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TENSOR PRODUCTS OF HOLOMORPHIC DISCRETE 
SERIES REPRESENTATIONS 

JOE REPKA 

1. I n t r o d u c t i o n . We discuss the decomposition of tensor products of holo-
morphic discrete series representations, generalizing a technique used in [9] for 
representations of SL2(

1R), based on a suggestion of Roger Howe. In the case of 
two representations with highest weights, the discussion is entirely algebraic, 
and is best formulated in the context of generalized Verma modules (see § 3). 
In the case when one representation has a highest weight and the other a 
lowest weight, the approach is more analytic, relying on the realization of these 
representations on certain spaces of holomorphic functions. 

For a simple group, these two cases exhaust the possibilities; for a non-
simple group, one has to piece together representations on the various factors. 

The au thor wishes to thank Roger Howe and J im Lepowsky for very helpful 
conversations, and Nolan Wallach for pointing out the work of Eugene 
Gutk in (Thesis, Brandeis University, 1978), from which some of the results of 
this paper can be read off as easy corollaries. 

2. N o t a t i o n a n d p r e l i m i n a r i e s . We use the notat ion and conventions of 
[3], [4], [5], and [6]. Let g0 be a non-compact simple real Lie algebra. Define f0 

and p0 as in [3], § 2, and let r)0 be a maximal abelian subalgebra of f0, which we 
assume is also maximal abelian in g0- Complexify g0, ï)o, fo, po to g, f), f, p, 
respectively. Choose a system 2 of positive roots and let S + be the set of non-
compact positive roots. We shall assume tha t the non-compact positive roots 
are totally positive, in the terminology of Har ish-Chandra (see [5] ; § 3, § 4, § 5) ; 
this implies t ha t f0 has non-trivial centre (see [5] ; corollaries to Lemma 13). Let 
2p denote the sum of all the positive roots, and for each root a, choose Xa in the 
corresponding root space, such tha t a(Ha) = 2, where Ha = [Xa, X-a]. 

Let p + = X/YÇ2 + C X 7 , P- = ETÇS + C ^ - T , and let ty+, )̂3_ denote their 

respective universal enveloping algebras. Let b = Ï © p+ , a subalgebra of g. 
Let G be the simply connected complex semisimple Lie group with Lie 

algebra g, let Go be the (real) semisimple Lie subgroup with Lie algebra Q0, and 
let Ko be the (compact) subgroup with Lie algebra fo-

Suppose A G Ï)* satisfies: 

(1) A(Ha) is a nonnegative integer, for all a (j 2 , a # S + 

(2) (A + p)(Hy) < 0, for all y G S+-

Suppose too tha t L is an irreducible representation of K0 on a Hilbert space V, 
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which has highest weight A. Then (see [6]; [5], Theorems 2 and 3), Harish-
Chandra constructs a (unique) uni tary irreducible representation of Go so tha t 
the corresponding representation of g has highest weight A. This representa­
tion (and the corresponding Lie algebra representation) will be denoted 7TA, and 
called a holomorphic discrete series representation. 

We extend L from a representation of ! to one of b by letting p+ act trivially. 
Then (see [10]), as a representation of the universal enveloping algebra of g, 
7TA is a generalized Verma module, the representation algebraically induced from 
the representation L of the universal enveloping algebra of b. In particular 
(see [2]), the space on which TTA acts is isomorphic to <$_ ® V. 

Let YI, . . . , y q be the distinct non-compact roots, let A = A0, . . . , Ar be the 
distinct weights of V, and ^z the multiplicity of A* in V. Then the wreights of 
7TA are all of the form X = A* — (miji + . . . + rnqyQ), where the mt are non-
negative integers. And by the Corollary to Lemma 21, [5], the multiplicity of a 
weight X in 7TA is given by 

where nt(\) is the number of distinct sequences {mx, . . . , mq) of nonnegative 
integers such tha t X = A* — (niiyi + . . . + mqyq). In particular, WA( A) = 1. 

We shall also need a simple fact about holomorphic functions: 

LEMMA 2.1. Let SI be a connected open subset of Cn, V a finite dimensional 
complex vector space. Suppose F : 12 X 12 —> V is holomorphic in the first argu­
ment, antiholomorphic in the second. If the restriction of F to the diagonal in il X ^ 
is identically zero, then F = 0. 

