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Abstract

A novel arbitrage-free model of nominal U.S. Treasuries that decomposes yields into
frictionless expected rates, frictionless term premiums, and liquidity premiums produces
four key results from Jan. 1987 to Aug. 2023. First, liquidity loadings are larger than for the
slope and higher-order principal components. Second, the countercyclicality of required
nominal Treasury returns owes to liquidity, if anything, not frictionless term premiums.
Third, Federal Reserve large-scale asset purchases generally work through expected rates
and frictionless term premiums, not liquidity premiums. Fourth, given similar estimates
using TIPS, inflation expectations are less moored around the Federal Reserve’s price
objectives than other models say.

I. Introduction

A hackneyed observation about the nominal U.S. Treasury (UST) market is
that it is among the deepest and most liquid. A handful of foreign exchange pairs
might rival U.S. government bonds on that score. Nonetheless, commentators
routinely reference USTs as the global safe-haven asset. This easy characterization
of Treasury liquidity fully seeps into empirical specifications of arbitrage-free,
affine term structure models (ATSMs). Besides isolating violations of the law of
one price, these models also allow central bankers and investors alike to disentangle
expected short rates and term premiums—aka required excess returns—from
observed yields. A fundamental assumption beyond ubiquitous risk-free borrow-
ing, shared by theBlack-Scholes-Merton option pricingmodel, is the ability to trade
without “friction” (i.e., in any quantity without affecting prices). Admittedly, USTs
might be the most natural application of arbitrage-free models, insofar as the asset
class may be as close to the mythical frictionless security as any.

The argument below is not that USTs are any less liquid in comparative terms,
or any worse an application for arbitrage-free models, even. And yet, policymakers
and investors most keenly monitor these models during extreme episodes. The
experiences of say, the fall of 1998, the global financial crisis (GFC), and trading
activity in Mar. 2020 during the worst of the COVID-19 market rout, all comprise
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episodes of, again not necessarily comparative, but clearly absolute deteriorations
in Treasury market functioning. Unfortunately, with precious few (e.g., Fontaine
and Garcia (2012)) and only partial exceptions (e.g., Abraham, Adrian, Crump,
Moench, andYu (AACMY) (2016)), and despite analyses of plausibly time-varying
“convenience yields” compared to other assets that owe in part to liquidity on
nominal Treasuries (Krishnamurthy and Vissing-Jorgensen (2012)), the vast liter-
ature on ATSMs ignores absolute liquidity risk in nominal USTs altogether, includ-
ing Kim and Wright (KW) (2005), Kim and Orphanides (2012), and Adrian,
Crump, and Moench) (ACM) (2013), say. Also, ATSMs that incorporate TIPS
readily relax the frictionless assumption for inflation-linked bonds but nonetheless
look the other way on nominal USTs (e.g., D’Amico, Kim, and Wei (DKW)
(2018)).

The objective of this study is to parse further compensation for owing USTs
into time-varying “frictionless” term and nominal liquidity premiums. The pro-
posed model embeds a novel observable liquidity factor (LF) for nominal USTs,
distinct from latent-factor approaches (e.g., Fontaine and Garcia (2012)), using a
wealth of information from fitted term structures of individual CUSIPs daily from
Jan. 2, 1987, to Sept. 1, 2023. The remaining model factors include the first four
principal components of the yield curve that are orthogonal to this LF, and estima-
tion otherwise closely follows the linear-regression-based algorithm outlined
in ACM.

Four empirical findings are noteworthy. First, negative average estimated
nominal UST liquidity premiums, broadly consistent with convenience, belie
considerable temporal variation as well as substantial effects on yields. Although
less than the level of the term structure, not surprisingly, the yield as well as excess
return loadings on the LF are greater than for the remaining factors, including the
slope. This result suggests that standard ATSM applications that assume nominal
USTs trade without friction may be meaningfully misspecified.

Second, the more detailed decomposition affords new insights into compen-
sation for holding nominal USTs. Namely, the increase during the GFC in some
estimates of “gross” term premiums owes entirely to an intuitive sharp spike in
liquidity premiums and a corresponding drop in required excess returns on the
frictionless-default-risk-free asset. More formally, econometrics suggest that any
consistent countercyclicality in required nominal returns owes to compensation for
liquidity risk. Trading frictions aside, and on the other side of the decompositions,
nominal bond premia depend on relative perceptions of supply and demand shocks.
Perforce, the cyclicality of frictionless term premiums ismore demonstrably ambig-
uous.

Third, this finer parsing of required returns affords a reassessment of the
effects of large-scale asset purchases (LSAPS) and addresses the literature stem-
ming fromGagnon, Raskin, Remache, and Sack (2011), which rest onmore limited
decompositions. Alternative methodologies suggest that if anything LSAPs gener-
ally work through frictionless term premiums by way of portfolio rebalancing, and
even anticipated short rates perhaps via “signaling,” not market liquidity premiums
on average. Inconclusive empirical results for liquidity premium responses may
reflect corresponding theoretical ambiguity. LSAPs strictly reduce free float and
boost nonborrowed reserves but may not lower trading costs.
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Fourth, together with a similar decomposition of TIPS yields into expected
real rates, real term premiums, and TIPS liquidity premiums—notably also using
observable rather than latent factors and without any nonmarket information
(Durham (2023))—these estimates of nominal USTs also provide an alternative
lens on expected inflation, netting out frictionless inflation risk premiums and the
quantity and price of risk across nominal USTs and TIPS. Compared to other
approaches, such as DKW or AACMY, the results suggest that inflation expecta-
tions were substantially unmoored to the downside in the aftermath of the GFC, as
well as to the upside at times in the wake of persistent inflationary pressures
stemming from COVID-19. Despite sole reliance on nominal UST and TIPS
quotes, again, a distinguishing feature of this approach, exclusively frictionless
inflation expectations correlate reasonably with survey-based expectations.

The organization of this study is as follows: Section II details the liquidity
index. Section III outlines the arbitrage-free framework, documents the salience of
the LF, and discusses the nominal yield decompositions. Section IV covers premia
cyclicality, LSAP effects, and expected inflation. Section V concludes.

II. Toward an Observable LF for Nominal USTs

Liquidity narrowly refers to trading costs. Yet the term also commonly and
sweepingly refers to any frictions that cause deviations from the law of one price.
Amid great conceptual ambiguity and measurement challenges, some studies
address the positive bias in TIPS as readings on unobservable real yields that traces
to their comparative illiquidity, whereas the assumption that nominal Treasuries
embed no such premium in ATSMs is nearly ubiquitous.

To begin with a key methodological choice, as for all pricing factors in
ATSMs, two alternative estimation strategies include latent-factor and
observable-factor approaches to capturing liquidity risk. As an example of the
former, and as a rare assessment of nominal UST liquidity premiums using ATSMs,
Fontaine and Garcia (2012) identify a premium, which they characterize as a
funding liquidity proxy. Briefly, they fit an ATSM with a nonlinear Kalman filter
using 22 nominal USTs paired at 11 maturity bins from 3 to 120 months using
monthly data, where the pairs include the most recent issue and the security that
most closely matches the maturity of the bin.1 Fontaine and Garcia (2012) report
meaningful and persistent effects of their funding liquidity proxy on Treasury
returns as well as risk premiums on LIBOR loans, swaps, and corporate bonds,
but they do not disentangle liquidity premiums from ex ante frictionless term
premiums. Another application of latent factors, although solely germane to TIPS,
includes DKW. They capture a TIPS-specific factor likely related to liquidity,
derived after “pre-estimation” steps from a Kalman filter estimate, which simulta-
neously produces time series for the other model factors as well as the model
parameter estimates consistent with minimized pricing errors across nominals
and TIPS.

1Fontaine and Garcia (2012) impose parameter restrictions on the risk-neutral dynamics to preserve
a Nelson–Seigel factor loading structure, a parsimonious but arguably a less flexible approach than the
framework outlined below.
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The alternative to latent factors is to use observable measures, data-reducing
indices of proxies across different dimensions of market frictions, which arguably
are more transparent and simpler than filtering methods. Observable measures may
add welcome specificity around such a slippery concept, and as detailed below,
factor construction can embed information from other dimensions of liquidity,
beyond the narrow emphasis on seasoning as in Fontaine and Garcia (2012), say.
An example under this alternative includes AACMY, who like DKW jointly
estimate an ATSM of nominal USTs and TIPS. They construct an observable LF
from two variables that comprise one of six factors that price all Treasuries.
AACMY do formally allow for nominal UST exposure to their LF, yet notably
their index factor only references TIPS liquidity.

