,=1
! ! 1) . .

i tisF apiyti, 0 0 Qrig i = Ul for k=11, %, . ..

! ! ’ ! . . .
ajiti, + @i ti, + - ¢ 0+ @iy, i, = uy for j=iy, & . .

Suppose that
, ti,, such that

Since U’ is on the straight line passing U and 0, there exists a positive number

a such that aup =wur (1<k<mn). Therefore putting ¢ = at} for k=1, s, . .

tmand ¢ =0 for j=xidi, %, ..., 4im, wWe have

aritiF aretat ¢ ¢ ¢ F Qrntn = ur for & with =0,
ajititaptt 0 - Faintn=u; for j=1,2,...,n

3. Proof of Lemma I.1."” We shall prove it by induction. We can easily

verify that the statement is true for =2, Let us suppose that the statement

is true for »—1 and put
k
AP =(ai, « . ., G-y 0, @ktris « - « » Cni)

for ,i=1,2,...,n Then (n—1) points A4¥, ..., AP, AP, .
in R N{ur=0} and

CNiup=0r=L(CLAP, ..., AP, AR, ..., APD),

where I, is the injection which maps R™ to R"N {ur=0}.

Hence by our

assumption the projection i ' (= the restriction of ¢* to I«(R"')) maps

CN{ur=0} onto S; "N {ux=0).

On the other hand we have a homeomorphism & Wthh transforms S¢~

onto the (n#—1) dimensional ball B*™* in such a way that U S¥in {uk=0} is

transformed onto the boundary oB"* of B”'. Thus we have a continuous

*) This proof has been done in collaboration with Prof. N. Shimada.
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mapping f =het": C-B"! which maps kL_DICﬂ {ur=0} onto oB"".

Next we construct a continuous onto mapping g: B"'—C which maps
9B onto UCN {w=0). Let B be an (n—1) dimensional ball of radius
1/2, and By, Bs, . . ., Bs be linearly independent » points on the boundary 2B’
of B'. We take a concentric ball B of radius 1 and we project Bsy, . . ., Bp-y,
Bis, . . ., By from By onto the boundary B of B. We denote B{¥ the image
of Bi. We can decompose 9B into simplexes or cells with vertices Bi-k’, and
we can form a cell complex as follows. Take (#—1) points B, . .., B,
BtV .., B{". By these points the simplex 4, is determined. Next take
2(n—2) points BY (ixky, ko, j=Fky, k). Then the cell g, is determined
by simplexes with vertices BY) and BY) (i% ki, k). We continue this process.
In general, take m(n—m) points B;” (ixky, ..., kmj=k, ..., kn). Then
the cell 4m;p,...r,, is determined by simplexes with vertices of these points.
With these 0B is decomposed into cells. The number of these cells is 2(2%™* —1).

Next we decompose oB' into simplexes with vertices By, Bz, ... , B
Using the faces of these simplexes and the cell 4, ,...r,, On 2B, we can obtain
a decomposition of (BN %B') UoB' into cells Dm, k,...km such that Dm, p,.. kN
OB = dm; ky...km and D, k.. .k N OB’ = simplex with vertices Bg,, « . . , Br,. Thus
we obtain the decomposition of B: Dy k,.km (1<m<n—1, 1<k < - <kyp
< n) and a simplex B' with vertices By, B>, ..., B,. The number of these
sets is 2" — 1.

Now we construct a continuous onto mapping g: B- C which transforms
9B onto kL"_JlC N{ur=0}.

At the first step we define a continuous mapping g from the simplex B’
with vertices By, Bs, . .., Bs onto Cu;1...n such that the simplex with vertices
Bi, ..., Bi, is transformed onto the simplex with vertices A;, ..., A, for
1<i< - <im<n At the second step we define a homeomorphism gi;r from
Dy;r onto Cy;r such that B, and B{ are transformed to A and A¥ (ixk)
respectively, and 4i;; to _L'_IJICI; N {u;=0}). Nex twe define a continuous mapping
G kaky: Do bk = Co; ik, suzc—h that g ek =&k on the face with vertices Bf)
(1=1,2; j=ki, k) and gu; ek =g on the face on 9B’ with vertices By,, B,
and 4k, is mapped onto .\Zn)l Co, bk, N{ui=0}). We continue this process, and

we obtain continuous mappings Gm;k...km: Dmiky..om = Cmikyikm (1<m<n—1,
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1< k< -+ <kp<n) such that the mapping g, defined by

{gm; Ei...km on Do, k,...km
g =
& on B,

is a continuous onto mapping B- C which maps B onto QC N {u; =0}.

