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CONVEX SPACES:
CLASSIFICATION BY DIFFERENTIABLE CONVEX FUNCTIONS

ROGER EYLAND AND BERNICE SHARP

The differentiability, of a specified strength, of a convex function at a point, is
shown to be characterised by the convergence of subdifferentials in the appropriate
topology on the dual space. This is used to prove that if each gauge is densely
differentiate then so is each convex function. The generic version of this is equiv-
alent to a conjecture which, for Gateaux differentiability and Banach spaces, is the
long standing open question of whether X X R is Weak Asplund whenever X is.
Some progress is made towards a resolution.

0. INTRODUCTION

In this paper we continue our study of the classification of locally convex spaces as
differentiability spaces. Our intention is both to synthesise and extend older ideas.

For a class (3 of bounded subsets of a locally convex space X , a real valued function
/ is said to be /3 differentiable at a point of X whenever the usual limit exists, is linear
and continuous, and converges uniformly over /3 subsets of X.

We show that, if / is convex, /3 differentiability at a point is characterised by the
convergence of subdifferentials in the topology on X* generated by /3. This implies, for
example, that a continuous convex function / defined on an open subset of a Banach
space is Frechet (respectively Gateaux) differentiable at a point x if and only if there
is a selection for the subdifferential map which is norm to norm (respectively norm to
weak*) continuous at x. (See, for example, [1, Lemma 5] and [9, Proposition 2.8]).

The classification of locally spaces according to the dense or generic differentiability
of convex functions continues work of Asplund [1], Larman and Phelps [7] and Namioka
and Phelps [8].
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128 R. Eyland and B. Sharp [2]

1. PRELIMINARIES

The term function is used for a real valued map. For a topological Linear space X

and an open convex subset D of X, a function / on D is said to be convex whenever
for all x,y e D and for all Ae [0,1],

f{\x + (1 - \)y)$ A/(x) + (1 - X)f(y).

We will assume that the domain of a convex function is nonempty, open and convex.

A spectrum of derivatives of / at x is defined as follows. Let X* denote the
continuous dual of a topological linear space X, let U be an open subset of X and let
/? be a bornology on X, that is, a class of bounded subsets containing all singletons.

A function / on U is (3 differentiable at x £ U whenever there exists u £ X*
such that, for all M £ /?, for all e > 0, there exists 6 > 0, such that for all y £ M, for
all t such that \t\ £ (0,*),

< e.

The function u is denoted by f'(x). If f3 is the class of all bounded [singleton) subsets
of X then / is Frechet [Gateaux) differentiable at x; if X is a normed space these
definitions coincide with the usual ones. For the purposes of differentiation, there is no
loss of generality in assuming that the sets in /? are balanced, and we shall do so.

If / is a continuous convex function, to prove that / is /3 differentiable at x, it
suffices to show either that, for all M £ /?, for all e > 0, there exists 6 > 0, such that
for all y £ M, for all t £ (0,*),

0 < f{x + ty) + f(x - ty) - 2f{x) < te,

or that there exists u £ X* such that for all M £ /?, for all e > 0, there exists S > 0,
such that for all y £ M, for all t £ (0,*),

0 ^ f(x + ty) - f(x) - u{ty) < te.

If P is a bornology on X , we denote by Tp the topology on X* defined by uniform
convergence over sets of /3. For example if /? is the family of finite, compact, convex
balanced weakly compact, or bounded sets, then Tp will be respectively the weak*,
compact-open, Mackey or strong topology on X*. Bornologies /9i and /32 on X are
said to be equivalent, written f3\ =02, if Tpx = Tp2.

The following property of convex functions is proved under more general conditions
by Borwein.

https://doi.org/10.1017/S0004972700011734 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011734


[3] Convex spaces 129

1 . 1 . [2, Corollary 2.4] Let f be a convex /unction witi domain D in a locally

convex space X. Suppose that for x £ D, U is a convex balanced neighbourhood of 0

contained in D — x, r > 0,

\f[x + U}-f(x)\<r.
For all u,v G x + U/2, for all a G [0,1],

if u-vE-aU then |/(u) - f(v)\ < ar.
3

2. CHARACTERISATIONS OF DIFFERENTIABILITY

In this section we show that for a continuous convex function, /3 differentiability
is characterised by the Tp convergence of subdifferentials.

Suppose that X is a topological linear space, that / is a continuous, convex func-
tion with domain D in X, and that x is in D. The subdifferential set of f at x,
denoted df(x), is the subset of X* defined by

8f(x) = {x* eX*: for all y G D, (x*,y - x) < /(y) - f(x)}.

For a continuous convex function / with domain in a locally convex space, df(x) is
nonempty, and / is Gateaux differentiable at x if and only if df(x) is a singleton. These
assertions are easily proved by Banach space methods (see for example [9, Propositions
1.11 and 1.8]).

2 . 1 . Let X be a locally convex space, (3 a boinology on X, f a continuous

convex function with domain D in X, x G D and x* G X*. The following axe

equivalent:

(a) / is j3 differentiable at x with derivative x*;

(b) if wa —y x and w^ G df(wa) then w^ —> x*;

(c) if wa —y x then for each a there exists w^ G df(wa) such that w^ —>

x*.