The objective is not to settle this methodological score. Both have uses.
Although tellingly researchers appear compelled to document the correlation
between estimated latent factors and observable variables, anyway.2 Moreover,
given the absence of an observable nominal USTs LF in previous studies, the
followingmodel embeds such a factor, comprised of somemetrics routinely applied
to TIPS, like AACMYandDurham (2023). To start, the index includes fitting errors
based on daily Nelson-Siegel-Svensson (NSS) yield curves, such as the estimates
shown in Graph A of Figure 1. As Hu, Pan, and Wang (2013) (HPW) argue, large
average misses capture times when arbitrage limits bind investors who cannot
secure funding to exploit mispricings.3 But to construct a richer set of observables,
and to expand on recent extensions to TIPS (Durham (2023)), the following
incorporates four addenda to the fitting-error lens on liquidity.

First, studies ubiquitously reference errors relative to NSS curves (AACMY,
Christensen and Rudebusch (2019), DKW, Grishchenko and Huang (2013), and
Andreasen, Christensen, and Riddell (2021)). However, this parametric form is
unlikely the preferred tool of arbitragers, the very individuals whose constraints
liquidity proxies endeavor to capture.4 Therefore, this application also uses the
variance roughness penalty (VRP) methodology (Wagoneer (1997), Anderson and
Sleath, (1999)) and a recent machine learning or kernel regression (KR) approach
(Filipovic, Markus, and Ye (2023)) as robustness checks. Graph A of Figure 1 also

2For example, DKW regress their latent variable on a battery of observable proxies and report R2

values of up to 0.848.
3Following HPW, the (unconditional) noise measure is the mean-squared pricing error from a fitted

term structure, following a spline or parametric form, as in

Noise Uð Þ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

i¼1

yi,t � yi btð Þ� �2
vuut ,

where yi,t is the observed yield at time t on the ith of N UST securities, and yi btð Þ is the corresponding
fitted or predicted value based on the estimated curve at the end of day t given the estimated discount
factor, b. Noise Uð Þ

t below empirically departs from HPW by retaining outliers of particular interest
among arbitragers and including issues with greater than 10 years to maturity, given that expected bond
returns increase with duration, all else equal. Also, this measure excludes CUSIPS of maturities less than
2 years, although the results are substantively similar.

4To wit, as Gürkaynak, Sack, and Wright (2007) explain, traders more commonly use splines to
uncover anomalies, whereas economists are more interested in the “fundamental determinants of the
yield curve” and prefer to smooth through the very variations that may be relevant to frictions.
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FIGURE 1

Yield Curve Estimations, Fitting Errors, and Correction Speeds

GraphAof Figure 1 showsNSS, VRP, andKR fitted yields for the last day of the sample, andGraphB shows the time series of the cross-sectionalmean fitting errors across thesemethods, following equation (2). GraphC
shows the cross-sectional correlation in errors across all CUSIPs eachday. GraphD shows themean correction speed of conditional pricing errors, following equation (4), for the underlyingNSS, VRP, andKRmethods,
estimated with the 3-month rolling window and expressed in terms of negative z-scores.
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shows VRP and KR alongside NSS estimates for the last day of the sample, and
Graph B shows the time series of the cross-sectional mean fitting errors across
methods. Also, the cross-sectional correlation in errors across all CUSIPs each day,
shown in Graph C, is clearly less than unity (0.636). The average correlation over
the sample varies, too, with a notable decrease toward the end of the sample. As
such, the LF stemming from underlying yield curve estimation references NSS- as
well as VRP- and KR-based fitting errors.

Second, HPW and subsequent applications strictly report unconditional pric-
ing errors. But following intuition relevant to traders, errors across securities likely
owe to seasoning and other factors. To isolate “noise” more precisely, residuals, ε,
from cross-sectional regressions comprise conditional pricing error estimates, as in,

e Uð Þ
i,t ¼ φ0þφt

0Xtþ εi,t,(1)

where e Uð Þ
i,t ¼ yi,t� yi btð Þ is the unconditional fitting error of bond i based on a given

fitting methodology, X is a vector of proxies for relevant factors,5 and φ are the
factor loadings. The aggregate conditional noise indicator acrossNt nominal bonds
for any observation t is, therefore,

NoiseðCÞt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

i¼1

eðCÞi,t

� �2

vuut ,(2)

where e Cð Þ
i,t ¼ εi,t, the conditional fitting error.

Third, as outlined in Durham (2023), the mere size of pricing errors arguably
seems secondary to how quickly investors plug arbitrages. Toward a comprehensive
liquidity index, it may not just be the size of mean errors but also the speed of error
corrections among individual securities that helps capture market functioning. Briefly,
NoiseðU ,CÞ

t alone misses valuable information about individual securities relevant to
capital scarcity.6 The sticky level of aggregate average noise that HPW report con-
ceivably disguises efficient trading activity. To capture the average error correction
speed of curve fitting errors follows time-series regressions for individual CUSIPs,

e U ,Cð Þ
i,t ¼ αþκie

U ,Cð Þ
i,t�1 þμi,t,(3)

5Noise Cð Þ
t introduces specification bias. To address this issue, conditional errors refer to weighted

averages across alternative specifications ofX in equation (1). Each model includes bidasked spreads as
well as coupon rates. Also, the regressions follow every possible linear combination across two sets
of alternative proxies. The first includes three measures related to seasoning, including the ratio of
remaining to initial days to maturity and dummies for the first off-the-run or the first- and second-off-the
runs. The second set of six variables captures dimensions of free-float supply or central bank interven-
tion, possibly especially relevant given central bank purchases of Treasuries following the GFC.
Measures include the fraction of par value across all outstanding securities, net System Open Market
Account (SOMA) holdings; the weight of the security as a fraction across all SOMA holdings; as well as
dummies for whether the proportion held in SOMA of a given issue is within 95th, 75th, 50th, or 25th
percentile.

6HPW do report the high persistence of the noise measure for the aggregate market, but they do not
distinguish whether errors at the security level are persistent.
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where κ captures the speed with which fitting errors of security i correct from t�1
to t, given a rolling window. Simply, bκ < 0 implies that pricing errors indeed
correct.7 The aggregate speed measure is the average estimate across all Nt secu-
rities for which data are available, using both NSS and VRP estimates as well as
unconditional and conditional errors, as in,

SpeedðU ,CÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

i¼1

ð1�bκi,tÞ
vuut :(4)

Graph D of Figure 1 shows the estimates based on conditional pricing errors
for underlying NSS-, VRP-, and KR-based estimates, expressed in terms of nega-
tive z-scores, as higher readings indicate greater illiquidity. The speed measure
follows intuition with a peak near the GFC and shows some net worsening toward
the end of the sample using each fitting metric.

Fourth, given the three alternative fitting methods, the analyses also exploit the
dispersion of estimates and addresses “model risk” (Green and Figlewski (1999)).
For example, Graph A of Figure 2 shows the median of N standard deviations for
each CUSIP across methods, for each day of the sample, based on both conditional
and unconditional pricing errors. The underlying notion is that, just as the size and
speed of pricing errors may connote a decline in arbitrageurs’willingness to commit
capital, so too might greater dispersion of pricing estimates across individual
CUSIPs based on alternative curve-fitting methodologies, which in turn traces to
model risk. Indeed, although the series is noisier, both appear to peak intuitively
around the GFC and increase toward the end of the sample. Moreover, for com-
pleteness, another related liquiditymeasure combines information about the size and
standard deviation of unconditional and conditional pricing errors from individual
CUSIPS each day. These metrics address the possibility that investors may discount
the magnitude of pricing errors, amid greater dispersion of underlying estimates
across CUSIPs. Graph B of Figure 2 indicates that these measures are less volatile in
general and were also elevated during the GFC, as well as earlier in the sample.