Proof. The proof is by an induction argument on n. We may assume there is a 
polydisc P, centred a t the origin, with P C 12. Fix zx, z2, . . . , zn-\ such tha t for 
small zn, (zi, . . . , zn-i, zn) Ç P. For any real 6, consider the function 
g(z) = F(z1, . . . , zn-i, z; Z\, . . . , zn-\, eiez). I t is holomorphic and vanishes on 
the line z = eiez; hence g = 0. Thus for small zn, F(zi, . . . , zn; zx, . . . , z„_i, z) 
vanishes whenever |z| = \zn\, hence vanishes for all z. 

We have shown tha t F vanishes, not just on the diagonal in 12 X 12, bu t 
whenever the first n — 1 variables agree. This proof of the inductive step also 
works for n = 1, and the lemma is proved. 

3. T w o r e p r e s e n t a t i o n s w i t h h i g h e s t w e i g h t s . Suppose A, A' satisfy 
(1) and (2) of § 2; let L, L' be irreducible representations of K0 on V, V, with 
highest weights A, A', respectively, and let TTA, TTK' be the corresponding 
representations of Go. We consider ir\ ® 7TA' and will show tha t it is a direct 
sum of representations 7rA". Indeed, let A*, /x, 0 ^ i S r, be the weights of L 
and their multiplicities; A / , /x/, 0 ^ i S r', the weights and multiplicities 
for L'\ and let A/7 , /x/', 0 ^ i ^ s, be the weights of L® L' and their 
multiplicities. Then the weights of TTA ® TTA' are sums of weights of 7TA and 7TA', 
and are all of the form v = A(' — (miyi + . . . + mqyq), for some nonnegative 
integers m{. 
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I t is easily seen t ha t we may calculate n"(v), the multiplicity with which v 

occurs in TTA ® TTA', in either of two different ways. Indeed, 

n"{v) = Zx+x'=, nA(\)'nA'(\'). 

Also n" (y) = Xlo M / ' W 0 0 > where n/'(v) is the number of dist inct sequences 
(mi, . . . , mq\ m\ , . . . , mq) such tha t v = A / ' — ((mi + w / ) 7 i + . . . + (w<? 
+ md)lq)' I n particular, w"(A + A') = 1. 

T H E O R E M 1. TTA ® TTA' W « dired s^m of representations of the form TTA", with 
finite multiplicities. The A" which occur are all of the form A" = A / ' — 
(miYi + . . . + mqyq), where A / ' (0 ^ i ^ 5) is a weight of L ® Z/, and mz-
are nonnegative integers. The multiplicity M\>>, of TTA" is given by the inductive 
formula 

MA- = » " ( A " ) - Zx^A" Mx»x(A"). 

Note t ha t only finitely many terms in the sum are non-zero. Indeed if { A /} 
are the weights of the representation of K0 with highest weight X, then 
n\(A") = 0 unless A" = A^0 — 7, for some 7 = mxy\ + . . . + mqyQ, with mt 

nonnegative integers, and M\ = 0 unless X = A/' — y' for some yf of the same 
form. 

In particular, 7TA+A' occurs with multiplicity one. 

Proof. We have already remarked t ha t the weights of TTA ® TTA' are all of the 
s tated form. Consequently, we may apply Lemma 4.4 of [2] to conclude t h a t 
(as a representation of the universal enveloping algebra) TTA ® ^K' has an 
infinite composition series 0 = X0 C ^ i C X2 C • • • whose union is the whole 
space and such tha t Xi+i/Xt is a representat ion of the form 7TA", for some A" 
(which must , of course, be a weight of TA ® TTAO- Bu t since we are concerned 
with a unitary representation of Go, Xi+\/X t is (isomorphic to) a g-invariant 
subspace (the or thocomplement of Xt in Xi+i), and the composition series is 
actually a direct sum. 

All t ha t remains is the formula for M\>>. Bu t the multiplicity of TT A" is the 
number of times A" occurs as a highest weight, which is the number of t imes it 
occurs in TTA ® TTA' less the number of t imes it occurs as a weight of some ir­
reducible subrepresentat ion other than TTA"- T h a t is exactly wha t the formula 
says. 

Remark. This result can be proved directly, wi thout appeal to generalized 
Verma module theory. We notice t ha t the tensor product has A + A' as a 
highest weight, so must contain a copy of 7TA+A' ; then find a highest weight A" 
in the complementary subspace and conclude t h a t TTA" occurs. Then jus t con­
tinue inductively, removing representat ions and finding highest weights in 
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what is left. Of course, this is also essentially the same as the argument which is 

used to prove the above-cited lemma. 