LEMMA. Suppose that the conditions of the theorem statement hold, y G D, A
is a positive real number and {x + Ay)* G df(x + Xy). If as A J. 0, (x + Ay)* —» x*
pointwise, then x* G df(x).

PROOF: Assume that, for all z G X, as A J.0, ((x + Aj/)*,z) -> (x*,z). If z G D
then for A sufficiently small,

((x + Ay)*, z - (x + Ay)) ^ f(z) - f(x + Ay).

Suppose A J. 0; then, by the continuity of / and the linearity of (x + Ay)*, (x*, z — x) ^

f(z) - f(x), so x*edf(x). D
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130 R. Eyland and B. Sharp [4]

PROOF OF 2.1: It is immediate that (b) implies (c), since for each a, df(wa) is
nonempty.

We will show that (c) implies (a). Fix e > 0. Let M G /?; since M is bounded
and balanced there exists 7 > 0 such that for all A G (0,7), (x + AM) C D. If
y G M and A j 0 then (a; + Ay) —> x, so from (c), for each A G (0,7) there exists

(x + Xy)* G df{x + Xy) and as A | 0, (x + Xy)* -?-> x* . From the lemma, x* G df(x);

there exists 6 > 0 (without loss of generality, we assume that 6 < 7) such that for all
y£M, for all Xe(0,6),

\((x + Xy)*>y)-(x*,y)\<e

and (x*,Xy)^f{x + Xy)-f(x).

Also (a; + Ay)* G d/(z + AT/):

Altogether, for all y G M, for all A G (0,5),

<**, Ay) ^ / ( * + Ay) - /(*) ̂  <(z + Ay)*, Ay) < (x*, Xy) + Xe;

hence 0 ̂  f{x + Xy) - f(x) - (x*,Xy) < Xe

and / is /? differentiable at x with derivative x* .

It remains to show that (a) implies (b). Using 1.1, since / is continuous at x,

there is a convex balanced neighbourhood U of 0, such that for all 7 G (0,1], for all
u,v G (x + U/2) CD,

(*) if u-vG-fU then \f(u) - f(v )| < 7.

Let wa —> x and for all a , let wa* G df(wa). Let M G /? be balanced and choose
e G (0,1). Assuming (a), there exists 6 G (0,1) such that for all A G (0,*), for all
y G M ,

(**) \(x*,Xy)-f(x + Xy) + f(x)\<

Let fc G (0,6) be such that kM C Z7/6. For y G M and a sufficiently large that

wa G x + (keU)/9, using (•) with 7 = (ke)/3, and (**),

* ( « , y ) - (x\y)) = «,fcy> - (x'^y)

^ f(rva + ky) - f(wa) - (x*,ky)

= -{{x*,ky)-f(x + ky) + f(x))

+ (f(v>a + ky) - f(x + ky))

+ (f(x)-f(wa))
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hence (w*a,y) - (x*,y) < e.

Since M is balanced, K'U'a*!/) — (x*, j/) | < t.

D
It follows from 2.1 that equivalent bornologies give the same differentiation theory,

that is for fa = fa and / a continuous convex function, / is fa differentiable at x if
and only if / is fa differentiable at x.

3. DENSE DIFFERENTIABILITY.

In this section we use 2.1 to develop ideas from [9, Section 6] for locally convex
spaces, dense and generic sets and any strength of differentiability.

The Minkowski gauges of convex neighbourhoods of the origin in a locally convex
space X (we shall call these simply gauges) are precisely the continuous non-negative
functions on X such that for all x,y 6 X, for all t ^ 0, g(x + y) ^ g(x) + g(y) and
g(tx) = tg(x). This last property is positive homogeneity. A seminorm is a gauge which
is absolutely homogeneous, that is, for all x E -X*, for all t £ 1R, g(tx) = |t|</(s:).

A generic set in D is a set which contains a dense Gg subset of D.
We classify a locally convex space X according to the /3 differentiability properties

of the specified class of continuous convex functions with domain in X:

(1) /?DS (/? differentiability space): every continuous convex function is /J
differentiable on a dense subset of its domain;

(2) /?MDS (/? Minkowski differentiability space): every gauge is /3 differen-
tiable on a dense subset;

(3) "[gen]" added to either of the above indicates that the differentiability
occurs on a generic set.

If /3 is the class of bounded (singleton) subsets, then the spaces in (1) are known
as FDS (GDS) and in (2) as FMDS (MDS). FDS[gen] and GDS[gen] are known as ASP
and WASP (for Asplund and Weak Asplund).

The proof of 3.0 is an easy adaptation of [5, Section 3.3 Theorem 3].

3 . 0 . A j9 differentiability point of the sum of two convex functions is a /? differ-
entiability point of each of the summands.

If g is a gauge on X then h defined by h(x) = </(x) + g(—x) is a seminorm on X.
Thus in the definitions of /JMDS and /3MDS[gen] we can equivalently replace "gauge"
by "seminorm".