Then we consider the composed continuous mapping ;; = fog. This trans-
foms the (#—1) dimensional ball B*™ to itself and the boundary 3B""* onto
oB™'. As easily seen, the degree of the restriction of ¢ on oB""! is 1 (resp.
—1) if it is sense preserving (resp. sense reversing). Hence by Kronecker’s
existence theorem (cf. [1] p. 467) ¢ is an onto mapping. Therefore " is an

onto mapping. This completes the proof.

4. Now we go back to a compact separable space £. When G(x, y) is
finite continuous everywhere in 2 x 2, we shall say that G is a finite continuous

kernel. For later use we state some properties on finite continuous kernels.

LemMma 1.2, Let G be a finite continuous kernel and {u.} (a € A) be a
family of positive measures such that jd,uas M< + o, Then Gu.(x) (a € A)

is equi-continuous in 2.

This is evident, since G(x, ) is finite and continuous on 2 X Q.

Lemma 1.3,  Let G be a finite continuous kernel. If {x.) converges to %, and

a sequence {us) of positive measures converges vaguely to i, then
Gﬂo(xo) = lim G,u,,(xn).

Proof. By the preceding lemma, for any positive ¢, there exists a neigh-
borhood w(%x,) of % such that

| Gum(%0) — Gum(x) | <e/2 for any x< w(x,) and m.
Therefore there exists #; such that for any n=>m;
[ Grn(x0) — Gun(x,) | <e/2.

On the other hand, by the continuity of G(x, y) and the vague convergence
of {un) there exists n, such that

| Guo(%0) — Gun( ) | <e/2 for any n=> ;.

Consequently for any #>max (7, n;)
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I G#O(xo) - G,un(xn) ] <e.

Tueorem 1.4. Assume that G is a finite continuous kernel on a compact
separable space 2. If u(x) is positive finite continuous on 8, then there exists

a positive measure p with properties:

Gu(x) = u(x) on 2
Gu(x) = u(x) on Sp.

Proof. Let D be a dense subset of £ which consists of countably many
points x» (#=1,2,...) and D, be the subset {x:, %, . . . , ). By Theorem

1.3, there exists a positive measure u, on D, such that

Gun(x)=u(x) on Dy,
Gun(x) =u(x) on Sun.

Denoting by a and 8 min oxo G(% ») and maxg u(x) respectively, we have
afdunng(x, ) dpa(y) = Gua(x) =u(x) < B.

Therefore the total masses of u» are bounded and a subsequence of {u} con-
verges vaguely to positive measure x. Without loss of generality we may
suppose that {u,} itself converges vaguely to x  This # is what we want.
In fact, let x be a point and ¢ be a positive number. Then by Lemma 1.2 and

the continuity of #(x), there exists a neighborhood w of x such that

(1) Gun(2) +¢/3> Gun(x') for any &' € w and any #,
(2) u(x) +¢/3>u(x) for any &' € w.

Since {un} converges vaguely to u,

(3) Gu(x) +¢/3> Gun(x) for any sufficiently large =.
D being Jense in £, for any sufficiently large #, Dn N w0 and
(4) Gun(x') > u(x") for any ¥’ € D,Nw.

By (1), (2), (3) and (4), Gu(x) +¢>u(x) and hence Gu(x) = u(x).
Now let x be a point of Su. Then a sequence of points x,& Sus must

converge to x and
u(x) =lim «#(x,) =lim Gua(x,) = Gu(x)

by Lemma I.3. This completes the proof.
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CoRrOLLARY. Assume the same for G and Q as Theorem I.4. If u(x) is
Dositive finite upper semi-continuous on 2, them we have the same conclusion

as Theorem I.4.

Proof. Let {un} be a sequence of positive finite continuous functions such

that #, . By Theorem 1.4, there exist positive measures u, such that

G,Un(x) Zun(x) on -Qy

Gun(x) = un(x) on Sun.