4. Holomorphic and anti-holomorphic discrete series. Now, as before, 
let G be the simply connected complex semisimple Lie group with Lie algebra g, 
let Go and K0 be the (real) Lie subgroups with Lie algebras g0 and f0; also let 
P+, P _ , and K be the subgroups corresponding to p+, p_, and f, respectively. 

In [6], § 2, Har ish-Chandra shows tha t the product map P _ X K X P+ —> 
P_-K'P+ is an isomorphism onto an open subset of G which contains Go, and 
tha t P--K-Go is open in G, with 

(4.1) P^KC\G, = K,. 

Using this, he then shows tha t there is a real analytic isomorphism <p from 
K0\Go onto an open subset of p+ , and this can be used to describe a complex 
s t ructure on K0\Go, with respect to which Ko\Go is a bounded domain (see [6], 
§ 2, § 3 ; [7], Lemma 21 ; or [1], Theorem 1). Following [1], we let 12 = <p(K0\G0) 
and W = P--K-Go. 

Now suppose AGI)* satisfies conditions (1) and (2) of § 2. Suppose too t ha t 
there is an irreducible representation L of K0 on a Hilbert space V, such t ha t the 
corresponding representation of f or K (also denoted L) has highest weight A. 

We shall now present Har ish-Chandra ' s construction of the irreducible 
representation 7TA of Go, alluded to in § 2. We shall follow the t rea tment of 
[1]. Indeed, let J4?L (respectively ^fL,ho\) be the space of measurable (resp. 
holomorphic) func t ions / : W —> V such tha t 

(i) f(pkw) = L(k)f(w), for p e P _ , K X , w e W 

00 ll/ll2= f ll/te)ll2^<oo. 
J Go 

With respect to the norm defined in (ii),j4fL (resp.j4fL>hoi) is a Hilbert space 
on which Go acts unitari ly by right translation. The action of G0 o n J ^ L h o l is TTA, 
and by (4.1), the action of Go on-J^fL is isomorphic to IndKQ

G°L. 
However, for our purposes, another realization is also impor tant (see 

[1]). Noting tha t exp 12 is a complex analytic section of W over P--K, for 
/ 6 JtfL or Jt?L,hol and X Ç 12, we l e t / ~ ( X ) = / ( e x p X ) . We shall see tha t the 
map /•—»/" is an isomorphism from j f L (resp. ^fL<h0\) onto a space J^zT 
(resp. J^z^hof) of measurable (resp. holomorphic) functions /~ : 12 —» F. 

If X Ç 12, then exp X G TF = P--K-G,. We let exp X = £ ( X ) £ P O g P O , 
with p(X) e P - , £ (X) e K, g(X) G G0. We also use the analytic isomor­
phism X ï—» g(X) to t ransport Haar measure dg on K0\Go to a measure dp(X) 
on 12. Choosing the norm on F so tha t K0 acts unitarily, we find tha t fo r / G ̂ z , 
orJzLthol, 
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Il/Il2 = f IL / (g ) INn= f ( l l / (g ) l l 2 ^ 
J Go J Ko^Go 

= f \\f(g(x)Wd»(x) 

= j \\L(k(X)-l)f(p(X)k(X)g(X))\\*dn(X) 

= f \\nx)\\i,xd»{x), 
where, for X £ 12, we define a new norm on F by IMU.x = \\L(k(X)~1)v\\. 

By (4.1) and (i) above, we see t h a t elements oîJ*ifL or<yifLMo\ can be regarded 
as functions from K0\Go to V. Using the exponential map , we regard them as 
functions from 12 to V. T h e above calculation shows how to calculate the norm 
of such a function; the norms ||-||z,,x on V mus t be introduced because K does 
not act unitarily on V, even though K0 does. We l e t J ^ L ~ (resp. J ^ ^ o f ) be the 
Hilbert space of all measurable (resp. holomorphic) func t ions / " : 12 —> V, with 
the norm defined by the final integral above. 