The final variable that contributes to the LF is the on-the-run premium, a
common proxy. This measure, shown in Graph C of Figure 2, is the NSS-coefficient-
based yield on a synthetic security with the samematurity as the most recently issued
10-year note, minus the observed on-the-run yield. Briefly, the series largely follows
intuition,with substantially greater readings amid theGFC, for example.All in all, the
LF used in the affine-model estimation is the first principal component (PC1) across
all measures. As noted inTable 1, PC1 accounts for about 52%of the total variation in
these metrics over the sample. Also, Table 1 shows the daily sample correlation
matrix of all components of the LF. As suspected, the measures are largely positively
but far fromperfectly correlated. Finally, the LF series, shown inGraphDof Figure 2,
follows an intuitive pattern, with an obvious peak during the GFC as well as some
modest net deterioration toward the end of the sample.8

7The results refer to a 3-month rolling window, an ultimately arbitrary length.
8One possible alternative would be to develop maturity-specific liquidity proxies, in turn, to afford a

liquidity-adjusted yield curve, maturity by maturity, to compare alongside a correspondingly “dirty”
term structure. AsAppendixB of the SupplementaryMaterial details, estimated relations between curve-
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FIGURE 2

The Liquidity Factor and Selected Components

Graph A of Figure 2 shows the median ofN standard deviations of fitting errors for each CUSIP across the NSS, VRP, and KRmethods, for each day of the sample, based on both conditional and unconditional pricing
errors. Graph B combines information about the size and standard deviation of unconditional and conditional pricing errors from individual CUSIPS each day. Graph C shows the 10-year on-the-run premium based on
the NSS methods. Graph D shows the aggregate LF, the first PC of the variables listed in Table 1.
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TABLE 1

Nominal USTs Liquidity Measures: Daily Correlation Matrix

Table 1 shows the correlationmatrix of daily observations—from Jan. 2, 1987, to Sept. 1, 2023—on the variables that inform the nominal UST LF. The first principal component accounts for 52%of the variance. Figures in
bold in the last row refer to the sample loadings on the first principal component (PC1).

OTR
Premium
NSS

Noise(U)
NSS

Noise(U)
VRP

Noise(U)
KR

Noise(C)
NSS

Noise(C)
VRP

Noise(C)
KR

Speed(U)
NSS

Speed(U)
VRP

Speed
(U) KR

Speed(C)
NSS

Speed(C)
VRP

Speed
(C) KR

Std. Dev.
(U)

Std. Dev.
(C)

Mean
Noise(U)/
Std. Dev.

(U)

Mean
Noise(U)/
Std. Dev.

(C)

OTR Premium NSS 1.00
Noise(U) NSS 0.49 1.00
Noise(U) VRP 0.45 0.87 1.00
Noise(U) KR 0.47 0.91 0.94 1.00
Noise(C) NSS 0.38 0.96 0.84 0.88 1.00
Noise(C) VRP 0.32 0.78 0.95 0.85 0.79 1.00
Noise(C) KR 0.33 0.85 0.91 0.94 0.88 0.86 1.00
Speed(U) NSS 0.24 0.36 0.27 0.29 0.34 0.24 0.22 1.00
Speed(U) VRP 0.52 0.60 0.56 0.62 0.57 0.46 0.58 0.15 1.00
Speed(U) KR 0.25 0.43 0.29 0.32 0.45 0.24 0.27 0.61 0.50 1.00
Speed(C) NSS 0.25 0.40 0.31 0.33 0.39 0.27 0.27 0.96 0.23 0.65 1.00
Speed(C) VRP 0.50 0.58 0.56 0.62 0.56 0.48 0.59 0.12 0.96 0.45 0.19 1.00
Speed(C) KR 0.21 0.49 0.32 0.36 0.52 0.27 0.32 0.61 0.55 0.88 0.68 0.49 1.00
Std. Dev. (U) 0.37 0.86 0.69 0.74 0.86 0.62 0.67 0.31 0.48 0.38 0.34 0.47 0.44 1.00
Std. Dev. (C) 0.30 0.82 0.69 0.68 0.86 0.70 0.65 0.31 0.43 0.38 0.33 0.41 0.46 0.92 1.00
Mean Noise(U)/
Std. Dev.(U)

0.11 0.14 0.31 0.34 0.13 0.28 0.39 0.02 0.29 0.00 0.05 0.28 0.01 �0.15 �0.09 1.00

Mean Noise(U)/
Std. Dev.(C)

0.11 0.22 0.39 0.47 0.25 0.37 0.55 0.01 0.39 0.06 0.06 0.41 0.06 �0.02 �0.08 0.79 1.00

Memo: PC1
Loadings

0.17 0.32 0.30 0.31 0.31 0.28 0.30 0.15 0.25 0.19 0.17 0.24 0.20 0.27 0.27 0.09 0.12
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III. An ATSM of Nominal USTs with Embedded Liquidity Risk

This study proposes no innovations in ATSM formulae, fully detailed in
Appendix A of the SupplementaryMaterial. To review the decomposition of yields,
aggregate expected excess return on an n-period nominal UST security over the
anticipated short-rate path, aka the “term premium,” at time t follows:

tpn,t ¼ yn,t�~yn,t,(5)

where yn,t references themodel-fitted yield, and the risk-adjusted yield,~yn,t, embeds

the frictionless average expected nominal short rate over n, ~yfn,t, as well as the

anticipated friction, or the risk-adjusted loading on the LF, ~ln,t, as in,

~yn,t ¼~yfn,tþ~ln,t:(6)

Correspondingly, the aggregate term premium, tpn,t, includes both the fric-
tionless nominal term premium, tpfn,t, and the liquidity premium, lpn,t, as an alter-
native expression to equation (5),

tpn,t ¼ tpfn,tþ lpn,t:(7)

To disentangle the quantities in equations (6) and (7), the ATSM embeds
liquidity risk as an observable, orthogonal element in among the factors that affect
bond yields. To parse further aggregate required excess returns, the frictionless
nominal term premium component, follows:

tpfn,t ¼ yfn,t�~yfn,t:(8)

The liquidity premium on an n-period nominal security, lpn,t, the compensa-
tion bond investors demand for liquidity risk, is strictly defined below from
equation (7), and with rearranging,

lpn,t ¼ tpn,t� tp f
n,t

¼ðyn,t�~yn,tÞ�ðy f
n,t�~y f

n,tÞ
¼ ðyn,t� y f

n,tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
liquidity loading

� ð~yn,t�~y f
n,tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

risk�adjusted liquidity loading  

:

(9)

The premium is therefore the difference between the liquidity loading of
the bond, that is, the remainder after subtracting the frictionless yield from the
overall yield, and its risk-adjusted loading, which approximates expected illiquidity
over n.9

fitting errors and functional forms of liquidity are weak in these data. But further analysis along these
lines seems would boost confidence in the salience of the LF.

9As noted in Durham (2023), studies of liquidity premiums in TIPS commonly refer to the first
bracketed term, the “liquidity loading,” as the “liquidity premium.” Under this common definition, the
premium includes not only lpn,t but also expected liquidity. This formulation seems inconsistent with
common parlance that “premium” refers to the price not the quantity of risk. Similarly, in standard affine
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A. Empirical Specification, Factor Construction, Model Estimation, and
Overall Fit

The basis of the empirics comprises zero-coupon bond yields estimated from
underlying price quotes and other data on individual securities fromCRSP.10 Rather
than GSW updates, the yield curve is based on the NSS methodology and fit daily
for securities with initial maturities from 3 months to 30 years. The sample for
ATSM parameter estimation covers Jan. 1987 to Aug. 2023, for a total of
440 monthly observations, taken at month ends, and the daily series of decompo-
sitions runs from Jan. 2, 1987, to Sept. 1, 2023 (9,165 observations).

The set of observable model factors, x, includes the standardized LF, which
identifies the key parameters and in turn the frictionless quantities described
previously. The remaining factors derive from OLS regressions of yields on the
LF, usingmaturities from 3, 4,…, 119, and 120months. The first four conditional
principal components (PCs) of the time series of residuals across each maturity
comprise the remainder of x. As such, the first, second, and third PCs, say,
crudely capture the “frictionless” level, slope, and curvature of the nominal term
structure.