As is easily seen, the total masses of u, are bounded and a subsequence con-
verges vaguely to a positive measure x.  Without loss of generality we may

suppose that {u.} converges vaguely to . Then we have
Gu(x) =lim Gua(x) =>1im u,(x) = u(x)

in 2. On the other hand, for a point ¥ on Sg, a sequence {x,} of points on

Sun converges to x and
Gu(x) =lim Gua(xn) =lim un(x,) < u(x).
Thus the existence of a wanted positive measure 4 has been shown.

5. Now we consider a kernel G which is not necessarily finite and

continuous.

Lemma 1.4 (cf. Brelot and Choquet [2], Ohtsuka [161). Assume that the
adjoint kernel G satisfies the continuity principle. If a sequence {un} of positive
measures converges vaguely to p, then

lim Gun(x) = Gu(x) Gppp. in Q.

Proof. Since {us} converges vaguely to g, im Gu,(x) > Gu(x) everywhere
in 2. Therefore it is sufficient to show that lim Gu.(x) < Gu(x) G-p.p.p. in 2.
If we deny this, we can find a unit measure » with finite G-energy such that

lim Gun(x)>Gu(x)  on Su.

Since f(;‘,, dv = fGy dv< + >, Gp is finite continuous on a compact subset
K:C S,, and hence by the continuity principle, the potential G»; of the restriction

of » to K is finite continuous in 2. Consequently
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jGudy1<jy_@ G,undm<l-ian,undy1
= 1im{Grudin = [ Gridu = [ Guan.

This is a contradiction, which completes the proof.

6. Now we can prove Theorem 1.2. Let us take positive finite continuous
kernels G of 2 such that G»./'G. Then we have, by Corollary of Theorem

L. 4, a positive measure u, such that

Gnun(x)zu(x) on .Q,

Gnun(%) = ulx) on Spn.

The total masses of u, are bounded and a subsequence converges vaguely to
a positive measure p.  Without loss of generality we may suppose that {unx}

itself converges vaguely to u. Then by Lemma I.4,
Gu(x) = ll_In G/ln(x) = 1_12 Gn,un(x) > u(x)

G-pp.p. on 2. On the other hand, for any point ¥ on Su, a sequence (x,.)'

(%s € Sun) converges to x and for any fixed »

u(x) le_lﬁ u(xn) = lim Gnﬂn(xn)
> lim Gm,un(xn) = Gnn/l(X).

Therefore #(x)>Gu(x). Consequently Gu(x) has all the properties of our

theorem. This completes the proof.

Remark. Theorem 1.1 is false, unless we assume the continuity principle

for the adjoint kernel ; it is shown by a simple counter-example.

Chapter II. Maximum principles

1. In this chapter we suppose that £ is a locally compact Hausdorff space
every compact subset of which is separable and that G is a positive lower
semi-continuous kernel on £ such that G(x, y) is locally bounded at every
point (x, ) € X 2 with x%y.

Let us start from the following principles.

Let #(x) be a positive finite upper semi-continuous function or a positive
lower semi-continuous function which is # + o in 2, and »(x) be a positive

% + o function in 2 such that #(x) < v(x) everywhere.
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(1) (u, v)-relative equilibrium principle. For any compact set K, there

exists a positive measure <My, supported by K, such that

Gu(x) = u(x) G-p.p.p. on K,
Gu(x) < v(x) in 2.

(II) (u, v)-relative domination principle. TFor a positive measure pe< €,
an inequality Gu(x) <u(x) on Su implies the inequality Gu(x) < v(x) in 2.

Choquet and Deny [4] introduced these principles with % =v». Ohtsuka
[16] dealt with similar principles.

TueoreM I1.1. Let G and G satisfy the continuity principle. Then G
satisfies the (u, v)-relative equilibrium principle if and only if G satisfies the

(u, v)-relative domination principle.

Proof. (I)->(II). Let G satisfy the (u, v)-relative equilibrium principle
and let z be a positive measure in €, such that Gu<# on Su. Take a point
x in 2 —Sp and a sequence of positive finite continuous functions f» on Su
such that f» /" Ger, where ¢, is the unit measure such that j fdex = f(x) for any

finite continuous function f in £. Then by the existence theorem (Theorem

1.1) we have positive measures »» on Su such that

Gon=fn G-p.p.p. on Sy,
Gon<fn on Sy, C Sp.