Now 12 is a bounded subset of a finite dimensional complex vector space. T h e 
coordinate functions correspond to the non-compact positive roots. We note 
(see [1], remarque 1 and proof of théorème 2) t ha t the (holomorphic) poly­
nomial functions from 12 to F a r e contained inJlfL~(JifLthor), and of course are 
dense. In fact, because of the above observation about the coordinate functions, 
the holomorphic polynomials are jus t the i£0-finite vectors inJ^L > h o l~; the set of 
all holomorphic polynomial functions is in an obvious way isomorphic to 
Ĵ3_ ® V, which as we have already remarked is the space of the corresponding 

generalized Verma module. 
If A' G Ï)* is such t ha t — A' satisfies conditions (1) and (2) of § 2, and if U is 

a representation of K0 on V with lowest weight A', then in the same way we 
construct a representation WA' with the lowest weight A'. Indeed, let Jti? L> t&ntttl0i 

(resp. ^L',antihoi~) be the Hilbert space of anti-holomorphic functions 
/ : W —» V ( resp . /~ : 12 —> V') with norm defined analogously to the norm for 
^L.hoi (resp. J^z^hof )• T h e action of Go by right t ranslat ion on ^z/,antihoi is 
uni tary and irreducible, with lowest weight A'. 

The representation 7rA ® TTA' is realized onJ4fLthoi ® ^z/,antihoi o r ^L.hoC ® 
^z/.antihof- T h e la t ter space consists of all functions F : 12 X 12 —> V 0 V 

which are holomorphic in the first variable, anti-holomorphic in the second, and 
such tha t 

f f \\F(X, X')\\l0L,,(x,x,)d^(X)d„(X') < oo 

where the norms on F ® V are defined by lett ing 

\\V®A\L*L'XX.X: = IMkx-|ML<.x'. 
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This space contains all polynomial maps which are holomorphic and anti-
holomorphic in the first and second variables, respectively. 

Every F Ç ̂ L^OC ® ^z / ,ant ih 0 r is a continuous function, so we may let 
RF : tt -> V ® V denote the restriction of F to the diagonal of 12 X Û (which is 
isomorphic to ft) ; i.e. RF(X) = F(X, X). The image under R of a polynomial 
function is contained mJ4?L®L~, and we see tha t we have a densely defined 
map 

K : -Jo L,th.o\ <9 Jb L,' ,antihol > ̂  L® V • 

PROPOSITION 4.1. The densely defined map R is closed, with dense image and 

trivial kernel. 

Proof. L2-convergence of holomorphic functions implies pointwise conver­
gence, so a convergent sequence must converge (pointwise) on the diagonal. 
Consequently, if the restrictions to the diagonal converge mJ4fL®L>~, the limit 
must in fact be the restriction of the limit function. This shows tha t R is 
closed. 

T h a t the kernel is trivial is an obvious consequence of Lemma 2.1. 
T h e image of R contains all polynomial functions; since ft is a bounded 

domain, the Stone-Weierstrass Theorem says these functions are sup-norm 
dense in Cc(ft, F ® V). But Cc(ft, V® V) is dense m^L®Lr, and sup-norm 
convergence of bounded functions implies convergence in ^L^L", using 
dominated convergence and the fact tha t the constant functions are inJlfL(E)L~. 
This concludes the proof. 

T H E O R E M 2. If A, —A' satisfy (1) and (2) of § 2, and L (resp. L') is an 
irreducible representation of K0 with highest weight A (resp. lowest weight A r), 
then, as representations of Go, 

7TA ® 7TA' « I n d ^ L ® L'. 

Proof. By Schur 's Lemma and Proposition 4.1, the tensor product is unitarily 
equivalent to the action of Go onJtffL®L~, and this representation is isomorphic 
to ^L®L', for which the action of G0 by right translation is indeed 
IndKQ

G°L® L'. 

5. E x a m p l e s . In the case of SZ,2(R), the above results are especially easy to 
describe. In fact, they have already been dealt with, in a more ad hoc manner , 
in [9]. Here K0 = SO (2) is abelian; it is the circle group. We denote by %n the 
nth character of KQ: 

Xn • 
cos 6 sin 9 

- s i n # cos 6 

Following Lang ([8]), for n ^ 2 (resp. n ^ —2) we let Tn denote the discrete 
series representation with lowest (resp. highest) weight n (corresponding to the 
character Xn)- The weights of Tn are n, n + 2, n + 4, . . . (resp. n, n — 2, 
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n — 4, . . . ) , each occurring with multiplicity one. So if m, n ^ 2, the weights of 
TK 0 Tn are m + n, m + n + 2, . . . , m + n + 2k, . . . , where m + n + 2& 
occurs with multiplicity & + 1. Consequently, by Theorem 1, 

Tm QÇ Tn tt 1 m+n (J) Tm+n+2 © Tm+n+i © . . . = ©?=o 7 M+H+2A; and 

On the other hand, Xn is itself the irreducible representation of K() with 
highest (and lowest) weight n, so for m, n §: 2, by Theorem 2, 

7 ^ 0 T_w ^ I n d ^ X m ® X-n = Ind^o^OXm-n-

This induced representat ion is easily decomposed using Frobenius Reci­
procity; it contains one copy of the direct integral of the principal series 
representations of the appropr ia te par i ty (the same as the par i ty of m — n), 
and (at most) finitely many discrete series representations, namely those which 
contain the weight m — n. Each such component occurs with multiplicity one. 
See [9] for details, and for the connection with holomorphic functions on the 
upper half-plane. I t is also proved there t ha t the same results (i.e. same 
formulae) carry over to the "l imits of discrete series" or "mock discrete series," 
i.e. when n a n d / o r m is allowed to equal 1. 