Graphs A–E of Figure 3 show the sample time series of the first five
unconditional PCs of nominal yields (the dotted lines), analogous to the 5-factor
ACMmodel, alongside each element of x (the solid lines). Correlations across the
first and fourth conditional and unconditional PCs (PC1 and PC4) are very close
to unity, around 0.97 and 0.98, respectively (Graphs A and D), but there are some
discrepancies. The correlations for the slope diverge during the GFC (Graph B),
with a sharp increase in the unconditional measure but a larger decrease condi-
tioned on the LF. This divergence may informally suggest the spike in yields
during the period owed to deteriorating market conditions, rather the higher
expected policy rates or term premiums, to be assessed more formally below.
Nonetheless, the overall sample correlation across slope factors is 0.97. The
correlation across the curvature factors is similarly tight (0.96) (Graph C), and
the unconditional PC5 and the LF are effectively uncorrelated (about �0.05), as
expected (Graph E).

Given the factors, estimation of the model largely follows the 3-step linear
regression procedure outlined in ACM. First, a standard OLS VAR produces the
parameters for the factor dynamics. The second and third steps recover the market
prices of risk and fitting errors frommonthly excess return regressions estimated for
11 maturity points—6, 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 months—where
excess returns over 1-month rates are a function of contemporaneous factor inno-
vations and lagged values of the factors.

Table 2 summarizes the close fits of the return regressions for each maturity
over the full sample. The R2 values are very close to unity for maturities beyond a

models of nominal securities, the “term premium” by construction excludes the expected-rate compo-
nent of yields. Therefore, equation (9), again embeddedwithin required excess return following equation
(7), does not include any component of “expected liquidity risk,” and lpn,t captures the compensation for
bearing illiquidity, not the quantity.

10See CRSP (2010) and updates for descriptions of the security-level data set. Estimates beyond
2020 use Bloomberg quotes.
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FIGURE 3

The Liquidity and Frictionless Yield Curve Factors

The solid lines in Graphs A–E of Figure 3 show the underlying factors in the ATSM, alongside the corresponding first five
unconditional principal components of the cross section of nominal UST yields (dotted lines), measured monthly.
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TABLE 2

Model Diagnostics: Nominal USTs Return Pricing Errors

Table 2 summarizes the fits of the monthly excess return regressions (following ACM) used in the model estimation. The
monthly sample for returns runs from Feb. 1987 to Aug. 2023 (439 observations).

Maturity (Months): Mean Std. Dev. Skewness Kurtosis R2

6 0.0000 0.0002 0.9964 12.4781 0.9553
12 0.0000 0.0002 1.0529 9.1123 0.9874
24 0.0000 0.0001 0.8853 12.9217 0.9993
36 0.0000 0.0003 0.4048 7.2822 0.9990
48 0.0000 0.0002 0.0580 6.0054 0.9997
60 0.0000 0.0003 0.9669 8.8629 0.9995
72 0.0000 0.0005 0.4669 7.1689 0.9991
84 0.0000 0.0005 0.3283 6.4670 0.9993
96 0.0000 0.0003 0.5949 6.8977 0.9999

108 0.0000 0.0003 0.1821 7.8130 0.9998
120 0.0000 0.0011 0.0914 6.5612 0.9983
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year, with the lowest reading of about 0.955 at the 6-month horizon, and the mean
errors are extremely close to zero, with very small standard deviations. The resid-
uals do not appear to skew in either direction consistently, although kurtosis
estimates are larger than Gaussian distributions imply. Yet on balance, the excess
return regressions imply a very close fit to nominal yields.

Furthermore, Graph A of Figure 4 shows the full-sample average actual and
fitted values across the range of maturities, and Graph B illustrates the corre-
sponding average unconditional standard deviations of observed and fitted
values. Taken together, both charts suggest that the specification matches the first
and second moments very closely. Moreover, Graphs A–K of Figure 5 show the
monthly time series of errors from the 6- to the 120-month maturities over the
sample, and Panel A of Table 3 lists summary statistics for the fitted values of
yields for each maturity, which correspond closely to the actual figures, within a
couple basis points (bps).11 To be precise, as noted in the second column, the root
mean squared errors (RMSEs) range from about 0.53 to 1.69 bps at the 60- and
12-month maturities, respectively. These pricing errors are within the magnitudes
of corresponding figures in several other studies. The standard deviations, the
third column, are also small, between 0.66 and 2.17 bps, and the skewness and
kurtosis of the pricing errors are also within the range of similar estimates reported
in previous studies. Like several applications of ATSM calibrated to fit yields,
corresponding pricing errors are typically larger for forward rates. As Panel B of
Table 3 indicates, RMSEs range from about 2.40 to 13.58 bps at the 12- and
120-month horizons, respectively.

B. The Liquidity Loadings

To underscore the merits of including a LF in an ATSM of nominal yields,
Graph A of Figure 6 shows the yield loadings on each of the factors by maturity,
which can be interpreted as the n-month yield response to contemporaneous

FIGURE 4

Model-Implied Yields: The Cross Section

Graph A of Figure 4 shows the full-sample average actual and fitted values across maturities from 6 months to 10 years, and
Graph B illustrates the corresponding average unconditional standard deviations of observed and fitted values.
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11As a departure from ACM, further estimation uses the market price of risk parameters from steps
2 and 3 as starting values in a standard MLE-based minimization of yield pricing errors.
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FIGURE 5

Model Implied Yields: Time Series

Graphs A–K of Figure 5 are time series plots of observed (the solid lines) and model implied (dashed) nominal UST yields at a monthly frequency over the sample.
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FIGURE 5 (continued)

Model Implied Yields: Time Series
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FIGURE 5 (continued)

Model Implied Yields: Time Series
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standardized shocks. These estimates reinforce the ubiquitous interpretation of the
level, slope, and curvature factors in the literature, although conditioned on the LF,
and the loadings on PC3 and PC4 are very modest.

More to the point, the average absolute magnitude of the responses to liquidity
shocks across all maturities is substantial, about 0.552 in absolute value (and
percentage-point yield terms) as noted in Graph F of Figure 6, albeit not as large
a sensitivity as the level of the term structure (2.327, Graph B), but easily at least
as sizeable across maturities in absolute value as the slope (0.324, Graph
C). Moreover, the sensitivity to liquidity is meaningful across tenors and increases
out the term structure. Also, the dotted lines Graphs B–F show corresponding OLS
loadings, based on simple regressions of observed yields on the model factors. All
estimates are quite close to the arbitrage-free yield loadings and follow similar
patterns across maturities, with clearly no diminution in the estimates for the LF
given this alternative tack.

Further robustness checks to this factor construction, detailed in Appendix C
of the Supplementary Material, imply meaningful liquidity effects on nominal
yields. The coefficients on the LF in the excess return regressions are also second
in magnitude only to the level, the nominal liquidity loadings are comparable in
magnitude to corresponding estimates for TIPS, and reduced-form regressions
suggest strong liquidity effects, controlling for macroeconomic as well as
other variables and with no assumptions about the factor structure or the
orthogonalization.

C. Nominal Yield Decompositions

The model diagnostics boost confidence in its implied decompositions of
yields, including parsing the required return component further into the frictionless
term and liquidity premiums. Graph A of Figure 7 shows the unconditional average
fitted term structure from 5 to 10 years over the full sample (the dotted black line),

TABLE 3

Model Diagnostics: Nominal UST Yield and (1-Month) Forward Rate Pricing Errors

Panel A of Table 3 summarizes diagnostics of the fit of the ATSM to nominal UST yields and corresponds with the time series
from Figure 5. Panel B of Table 3 includes the corresponding information for one-month forward rates. Themonthly sample for
yields and forward rates runs from Jan. 1987 to Aug. 2023 (440 observations).