From the first inequality it follows that
<tim{ Gondp = im[Gudyn< lim [udy,.

Let . be (u, v)-relative equilibrium measures on Sy,. Then each u) is sup-
ported by Sv, and Gun=u G-p.p.p. on Sv, and Guh< v in 2. Hence

_Yu dvn SjGﬂZ dvn = Sé”" d,uZSS/n dun SSGvex dun,

= SG#; dex < jvd€x = v(x),

where the first inequality follows from the fact that SGVndlln ijnd”n< + o,
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Consequently lim judvn <ov(x) and Gu(x) <ov(x).

(ID-(I). Let G satisfy the (u, v)-relative domination principle and K
be a compact set. We can take a sequence {un} of positive finite upper semi-
continuous functions with #, "% on K. Then by the existence theorem there

exists a sequence {us} of positive measures, supported K, such that

Gun(%) = un(x) G-p.p.p. on K,
Gun(%) < un(x) on Suu.

By the last inequality, u» belongs to €, and by the (x, v)-relative domination
principle,
Gun(x) <v(x) in Q.

From this follows that the total masses of u» are bounded and a subsequence
converges vaguely to a positive measure 2 supported by K. We may suppose
that un,— u vaguely. Then

Gu(x) =lim Gu,(%) =lim #,(x) = u(x)
G-p.p.p. on K. Thus G satisfies the (u, v)-relative equilibrium principle.

In the following sections we shall give applications of this theorem.

2. Domination principle. First application of the preceding theorem is on
the balayage principle.

(III) Balayage principle. For any compact set K and any px=M,, there
exists u' €My such that ' is supported by X and

Gu' (%) < Gu(x) in £.
Gu'(x) > Gu(x) G-p.p.p. on K.

This measure p' is called a G-balayaged measure of « on K.

(IV) Domination principle. For a positive measure p< €, and a positive
measure » € My, an inequality Gu(x) < Gr(x) on Sy implies the same inequality
in the whole space 2.

(V) Elementary domination principle. For a positive measure p< €, and
a point ¥ not on Su, an inequality Gu(z) < Gei(z) on Su implies the same
inequality in 2.

TueoreM I1.2. If G and G satisfy the continuity principle, then the
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following four statements are equivalent.
(1) G satisfies the balayage principle,
(2) G satisfies the balayage principle,
(3) G satisfies the domination principle,
(4) G satisfies the domination principle.

Ninomiya [12] first obtained this theorem for symmetric kernels, then Deny
[5] followed to show the equivalence between (1) and (4) for strictly increasing
diffusion kernels. For regular kernels on a compact space which consists of a
finite number of points, Theorem II.2 was obtained by Choquent and Deny [4].

Proof of Theorem II.2. (1)-(4). Let u be a positive measure in €, and
» be one in M, such that Gu<Gr on Sp. Take a point x in 2 —Sp and a

G-balayaged measure ey of ex on Sp. Then
Gulx) = S‘G‘ud&c = _(Gexdu = fGeidu
= (Guder < ( Gvae = [Getas
< [Gevdy = (G dee= G,

where the third equality, | Gecdu = [Geldy, follows from the facts that Ge, =
Ge: G-p.p.p. on Sy and u belongs to &, so that Ge: = Ge p-almost everywhere.

(3) - (1). Let G satisfy the domination principle and let # be a positive
measure in M. Putting u#(x) = v(x) = Gulx), we see that for any compact set
K, there exists a G-balayaged measure of z# on K by Theorem II.1. Hence G

satisfies the balayage principle.
The implications (2) - (3) and (4) - (2) are duals of (1) - (4) and (3)- (1)
respectively. This completes the proof.

Remark. This theorem is valid for kernels which are not necessarily

locally bounded.
Now we shall give another characterization of the balayage principle, which

will be useful in applications.
Tueorem 11.3. Let G and G satisfy the continuity principle. Then the

Sollowing statements and (1) in Theorem II.2 are equivalent.