The other example we pursue is t ha t of Sp(2, R ) . Here K0 ^ U(2), and the 
(compact) Car tan subalgebra f) consists of all matrices of the form 

T 0 diag(/i,/2)l 
|_diag(-/i, -h) 0 J 

As simple positive roots we choose a = t\ — t2 and y = 2-fa. T h e positive 
roots are a, y, y + a, y + 2a, of which a is compact and the others are non-
compact . We find tha t p = 2a + 3 /27. 

If we write A = ma + ny, with m, 2n £ Z, then condition (1) of § 2 
amounts to m ^ n, and condition (2) amounts to m < —2, since, by (1), 
m ^ n. 

T h e group U(2) has a natural action on C 2 ; we denote by ap its action on the 
symmetr ic tensors of degree p, and by aPtQ the representat ion det*7 0 ap. T h e 
weights of aPtq arep (a + §7) + g (a + 7) — ka, 0 ^ k ^ p. If A = ma + ny 
as above, then the representation of U(2) with highest weight A is (T2(m-n) M-m-
If A' = m'a -f n'y is another such weight, then we may assume m — n ^ 
m' — n'. 

Consequently, in 7TA 0 7TA', the weight A + A' — ka has multiplicity k + 1, 
for 0 ^ & ^ 2(ra' — n'), and we see t ha t Î A + A ' - ^ occurs in the tensor product 
with multiplicity one when 0 ^ k ^ 2(m' — n'), and not otherwise. Similarly, 
each representation 7TA+A'-A;Y occurs in 7TA 0 TTA> with multiplicity one. Other 
representations w\+&>-ka-jy also occur (e.g. TA+A'-a-y occurs with multiplicity 2) 
bu t it gets increasingly messy to calculate the multiplicities. 

If A = ma + ny and A' = m'a + n'y are such t ha t A and — A' both 
satisfy (1) and (2), and m, m', 2n, 2n' £ Z, then L = a2(m-n),2n-m is a represen-
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tation of K0 with highest weight A, and U = <jnn>-m>)ym> has lowest weight A' 
(note that since — A' satisfies (1), we have 2{n' — m') ^ 0). So, by Theorem 2, 

7TA® TTA'^ IndKo
G°L(g) V. 

Let us pause to decompose L®L'. Consider first the tensor product 
<*v ® <V> where p ^ p''. By a calculation analogous to our analysis of the 
weights in the tensor product of two representations with highest weights, one 
finds t ha t 

CpVy <V — <rp+p',o\& 0"p+p'-2,i u7 o"p+p'-4,2U7 • • • \B ap-p',p'-

Put t ing in the determinants , with L, L' as above, 

= det2--™+™' <g> a2{m-n) ® or2(n^ro0. 

If, for example, m — n ^ n' — m'', then 

L®Lf = d e t 2 — + - ' ® ( © l î ï i - ^ ' ^ a c ^ ^ - m ' - * ) . * ) 

— vj7fc=0 <?2(m-n+n'-m'-k) ,k+2n-m+m'-

So 7TA 0 7TA' is the direct sum of the representations of G0 induced from these 
irreducible representations of i£0; their s t ructure can be analysed by Frobenius 
Reciprocity. 

I t should be clear tha t in principle one can always do the same thing. The 
decomposition of tensor products of holomorphic discrete series representations 
will follow easily from an analysis of irreducible representations of K0—their 
weights and the decomposition of their tensor products. On the other hand, it is 
also clear tha t these calculations quickly become fairly involved. 

6. T h e genera l case . Our final remark is tha t the same methods can be 
applied even if the group is not simple. I t is of course possible in this case to 
find two representations which are both holomorphic on some of the simple 
factors bu t one of which is holomorphic and the other anti-holomorphic on 
some other factors. In such a situation, one would apply the above results to 
each of the simple factors separately. 
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