Panel A. Yields Panel B. Forward Rates

Maturity
(Months)

RSME
(BPS)

Std.
Dev.
(BPS) Skewness Kurtosis

Maturity
(Months):

RSME
(BPS)

Std.
Dev.
(BPS) Skewness Kurtosis

6 1.06 1.56 0.11 8.51 6 4.93 7.15 0.81 9.80
12 1.69 2.17 0.43 5.31 12 2.40 2.92 0.20 4.46
24 0.89 1.08 �0.86 7.81 24 3.90 4.85 �0.55 3.30
36 1.21 1.41 �0.36 2.51 36 2.44 3.63 �1.60 8.11
48 0.81 0.94 �0.63 3.10 48 3.33 4.43 0.00 4.46
60 0.53 0.66 0.47 7.39 60 4.49 5.62 0.26 3.21
72 0.83 0.99 0.42 3.00 72 3.96 5.12 0.41 3.86
84 0.86 1.08 0.30 2.87 84 3.27 4.27 0.00 4.06
96 0.62 0.77 0.28 3.40 96 5.24 6.43 �0.51 3.75
108 0.62 0.71 �0.33 3.28 108 9.03 11.02 �0.36 2.95
120 1.48 1.74 �0.31 2.66 120 13.58 17.46 �0.19 3.50
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including anticipated average expected rates through each maturity (dashed green)
as well as frictionless term premiums (solid blue). The flat mean anticipated
nominal short rate path across tenors, at around 3% over the full sample, contradicts
the strong-form expectations hypothesis (Gürkaynak andWright (2012)), insofar as
the observed average upward slope to the observed curve owes entirely to estimated
positive frictionless term premiums.

Furthermore, as listed in Table 4, based on all available overlapping data
from alternative ATSMs, on average the nominal liquidity premium is about�31
bps on average. However, the central tendency disguises meaningful variation,
given a standard deviation of about 44 bps and a range from �96 to 335 bps.
Indeed, the finer decomposition affords notable alternative interpretations argu-
ably at key junctures in the sample. To start, Graph B of Figure 7 shows the times-

FIGURE 6

Yield Factor Loadings

Graph A of Figure 6 shows the ATSM-implied yield loadings on each factor, the n-month yield response to contemporaneous
standardized shocks. The solid lines in Graphs B–F show the same estimates, factor by factor, alongside the corresponding
OLS-based loadings (the dotted lines) derived from regressing nominal UST yields at each maturity on the factors.
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FIGURE 7

Model Decomposition of Yields: Frictionless Term and Liquidity Premiums

Graph A of Figure 7 shows the average fitted values, frictionless average expected rates, and frictionless term premiums for
maturities through 10 years over the monthly sample. Graph B shows the implied decomposition of 10-year nominal yields,
including frictionless average expected rates and term premiums, monthly over the same period. Graph C shows the 10-year
frictionless term and liquidity premiums based on themodel, alongside KWandACM term premium estimates, daily from Jan.
2, 1990.
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series decomposition of 10-year nominal yields (the dashed black line), again into
average expected rates (dotted green) and frictionless term premiums (solid blue).
Visual inspection broadly accords with the widespread narrative that both
components of yields have secularly declined. Graph C puts these results into
context with estimates from KWand ACM, at the same horizon. The frictionless
term premium correlates about as closely overall with both alternatives, given a
0.90 (0.91) correlation with KW (ACM) as listed in Table 5. Also, returning to
Table 4, the net sample average decomposition between short rates (2.72%
vs. 2.72%) is naturally similar across this model and ACM, but the frictionless
component of required returns is greater on average than the ACM term premiums
(1.97% vs. 1.68%). Also, the KW model produces greater anticipated average
short rates (3.65%) and lower average term premiums (0.77%) at the 10-year
horizon.

However, Graph C of Figure 7 also shows a notable divergence during the
GFC, with a precipitous drop in the frictionless term premium into negative
territory during the period. By sharp contrast, the ACM and KW term premium
estimates are elevated and especially highly correlated during this outlying epi-
sode with the estimated nominal liquidity premium, which hits its daily sample
peak around height of the crisis. Interestingly, and discussed later in terms of
cyclicality, the sample correlations between the liquidity premium and corre-
sponding estimates from KW and ACM are about 0.25 and 0.30, respectively,
compared to �0.11 with the frictionless term premium. At first blush, therefore,
courser term premium estimates may also embed meaningful information about
liquidity risks, particularly at extremes when model decompositions are of keen-
est interest.

Turning to comovement in model-implied expected rates, Graph A of Figure 8
shows the mean anticipated short rate over 10 years on the frictionless basis (solid
green), compared to the measures from KW (dashed black) and ACM (dotted
black). Clearly, the series are very highly correlated, as the coefficients between
the frictionless measure and KWand ACM are 0.89 and 0.97, as listed in Table 5.
Also, at the furthest horizon, anticipated 1-month and 1-year anticipated rates based
on the frictionless measure and KW, respectively, remain tightly correlated, at 0.80,
as Graph B of Figure 8 shows. Finally, Graph C shows the trajectory of anticipated
1-month frictionless expected rates for the last sample observation (solid green

TABLE 4

Nominal UST ATSM Selected Decompositions: 10-Year Zero-Coupon Yields

Table 4 summarizes the series of decompositions of nominal USTs shown in Figures 7 and 8 for all available data from Jan. 2,
1990, when the KW estimates become available, to Sept. 1, 2023.

Component Mean (%) Std. Dev. (%) Minimum (%) Maximum (%)

Liquidity premium �0.31 0.44 �0.96 3.35
Liquidity risk-neutral loading �0.01 0.10 �0.15 0.80
Frictionless term premium 1.97 1.21 �1.86 4.64
Term premium KW 0.77 0.85 �0.95 2.71
Term premium ACM 1.68 1.26 �1.13 4.62
Frictionless average expected rate 2.72 1.18 �0.22 5.50
Average expected rate KW 3.65 1.28 1.54 6.75
Average expected rate ACM 2.72 1.18 0.84 5.54
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line), alongside the corresponding forward term structures for the frictionless term
premium (dotted blue) and the liquidity premium (dashed red). The estimates
suggest anticipated monetary policy easing over the subsequent 2 years, with a
gradual reduction in rates that asymptotes toward a longer-run equilibrium
nominal rate.

IV. Empirical Applications

This section considers further applications. The first regards the cyclicality of
liquidity and frictionless term premiums. The second reassess the effects of Federal
Reserve asset purchases. The third considers a further decomposition of yields with
a similar assessment of TIPS and focuses on market-implied expected inflation.

A. Premia Cyclicality

Whether term premium estimates are countercyclical—namely, higher dur-
ing recessions—is a routine validating yardstick for ATSMs.12 Yet the issue seems
far more ambiguous than the literature lets on. Setting aside liquidity, conceivably
bond premia cyclicality depends heavily on whether demand or supply shocks
primarily buffet the economy, and any evidence of countercyclicality is consistent
with the latter. Only under the assumptions that inflation risk dominates nominal
bond excess returns and that inflation and growth are negatively correlated, are
USTs bad hedges that sell off when consumption deteriorates.13 Positive

TABLE 5

Nominal 10-Year Zero-Coupon Yield Decompositions
Across Selected ATSMs: Correlations

Table 5 summarizes correlations given all available overlapping daily data across key frictionless nominal decompositions as
well as KW and ACM as alternative estimates, from Jan. 2, 1990, to Sept. 1, 2023.

Liquidity
Premium

Liquidity
Risk-Neutral
Loading

Frictionless
Term

Premium

Term
Premium

KW

Term
Premium
ACM

Frictionless
Average
Expected

Rate

Average
Expected
Rate KW

Average
Expected
Rate ACM

Liquidity premium 1.00
Liquidity risk-neutral

loading
1.00 1.00

Frictionless term
premium

�0.11 �0.11 1.00

Term premium KW 0.24 0.24 0.90 1.00
Term premium ACM 0.29 0.29 0.91 0.95 1.00
Frictionless average

expected rate
�0.14 �0.14 0.43 0.53 0.36 1.00

Average expected
rate KW

0.12 0.12 0.69 0.79 0.70 0.89 1.00

Average expected
rate ACM

0.00 0.00 0.42 0.56 0.38 0.97 0.91 1.00

12For example, Bauer, Rudebusch, and Wu (2014) endorse their “bias-corrected” estimates over
those of Wright (2011 and 2014) given the reported greater countercyclicality of their measure.