(5) G satisfies the elementary domination principle,
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(6) G satisfies the elementary domination principle.

Proof. (1)-(5). Let G satisfy the balayage principle. Then by the
preceding theorem G satisfies the domination principle, whence G does the
elementary domination principle.

(5) - (1). Let G satisfy the elementary domination principle and z be a
positive measure in @, and » be a positive measure in M, such that Gu < Go
on Spu. Take a point x in 2 — Sz. Then we have a G-balayaged measure 1 of

ex on Su by the elementary domination principle and the existence theorem.

This 4 belongs to €,, since jG/l di stexd/I and Ge, is bounded on Su. Then

Gulx) = féudex = SGexd/z = SG/I du
=[Guar<{cvar=[Gran
gSGexdu = SGvydex = Go(x).

Consequently G satisfies the domination principle and G satisfies the balayage
principle.

The equivalence between (2) and (6) is dual of the one between (1) and
(5). Hence (1) and (6) are equivalent by Theorem II. 2.

This theorem was obtained by Ninomiya [13] for symmetric kernels.

Remark. If G and G satisfy the continuity principle, G satisfies the
balayage principle when and only when one of the following statements is

true:

G-balayaged measures of point-masses exist always,

G-balayaged measures of point-masses exist always.

3. Dilated domination principle. Now let us consider the dilated domina-
tion principle after Ohtsuka [16].

(III)! k-dilated balayage principle. For any compact set K and any a2,
there exists u' =M, such that 4/ is supported by K and

Gul(x) < kGu(x) in 2,
Gu'(x) = Gu(x) G-p.p.p. on K.

(IV)' k-dilated domination principle. For a positive measure p= €, and a
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positive measure » €M, an inequality Gu(x) < Gy(x) on Sy implies the
inequality Gu(x) < k*Gpr(x) in Q.

(V) k-dilated elementary domination principle. TFor a positive measure
ne €y and a point x not on Sz, an inequality Gu(z) < Ge(z) on Su implies
the inequality Gu(z) < k*Gei(2) in Q.

Using just the same as in the preceding arguments we obtain

Traeorem I1.4. If G and G satisfy the continuity principle, then the following
statements are equivalent: G satisfies the k-dilated balayage principle, G salisfies
the k-dilated domination principle, G satisfies the k-dilated elementary domina-
tion principle, G satisfies the k-dilated balayage principle, G satisfies the k-
dilated domination principle, G satisfies the k-dilated elementary domination
principle.

4. Maximum principle. Now we consider the equilibrium and maximum
principles.

(IV) Equilibrium principle. For any compact set K, there exists a positive

measure u, supported by X, such that

Gulx) <1 in £,
Gu(x) =1 G-p.p.p. on K.
This measure u is called a G-equilibrium measure of K.
(VII) Maximum principle. For a positive measure u <My, an inequality

Gu(x) <1 on Sp implies the same inequality in 2.

(VII)! k-dilated maximum principle. If Gu(x) <1 on Su for p= Mo, then
Gu(x) <k in 2.

The following theorems are immediate consequences of Theorem II.1.

TueoreM I1.5. Let G and G satisfy the comtinuity principle. Then G

satisfies the equilibrium principle if and only if G satisfies the maximum principle.

Tueorem IL.6. Let G and G satisfy the continuity principle. Then G
satisfies the k-dilated maximum principle when and only when for any compact

set K, there exists a positive measure p, supported by K, such that

Gu(x)>1 G-pp.p. on K,
Gu(x) <k in Q.
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Remark. Contrary to the preceding equivalence (1)<>(2), G does not
satisfy the equilibrium principle in general, although G satisfies it. The

equivalence holds for convolution kernels.

TueoreM I1.7. Assume that G and G satisfy the continuity principle. Then
G satisfies the equilibrium principle if and only if the following property [§]
is fulfilled for the adjoint kernel G.

[Q] For a positive measure pn=My and a point x which is not on Sy, the

validity of an inequality Gu< Gex on Sy implies that Sd,ug 1.

TueoreM I1.8. Assume that G and G satisfy the continuity principle. Then
G satisfies the k-dilated maximum principle if and only if the following property
L@ is fulfilled for the adjoint kernel G.