13This reasoning largely follows Piazzesi and Schneider (2007) and would help explain positively
sloped nominal term structures, as does the model in Wachter (2006).
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FIGURE 8

Model Decomposition of Yields: Frictionless Expected Short Rates

Graph A of Figure 8 shows the mean frictionless anticipated short rate over 10 years (solid green line) and compared to KW
(dashed black) and ACM (dotted black). Graph B shows distant-horizon frictionless anticipated rates (solid green line), along
with a comparable KW series (dotted black). Graph C shows the trajectory of anticipated 1-month frictionless expected rates
for the last sample observation (solid green), alongside the corresponding forward term structures for the frictionless term
premium (dotted blue) and the liquidity premium (dashed red).
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unconditional average term premiums reported previously, “frictionless” or oth-
erwise, is consistent with this story, given this sample overall. Still, in conditional
terms over an extended period, (expected) cyclical downturns may not tidily
correspond with supply shocks, but rather at other times demand disturbances
indicative of a positive expected correlation between inflation and growth. Under
these alternatives, the insurance value of nominal USTs augurs for lower if not
negative risk premia, as government bonds pay in bad states. Aptly, again as
Graph C of Figure 7 illustrates, the frictionless term premium estimate is deeply
negative during the GFC, scarcely a supply shock.

As far as cyclicality of liquidity premia, nominal UST losses that owe to
deteriorating trading conditions are likely poorly timed. An absolute deterioration
in UST liquidity seems more rather than less likely to coincide with worsening
trading conditions in other assets, even if all the while the nominal UST market
remains comparably the most liquid. Ergo, all else equal, UST liquidity premia are
probably greater strictly in absolute terms during “bad times” and thereby
countercyclical.

As such, evidence reported in the literature of gross nominal term premium
countercyclicality may belie countercyclical liquidity premiums instead. Also,
stripped of attitudes toward liquidity risk, the ambiguous cyclicality of frictionless
term premiums, contingent on varying perceptions of supply and demand shocks
that effect UST hedging value, may become more transparent.14 To explore cycli-
cality, time-series regressions of the components of required returns on nominal
bonds—frictionless term and liquidity premia—as well as of KW and ACM term
premium estimates, tpKW10Y ,t and tpACM10Y ,t , respectively, on a set of macroeconomic
variables, x, that proxy business cycle conditions as well as uncertainty around
forecasts, follow:

tpKW10Y ,t

tpACM10Y ,t

tpf10Y ,t
lp10Y ,t

2
666664

3
777775¼ αþβ0xtþ εt,(10)

where x comprises a dummy variable for NBER-defined recessions, as well as the
dispersion of 1-year-ahead real GDP and inflation forecasts from Consensus
Economics.15

Table 6 summarizes the results using all available data from Jan. 1990 to Aug.
2023.16 Starting with the standard ATSMs in the first two columns, the coefficients
on the 10-year KW and ACM estimates are statistically insignificant, and the R2

14Also, as Bauer et al. (2014) note, flight-to-quality flows at times of market stress connote pro-
rather than counter-cyclical term premiums, which may be difficult to otherwise distinguish from
liquidity premiums, although both liquidity and risk appetite shocks characterize these episodes.

15This specification is consistent with the quarterly panel regressions in Wright (2011) and Bauer
et al. (2014).

16The left-hand-side variables are sampled from days during a given month when the surveys were
taken, not published.
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values are rather low. Turning to the results for this framework in the last two
columns, the coefficient on the recession dummy for the frictionless term premium
is small and insignificant, and the R2 is about 0.03. However, the last column shows
that on average estimated liquidity premiums are about 42 bps greater during
recessions, all else equal, and the result is significant at the 5-percent level, with
a corresponding R2 of 0.46.

Therefore, the only robust result on the cyclicality of required returns traces to
liquidity risk. Naturally, a reasonable suspicion is that the spike during the GFC
primarily produces these results. But as Appendix D of the SupplementaryMaterial
details, liquidity premium countercyclicality appears robust to structural breaks in
equation (10), band-spectrum regressions that isolate longer-run relations using
(continuous) real GDP growth rather than recession indicators, and M-GARCH
models that suggest a consistently positive (somewhat ambiguous) correlation
between stock returns and the component of required excess bond returns that owes
to increases in liquidity (frictionless term) premiums. Moreover, these results
reinforce the ambiguous cyclicality of frictionless term premiums and decreasing
(increasing) perceptions of supply (demand) shocks over this sample.

A puzzle, which may highlight some inherent limits of this class of ATSMs,
lingers. Conditional liquidity premia countercyclicality implies that USTs are risky
over the business cycle. But, as reported previously, the unconditional liquidity
premium is negative (�31 bps), on balance amid a wide range of estimates. The
literature stemming from Krishnamurthy and Vissing-Jorgensen (2012) (KVJ) on
“convenience yields,” which if anything is consistent with negative unconditional
premiums, may be informative on this score.17 True, their conceptualization of
liquidity, and safety too for that matter, is comparative rather than absolute.18 These
estimates by contrast, given that only information from nominal USTs informs the
calculations, are absolute rather than relative measures of the liquidity (and the

TABLE 6

Decompositions Across ATSMs: Premia Cyclicality

Table 6 summarizes the monthly results for time-series regressions following equation (10) from Jan. 1990 to Aug. 2023. *, **,
and *** indicate statistical significance at the 10%, 5%, and1%confidence levels, basedonNewey–West standard errors. The
figures in bold denote the results for the proposed model.

TermPremiumKW
Term Premium

ACM
Frictionless Term

Premium
Liquidity
Premium

Intercept 0.744*** 1.62*** 1.96*** �0.352***
Inflation survey dispersion 0.0199 0.0327 �0.215 0.237***
Growth survey dispersion �0.0191 �0.00985 �0.0104 �0.00939
NBER recession dummy 0.312 0.708 0.178 0.423**
R2 0.0132 0.0315 0.0282 0.455
No. of obs. 404 404 404 404

17By stripping out liquidity loadings and the corresponding premium embedded in nominal yields,
these decompositions afford a rare estimate of the quantity that KVJ endorse in their conclusions, namely
a frictionless anticipated short rate, with asset-pricing implications.

18For example, KVJ strictly address the response of spreads to changes in Treasury supply, among
assets that are similar in “safety” (liquidity) but different in liquidity (“safety”) to gauge liquidity (safety)
premiums.
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frictionless term) premium(s).19 Therefore, at first blush, these estimates are neither
consistent nor inconsistent with KVJ, strictly.

Yet, insofar as, say, the spike of the liquidity premium well into positive
territory during the financial crisis is simultaneously accompanied by similar if
not more pronounced increases in the liquidity premiums of other (risky) assets,
then these results hardly conflict with the KVJ, or very low absolute unconditional
premia in theory.20 A judicious assessment of liquidity premiums across risky asset
classes is beyond the scope of ATSMs narrowly estimated from government bond
data. Not to gainsay inconsistency between unconditional and conditional
countercyclical premiums. But absolute liquidity premia countercyclicality does
not necessarily imply the same for the relative terms that also matter for wider
hedging and asset allocation. Unconditional strong bids for relative nominal UST
liquidity seems a reasonable prior, nonetheless.

B. The Effects of LSAPs on Nominal Yield Components

The empirical delineation between frictionless term and liquidity premiums
also affords a renewed and finer examination of the effects of Federal Reserve
LSAPs. Previous studies in this literature have focused on broad channels, includ-
ing “portfolio rebalancing” and “signaling,” that empirically manifest only through
gross term premiums and the anticipated short-rate path. However, at times, central
bankers further distinguish between affecting reductions in risk premia through
LSAPs, on the one hand, and improving bond market functioning (i.e., “liquidity,”
on the other). As a key example, the Mar. 15, 2020 FOMC intermeeting statement
characterized new purchases in terms of the latter objective—that is, “(t)o support
the smooth functioning of markets for Treasury securities”—distinct from the
former, at least during the early response to COVID-19.21 Also, more generally,
the mere magnitude of LSAPs, either in terms of its “stock” or “flow,” may have
somewhat ambiguous liquidity effects, ultimately. Like the Federal Reserve’s initial
pandemic response, and the Bank of England’s temporary intervention in the Gilt
market in the fall of 2022 (see Pinter (2023)), purchases may presumably boost
market liquidity, up to a point. At another extreme, the Bank of Japan’s (BOJ) recent
yield curve control policy hardly improves Japanese government bond (JGB)
market functioning, strictly.22 In either case, the ubiquitous courser decompositions

19The same assessment also applies to antecedent estimates of the aggregate term premium in studies
from KW to ACM. An apt analogy is that required returns on the yardstick risk-free asset, aka term
premiums, might be elevated in absolute but not in relative terms vis-à-vis risky assets.

20Moreover, the primary results from KVJ refer to time-series regressions from 1926 to 2008, and
therefore their coefficients are static over the sample. Naturally, in contrast, these affine models afford
time-varying, daily estimates of all components of nominal yields.

21The FOMC began to expand on its rationale as soon as the Apr. 28–29, 2020 meeting, by
suggesting that improved liquidity conditions would foster “effective transmission of monetary policy
to broader financial conditions.” By the Dec. 15–16, 2022 FOMC meeting, the statement more directly
acknowledged an additional “credit easing” channel, as the revised language read, “(t)hese asset
purchases help foster smooth market functioning and accommodative financial conditions.”

22Near the time of writing, the BOJ on average ownedmore than 80%of 10-year JGBs (IMF (2023)),
and some individual JGBs reportedly traded only rarely—circumstances that hardly connote that
purchases afford “smooth market functioning.”
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cannot address these subtleties, without the distinction between frictionless term
and liquidity premiums.

One common approach to assess LSAP effects is to conduct event studies
around subjectively selected announcements. Cumulative changes of yield com-
ponents—to date, only expected rates and gross term premiums—around policy
announcements approximate the general impact of LSAPs. Table 7 updates and
expands this tack, but naturally with the proposed finer decompositions, following
the initial use of daily responses as in Gagnon et al. (2011),23 for 25 key dates that
span Nov. 25, 2008, to Mar. 23, 2020, referenced across six studies.24 As noted in
the last row, “Total (cumulative sum of selected days),” the cumulative effect based
on this simple methodology is notably larger for frictionless term premiums,
considering the estimated 97-basis-point decline, than for liquidity premiums,
which increased on net by about 9 bps. Also, the cumulative decline in the estimated
expected short rate was about 71 bps, consistent with a signaling channel, too.
Although the crudest general inference is that asset purchases do not affect liquidity
premiums, the estimates for the Mar. 15, 2020 intermeeting (Sunday) FOMC
decision nonetheless follows intuition and the stated rationale of the Committee
to address market functioning; the estimated liquidity premium dropped 16 bps,
whereas the frictionless term premium was unchanged.25 Further robustness
checks, detailed in Appendix E of the Supplementary Material (including assess-
ment of the statistical significance of findings in Table 7 as well as an alternative,
less subjective identification strategy for asset purchase news) also suggest that
LSAPs if anything largely work through expected rates or frictionless term pre-
miums rather than liquidity.

C. An Alternative Lens on Expected Inflation Derived from ATSMs

As another application, consider market-implied expected inflation, ein,t, as
the spread between the nominal- and TIPS-based frictionless expected short rates
over horizon n following:

ein,t ¼~y f
n,t�~yTIPS,fn,t :(11)

That is, ~yTIPS, fn,t follows from a similar ATSM as in equations (5)–(9) but
applied to TIPS (Durham (2023)), with a LF unique to the index-linked market
to strip out TIPS liquidity and real term premiums from observed TIPS yields, using
the first four orthogonal principal components of the TIPS yield curve as additional

23Intraday changes are a persuasive empirical alternative. But as Gagnon et al. ((2011), p. 19) argue,
the wider daily, if not 2-day, interval addresses the “novelty” and “diversity of beliefs” of the asset-
purchase tool that plausibly imply a slower “absorption.” Then again, strictly close-to-close daily
changes include price movements up to the (commonly afternoon) announcements that are not germane
to capturing the lower frequency nature of the response.

24The list includes Sept. 18, 2013, when Swanson ((2021), p. 34)) argues that “financial markets
widely expected the FOMC to begin tapering its LSAPs, but the FOMC decided not to do so.”

25Still, the largest daily drop in the liquidity premium, about 37 bps on Sept. 23, 2009, is also perhaps
telling, in terms of the limits of the effects of the mere magnitude of purchases on market liquidity. The
FOMC announced a slowing in the pace of purchases “to promote a smooth transition in markets,” amid
their observation that “economic activity has picked up.” Correspondingly, the estimated frictionless
term premium increased by about 45 bps, consistent with a “hawkish” surprise.
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pricing factors.26 Furthermore, it follows that so-called breakeven inflation or
inflation compensation—the observed spread between nominal and TIPS yields
—is the sum of expected inflation, the frictionless inflation risk premium, and the
relative liquidity loadings across nominals and TIPS, as in,

yn,t� yTIPSn,t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
}TIPS breakeven}

¼~yfn,t�~yTIPS,fn,t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ein,t

þ tpfn,t� tpTIPS,fn,t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
}frictionless inflation risk premium}

þ ln,t� lTIPSn,t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
}relative liquidity loadings}

:(12)

The relative merits are debatable. But there are at least three distinctive
features of this approach compared to previous ambitious ATSMs that attempt to
identify expected inflation. First, these frictionless measures strictly reference
observable rather than latent factors, as opposed to DKW. Second, this approach
uses zero information beyond market data, including neither survey data, as in

TABLE 7

Major QE and Unconventional Monetary Policy Announcements

Table 7 updates and expands event studies around subjectively selected policy announcements, following the initial use of
daily responses in Gagnon et al. (2011), for 25 key dates that span Nov. 25, 2008, to Mar. 23, 2020, referenced across six
studies. Daily changes listed below are in bps. Figures in bold denote cumulative daily changes.

Changes:

10-
Year
Yields

2-Year
Frictionless

Expected Rate

10-Year
Frictionless

Expected Rate

10-Year
Frictionless Term

Premium

10-Year
Liquidity
Premium

11/25/2008 �22 �5 �4 �24 4
12/1/2008 �19 �15 �11 �29 14
12/16/2008 �27 3 0 �18 �6
1/28/2009 13 8 7 18 �8
3/18/2009 �49 �11 �11 �42 0
8/12/2009 8 �11 �8 14 0
9/23/2009 �2 15 6 46 �36
11/4/2009 6 �5 �3 9 0
8/10/2010 �7 �5 �4 �9 3
8/27/2010 18 14 9 51 �28
9/21/2010 �13 �6 �6 �15 4
10/15/2010 7 �9 �7 10 2
11/3/2010 �2 �11 �8 �3 4
8/9/2011 �7 �7 �5 �7 4
8/26/2011 �4 �2 �2 �3 0
9/21/2011 �10 11 9 �26 5
6/20/2012 5 7 4 18 �12
9/13/2012 �4 �5 �4 �10 5
12/12/2012 5 �13 �7 �15 18
9/13/2013 �3 �8 �5 �22 16
12/18/2013 7 �24 �13 �42 43
12/17/2014 7 3 4 �9 9
3/18/2015 �12 �10 �10 5 �6
3/16/2020 �26 1 �2 0 �16
3/23/2020 �7 1 �1 5 �8

Gagnon et al. (2011) �92 �20 �24 �27 �31
Wright (2012) �121 �34 �33 �97 �2
Krishnamurthy and

Vissing-Jorgensen
(2011)

�104 �20 �20 �95 5

D’Amico et al. (2014) �63 �9 �10 �62 �1
Swanson (2021) �69 �75 �50 �170 97
Rebucci et al. (2022) �33 2 �4 5 �24

Total (cum. sum of
selected days)

�138 �84 �71 �97 9

26Note that the third bracketed term on the right-hand side of the identity is not the relative TIPS
liquidity premium, but the relative liquidity loading across nominals and TIPS.
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DKW, nor realized inflation series, as in AACMY, to pin downmodel parameters.27

Third, expected inflation, equation (11), does not rest on joint estimation of the
model(s) across nominal USTs and TIPS, and the pricing factors are thereby more
flexible, yet hardly preclude overlaps across the factor structures.

To illustrate the results,28 consider longer-run inflation expectations germane
to the price stability goal of the Federal Reserve. The solid blue line in Graph A of
Figure 9 shows the gap between the expected frictionless nominal 5-year forward
rate beginning in 5 years (5Y5Y) based on the model and the corresponding
estimates following equations (5)–(9) for TIPS updated from Durham (2023),
which comprises a market-based proxy for the equilibrium real interest rate, or
r-star.29 For comparison, the dotted black line shows the corresponding DKW
estimate of expected inflation at the same horizon, alongside long-run CPI survey
forecasts from Blue Chip. Data across equation (11) and DKW beginning on July
29, 1999, produces means and standard deviations of 1.95% and 2.60% and 49 bps
and 26 bps, respectively, for the two long-run expected inflation series, as listed in
Panel A of Table 8. Therefore, this approach produces somewhat lower and more
volatile estimates, strictly, compared to DKW.