LQx for a positive measure pn =My and a point x which is not on Sy, the

validity of an inequality Cu< Gec on Sy implies that [du<k.

For symmetric kernels Theorems II.5 and 7 were obtained by Ninomiya
(131 and Theorems II. 6 and 8 were by Ohtsuka [16].

We shall prove Theorem I1.8. Let G satisfy the k-dilated maximum principle
and 4 be a positive measure in M, such that Gu < Ger on Sy for a point x
which is not on Sp. By Theorem II. 6 there exists a positive measure » on Sp
such that

Gr=1 G-p.p.p. on Sp,
Gv<k in Q.

Then, x being in €,,
jd,u SSGvdu = SGv/xdu _<_SGv€xdll
= ij dex < kjdsx = k.

Conversely we suppose that G fulfills the condition [§Jz and 4 is a positive
measure in M, such that Gu<1 on Su. We take a point ¥ in 2 —Su and a
sequence {u.} of finite continuous functions on Sy such that #,"Ge,. Then

there exist positive measures v,, supported by Sy, such that

Gvan=un G-p.p.p. on Sy,

Grn< ty on Sva.
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From the last inequality it follows that fdv,,g k. Hence

Gulx) = (G pdec = [Geedn = limfundn
<lim{Gundp =1im[Gudy
< E{rggdun <k

5. Complete maximum principle. Here we consider the complete maximum
principle and related principles. The complete maximum principle was first

introduced by Cartan and Deny [3]. Hunt [8] and many other probabilists
investigated it.

(VIII) Complete maximum principle. For a positive measure u< €,
a positive measure » €M, and for a non-negative number a, the validity
of an inequality Gu(x) <Gp(x)+a on Sp implies the validity of the same
inequality in 2.

(IX) Strong maximum principle. If p is a positive measure in €, and » is
a positive measure in M, such that Gu< Gv+a on Sup U Sy with a non-negative
number @, then the same inequality holds in 2.

Evidently G satisfies the strong maximum principle, if it does the complete
maximum principle. Deny [6] asked a question wether the converse is true
under certain hypothesis on regularity. He solved in the affirmative for kernels
on a space of a finite number of points. We also give an affirmative answer
for our kernels.

TaeoreM 11.9. Let G satisfy the continuity principle. Then G satisfies the
complete maximum principle if G does the strong maximum principle.

First we prove

Lemma I1.1. If G satisfies the maximum principle, then it has the following

Droperty: Let n be a positive measure in WMy and x be a point in 2 — Syu. Then

G(x, x) majorizes Gu(z) for z€ 2, if Gex(2) majorizes Gu(z) for any z=Sp.

Proof. We may suppose that G(x, x) is finite. Then by the maximum
principle, Gex( 2) < G(%, x) in 2. Therefore
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sup Gu(2) < zsgsli Gex(2) < G(x, x).

2E8

Then again by the maximum principle, Gu(z) < G(x, x) for any z€ Q.

TueoreM I1.10. Let G satisfy the continuity principle. Then G satisfies
the complete maximum principle if and only if G satisfies the domination and

maximum principles.

Proof. It is sufficient to prove that G satisfies the complete maximum
principle if it does the domination and maximum principles, since the converse
is evident. Let u be in €, and » be in M, such that Gu< Gv+a on Su with
a>(0. Take a point x in £ — Su. Since G satisfies the domination principle,
G satisfies it and there exists a (-balayaged measure ¢ of e¢x on Su. Let 4 be

a G-equilibrium measure of Su. Because ¢ belongs to €,
(et = [Graes = (et < [Gerat

= (Grdec< [ dec=1.

Therefore
Gu(x) = (Gude. = | Gecdn = [Gelan
= [Gua<[(Gv+ @) adi<(Graet+a
SSésxdv+a =5Gvdex+a =Gr(x) +a.

Thus G satisfies the complete maximum principle.

Proof of Theorem II.9. By Theorem II 10 it is sufficient to show that if
G satisfies the strong maximum principle, then G fulfills the condition (5) in
Theorem II 3. Let 4 be a positive measure in & and x be a point not on S
such that Gu< Gex on Sp.  Then by Lemma IIL 2, this inequality holds at x
also. Hence by the strong maximum principle, it holds everywhere in 2.
Consequently G satisfies the complete maximum principle.