An inference is that this alternative estimate implies more pessimism among
investors during the last couple decades that the Federal Reserve would undershoot
its long-run inflation objective, perhaps in contrast to received wisdom about
monetary policy credibility. Even so, the daily series are positively but not very
closely correlated, with a coefficient of 0.41, as listed in Panel B of Table 8. In fact,
the frictionless series implies far less anchored inflation expectations at key points
in the sample—namely, to the downside in the wake of the GFC and to the upside at
times in the aftermath of COVID-19, as highlighted in Graph B of Figure 9.30

Furthermore, Graph C of Figure 9 shows the corresponding estimates for the
5-year horizon, alongside survey-based, 1-year-ahead CPI inflation forecasts from
Consensus Economics, as well as 5-year-ahead projections from Blue Chip. The
first and second moments of the ATSM-based estimates differ more at this shorter
horizon, with means of 1.55% and 2.40% and standard deviations of 85 bps and
38 bps for the frictionless andDKWmeasures, respectively, also listed in Panel A of
Table 8. Also, by visual inspection, and perhaps especially at the sample extremes
of the GFC and the post-COVID-19 environment, the frictionless 5-year measure
more closely follows the 1-year survey mean. As listed in Panel B of Table 8, the
sample correlation between the frictionless measure at this horizon and the Con-
sensus measure is about 0.62, whereas the corresponding figure using the DKW
series is about 0.18. By contrast, as expected given that the DKWmodel uses Blue
Chip data to estimate the parameters, the correlation between the 5-year DKW

27Setting aside whether nonmarket information helps capture inflation expectations of all economic
agents, this method more precisely isolates anticipated inflation among investors.

28Parameter estimation across a longer time series for nominals than for TIPS is arguably not ideal,
but note that DKW, for example, backfill their estimates for earlier periods before TIPS issuance.

29See Durham (2023) for further details.
30Other measures of long-run TIPS-based inflation expectations include Christensen, Lopez, and

Rudebusch (2010), who do not estimate liquidity premiums across TIPs or nominals. Also, the estimates
from AACMY are notably inert and pinned near the Federal Reserve’s price-level target for their full
sample.
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FIGURE 9

Measures of Expected Inflation

Thesolid blue lines inGraphsA–Dof Figure 9 show implied expected inflation basedon thedifferencebetween the frictionless expectednominal short rate and similar estimates of the frictionless expected real short rate
fromDurham (2023), at the 5-year-forward (Graphs A and B) and 5-year horizons (Graphs C and D). The dotted black lines are the corresponding estimates from DKW, and the gray- and yellow-shaded triangles show
corresponding inflation expectation measures from the Blue Chip Economic Indicators and Financial Forecasts surveys, respectively. The dashed green lines in Graphs C and D are mean 1-year ahead expected
inflation measures from Consensus Economics (CE).
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estimate and the corresponding Blue Chip survey average is about 0.62, clearly
greater than the correlation using the frictionless estimate, around 0.14. Finally, as
highlighted in Graph D of Figure 9, both the frictionless 5-year and the Consensus
survey measure imply that inflation expectations began to increase markedly in the
run-up to the Federal Reserve’s liftoff from zero rates in Mar. 2022, intuitively as
price pressures had mounted. By contrast, the DKW 5-year gauge was largely
unchanged until after the tightening cycle began.

V. Discussion and Extensions

This novel ATSM of nominal UST yields features an observable LF based on
pricing anomalies in individual securities and exclusively relies on market quotes.
Besides the close model fit, the LF loadings on both yields and returns, second only
in magnitude to the level factor, as well as other analyses connote that the near-
ubiquitous assumption of frictionless government bond markets is problematic.
Furthermore, the corresponding decompositions of yields follow intuition and
correlate reasonably closely with other common measures, including KW and
ACM. For example, the results confirm the persistent net downtrend in anticipated
short rates as well as net lower required compensation for owning nominal USTs
over the last few decades.

However, the divergence in estimated decompositions at key sample points,
particularly the finer parsing of required excess returns into frictionless term and
liquidity premiums, raise new questions about supposed countercyclicality of term
premiums. Contrary to previous findings in an inconclusive literature, any
countercyclicality appears to owe to compensation for absolute liquidity risk in

TABLE 8

Measures of Inflation Expectations: Levels and Correlations

Panel Aof Table 8 shows summary statistics of inflation expectationmeasures, following equation (11) andothermetrics, for all
available data from July 29, 1999, to Sept. 1, 2023. Panel B shows selected correlations across thesemeasures over the same
period.

Panel A. Summary Statistics

Mean (%) Std. Dev. (%) Minimum (%) Maximum (%) Start Date End Date

Frictionless 5Y 1.56 0.85 �2.75 3.46 29-Jul-99 1-Sep-23
DKW (2018) 5Y 2.40 0.38 1.64 3.32 29-Jul-99 1-Sep-23
Blue Chip (EI&FF) 5Y 2.37 0.14 2.08 2.70 1-Dec-99 1-Dec-22
Consensus Economics 1Y 2.29 0.97 �0.66 6.05 9-Aug-99 14-Aug-23
Frictionless 5Y5Y 1.96 0.49 0.53 3.16 29-Jul-99 1-Sep-23
DKW (2018) 5Y5Y 2.60 0.26 2.04 3.16 29-Jul-99 1-Sep-23
Blue Chip (EI&FF) 5Y 2.38 0.15 2.10 2.80 1-Dec-99 1-Dec-22

Panel B. Pairwise Correlations

Measure Correlation

Frictionless 5Y and DKW (2018) 5Y 0.39
Frictionless 5Y and Blue Chip (EI&FF) 5Y 0.14
Frictionless 5Y and Consensus Economics 1Y 0.62
DKW (2018) 5Y and Blue Chip (EI&FF) 5Y 0.62
DKW (2018) 5Y and Consensus Economics 1Y 0.18
Frictionless 5Y5Y and DKW (2018) 5Y5Y 0.41
Frictionless 5Y5Y and Blue Chip (EI&FF) 5Y5Y 0.09
Frictionless 5Y5Y and Consensus Economics 1Y 0.47
DKW (2018) 5Y5Y and Blue Chip (EI&FF) 5Y5Y 0.70
DKW (2018) 5Y5Y and Consensus Economics 1Y 0.08
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nominal USTs. Also, the results afford a more precise assessment of LSAP effects
on the yield curve, lending some support to the “portfolio rebalance” as well as
“signaling” channels, but with ambiguous results for liquidity premiums, and in
turn market functioning. Finally, in conjunction with similar estimation of TIPS,
this approach produces alternative readings on expected inflation, including at
horizons germane to the Federal Reserve’s long-run price objective, which imply
less sanguine inferences about anchoring at critical monetary junctures.

There is no shortage of caveats and possible extensions. These include difficult
choices in the LF construction, related to conditional error specification as well as
the precise estimation of error-correction speeds. In terms of applications, even
more ambitious models that jointly estimate liquidity and frictionless premia across
both USTs and the local equity market (say, as extensions of Lemke and Werner
(2009), Lettau and Wachter (2011), or Adrian, Crump, and Moench (2015)) might
uncover more comprehensive inferences about cyclicality and hedging demand, as
opposed to ATSMs models solely informed by government bond data. Also,
although the event-study-based estimates might capture the initial response of yield
components to LSAPs, an open question regards the subsequent real effects, if any,
of these quantities within wider financial conditions, broadly along the broad lines
of, say, Gertler and Karadi (2015), Adrian, Boyarchenko, and Giannone (2019), or
Kaminska, Mumtaz, and Sustek (2021). Finally, although the analyses comprise a
novel pure-market-based gauge of inflation expectations, alternative methods that
simultaneously estimate liquidity premia across TIPS and nominals, again with
information on the latter market to advance AACMY, would comprise another
welcome read on one of the most critical unobservable variables in financial
economics.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023001345.
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