A characterization of the complete maximum principle by the following
balayage principle with mass-diminution was given by Deny [6].

(X) Balayage principle with mass-diminution. The balayage principle with
the following property: the total mass of the balayaged measure o/ of a
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positive measure x with compact support onto a compact set is less than that

of u.

TuroreM IL. 11. If G satisfies the balayage principle with mass-diminution,
then G satisfies the complete maximum principle. The converse is true if G and

G satisfy the continuity principle and G is regular in the sense of [10] p. 65.

Proof. Suppose that G satisfies the balayage principle with mass-diminution.
Let x# and » be positive measures with compact support such that SGpd/x is
finite and Gu < Gv+a on Su with a=>0. Take a point » in £ — Su. Since G
satisfies the balayage principle with mass-diminution, there exists a G-
balayaged measure &y of e; on Sp such that Sdekg 1. Then by the same com-
putation as in the proof of Theorem II.10 we have Gu(x) < Gy(x) +a.

Conversely suppose that G satisfies the complete maximum principle. Then
by Theorems II.2 and 5, G satisfies the balayage principle and G satisfies the
equilibrium principle. Let x' be a G-balayaged measure of a positive measure
neMy on a compact set K, and let » be a G-equilibrium measure of a G-

regular compact set K’ D K. Then

j‘d/z' = jGu du' = Séu’dv Sjé/tdﬂ = j‘Gp du gjd,u.

Consequently G satisfies the balayage principle with mass-diminution.

Theorem II.1 supplies ancther characterization of the complete maximum
principle.

(XI) Complete balayage principle. For any positive measure » with compact
support, any compact set K and any a>0, there exists a positive measure 2/,
supported by K, such that

Gy =Gu+ta G-p.p.p. on K,
Gy <Gu+ta in Q.

TueoreM I1.12. Let G and G satisfy the continuity principle. Then G
satisfies the complete maximum principle if and only if G satisfies the complete

balayage principle.

This follows immediately from Theorem II. 1.

Now we state the dilated principles.
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(VIID)' (ky, ko)-dilated complete maximum principle. For a positive measure
# < €y, a positive measure » €M, and a non-negative number a, the validity of
the inequality Gu(x) < Gv(x) +a on Su implies the inequality Gu(x)< kG (x)
+kia in Q.

(IX)' (ky, ko)-dilated strong maximum principle. If p is a positive measure
in &, and » is a positive measure in M, such that Gu< Gr+aon SpU Sy with
a non-negative number a, then Gu <k Gv + k:a in 2.

Tueorem I1.10. Let G satisfy the continuity principle. Then G satisfies
the (k., kik:)-dilated complete maximum principle if G satisfies the ki-dilated

domination principle and the ki,-dilated maximum principle.

Turorem I1.9". Let G satisfy the continuity principle. Then G satisfies
the (ki ki, kiky)-dilated complete maximum principle if G satisfies the (ki, ks)-

dilated strong maximum principle.

6. Weak domination principle. Let us add a few words to the weak

domination principle.

(XII) Weak domination principle. If p is a positive measure in €, and »
is a positive measure in M, such that Gu< Gr on SpU Sy, then the same

inequality holds in 2.

TueoreM II. 13. Assume that G and G satisfy the continuity principle and
that G satisfies the weak domination principle. If G satisfies the maximum
principle or G(x, x) = + o for any x< 2, then G satisfies the domination
principle.

Proof. By Theorem IIL 3, it is sufficient to show that G satisfies the
elementary domination principle. Let 2 be a positive measure in €, and x be
a point in £ — Su such that Gu < Gexr on Sp. Then Gu(x) < Gex(x) if G satisfies
the maximum principle or G(x, x) =+ <. Hence by the weak domination
principle, Gu < Ge, everywhere in 2. Thus G satisfies the elementary domina-

tion principle.

Tueorem I1.13'. If G satisfies the continuity principle and G satisfies the
weak domination principle and the k-dilated maximum principle, then G satisfies

the F’-dilated domination principle. k° can not be replaced by a smaller number.
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7. Domination principle with respect to N. Now let N be another positive

lower semi-continuous kernel on £, and consider the following principles after
Ninomiya [14, 15].

(XIII) Balayage principle with respect to N. For any compact set K and

any positive measure x in M, there exists a positive measure p/, supported
by K, such that

Gu'(x) = Nu(x) G-p.p.p. on K,
Gp'(x) < Nu(x) in 2.

(XIV) Domination principle with respect to N. For any positive measure
o in Gy = Eo(G) and for any positive measure » in My, the inequality Gu(x) <
Np(x) on Su implies the same inequality in £.

(XV) Elementary domination principle with respect to N. For any positive
measure ; in € = €,(G) and a point x not on Sy, the inequality Gu(z)< Gex(2)
on Sy implies the same inequality in 2.

Ninomiya discussed the equivalence of these principles for symmetric
kernels.

Tueorem IL. 14. Let G and G satisfy the continuity principle. Then G
satisfies the domination principle with respect to N, if and only if G satisfies
the balayage principles with respect to N.

This follows immediately from Theorem II 1.

TueoreM I1.15. Let G and G satisfy the continuity principle. Then G
satisfies the domination principle with respect to N, if and only if its adjoint
G fulfills the following condition :

[A] For ne €, and v, if Gu< Gv on Su, then Nu<Ny in 2,
or equivalently G fulfills the condition:

[B] For ne @, and %0 Sy, if Gu< Gex, on Sy, then Nu < Ney, in Q.

Proof. G satisfies the domination principle with respect to N =G fulfills

the condition [A]. Assume that Guz< Gr on Sy for z& € and » €My, and
take an arbitrarily fixed point x in 2. By Theorem II.14, th:re exists a
positive measure ¢}, supported by Sy, such that

https://doi.org/10.1017/5S0027763000011247 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011247

MAXIMUM PRINCIPLES IN THE POTENTIAL THEORY 185

Ge = Ney G-p.p.p. on Sy,
Gey < Nex in 2.
Then

Nu(x) = SN'U dey = SNExd,U = jGeLd,u
= j Gudel Sj Gvde, = jGe,'cdv
SSNexdu = jNudex =Nv(x).

Consequently G fufills the condition [AJ.

G fulfills [A] =G fulfills [B]. Evident.

G fulfills [B] =G satisfies the domination principle with respect to MN.
Assume that Gu< Nv on Sy for = €, and » €M, and take a point x, in 2 — Spe.
Then we can take a sequence {u,} of positive finite continuous functions on
Sp such that #, " Ger,. By the existence theorem, there exist positive measures

A, supported by Sp, such that

Gin= tn G-p.p.p. on Sy,
Gin< tUn on Sin.

Then by the condition [B], Nis < Nex, in 2. Therefore

Gulx) = ije dey, = S Ger,dpt = limjund,u
and

Sundu< | Gindn = [Guatn< [Ny ar,

= SNX,. dv< SJst"dv = jNy dey,
= Nv(xo).
Consequently Gu < Nv in 2. This completes the proof.

Similarly we have

Taeorem I1.16. Let G and G satisfy the continuity principle. Then G
satisfies the elementary domination principle with respect to N, if and only if G
Sfulfills the condition :

[C1 For a positive measure n< €y and a point %0 Sp, if Gu< Gex, on Su,
then Nu < Nex, in 2 — Sp.
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Remark. Evidently G satisfies the elementary domination principle with
respect to N, if G satisfies the domination principle with respect to N. But
the converse is not true; there is a simple counter-example. Thus we ask a
question : under what condition for G and/or N does the elementary domina-
tion principle with respect to IV imply the domination principle with respect
to N? We can give only the following answer. Needless to'say, the implication
holds if N=G or N=1 and G and G satisfy the continuity principle.

TueoreM IL 17. Let G and G satisfy the continuity principle. If G(x, %) =
+ o at every point x< R, then the jfollowing implication is true for G: the
elementary domination principle with respect to N =the domination principle
respect with to N.

Proof. It is easy to see that for a compact set K and a point x & K, there

exists a positive measure A, supported by K, such that

G = Ne, G-p.p.p. on K,
Gl S NEx in .Q,

if G satisfies the elementary domination principle with respect to N. From

this remark follows our theorem.
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