For Banach spaces the following results are known. FMDS is equivalent to ASP,
because FMDS coincides with FDS [10, Theorem 1.28] and the set of Frechet differen-
tiability points of a continuous convex function is always a G{ set [9, Proposition 1.25].
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132 R. Eyland and B. Sharp [6]

However, Coban and Kenderov [3] have given examples to show that even when the set
of Gateaux differentiability points of the norm is dense, it need not contain a G( set.
MDS is equivalent to GDS [9, Corollary 6.6]; it is an open question whether there is a
space which is GDS but not WASP.

We show that for a locally convex space X, not necessarily complete, /? MDS and
/?DS are equivalent. If X is Q-complete and bound covering, for example a Banach
space, then FDS and ASP coincide [4, Theorem 3.4], so our result subsumes all of those
in the preceding paragraph.

The continuous dual (X x R)* of X x R is isomorphic with X* x R; we shall use
the pairing ((x* ,r*),(x,r)) = (x*,x)+r*r.

In the proofs of 3.1 and 3.2 we shall use bornologies on X and on X xK which corre-
spond in a natural way. For a bornology /? on X we take any bornology on X x R corre-
sponding to the product of Tp and the usual, and only, Hausdorff linear topology on R,
for example, {B X {a} : B e / 3 , o £ K } and {B x I: B E (3,1 a bounded interval in 1 }
are such bornologies. For a bornology /? on X x R the projections onto X form a
bornology on X: routine calculations show that this "projection" bornology gives rise
to bornologies on X x R which are equivalent to bornology /3 with which we started.

For a subset A of a topological linear space we define the spray of A by spray A —
U XA and by A is radial we mean that A = spray A.

A>o
LEMMA. If X is a locally convex Baire space and A a generic radial subset of

X x R then A contains a dense set C which is a countable intersection of open radial
sets.

oo

PROOF: By hypothesis there is a dense set B in A such that B = f) 0n, where
l

each On is open, and 0\ = X x R. Let { ^ I , ^ , ^ , . . . } be an enumeration of the
positive rationals, let / = (—1,1) C R, 3 = 1. Let

Xjtk = X x ( ({-TV,TV,} + i / ) \ {0} ) j , k e N

Gitjlk = spray (O,- n Xj>k) i,j, k 6 N.

Each Gitjtk is open, dense and radial in X X R.
Let C = |"| Gitjtk; since X x R is Baire, C is dense. Since spray B C A the proof

is complete if we show that C C spray B: let (x,s) E C (so s ^ 0). It suffices to
construct inductively a nest K\ D #2 D K3 D ... of non empty closed sets in R, with
diam Ki —> 0, such that
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For then, since E. is complete, there exists Ae f ) ^ i ! Mz)s) ^ C\Oi — B so (x,s) G
spray B.

Let Ai — 1, ei G (0,1/2) and suppose that A2,A3,...An and e2,£si---en have
been denned so that e,- < £j_i/2, A; £ Ai_! +a/2J, ^ ( x , s ) C Oi, (where ifj denotes
Ai + e^J). Choose kn+1,jn+1 € N so that 4/fcn+i < en|s| and rJn+l G An|s| + l/fcn+i7.
Now (x,s) G Gn+i,jn+i,kn+1 so there exists An+i > 0 such that

An+i(x,s) G On+i n -X"jn+1,fcn+1-

Hence An+i G An + en/2J. Since On+i is open and t i—> (<x,<s) is continuous, there
exists en + 1 G (0,en/2) such that iTn+i(a;,s) C On+i (where /Tn+i denotes An+i +
en + 1J) .

Then diam A"n < 2~n and for n > 1,

ifn+i = An+i + en+iJ C An + en/2J 4- £n+iJ C An 4- enJ — Kn,

which completes the proof. U

3 . 1 . Suppose X is a locally convex space. If X x R is (3MDS then X is /3DS;
if X is also Baire and X x R is /3MDS[gen] then X is 0DS[gen].

PROOF: Suppose that / is a continuous convex function with domain D in X.
We will assume, without loss of generality, that 0 G D and that /(0) = — 1. The graph
G of / is {(x,f(x)) : x G D}; the epigraph is

let / » : X x R - > I b e denned by

|i(z,r) =inf {A > 0 : (x,r) G Aepi/},

and let Dp denote the (3 differentiability points of fi. Then fi is a gauge, so by
hypothesis D^ is dense (generic) in X x R and by positive homogeneity D^ is radial.
Hence D^ D G is dense (generic) in G: the dense assertion is straightforward, generic
follows from the preceding lemma.

The projection of G onto D is a homeomorphism. The proof is complete if we show
that if (a;,/(x)) G D^ then / is /? differentiable at x. Suppose (x,/(z)) G D^ with
derivative (x*,/(z)*) and let tua —> x; then (•u;a,/(tuQ)) —> (x,/(x)) and from 2.1(c)

for each a there exists (w^,f(wa)*) G dfi{wa,f{wa)) such that ( I D J , / ^ , , ) ' ) —>
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134 R. Eyland and B. Sharp [8]

For all {z,sa) G X x R ,

((•">«) f(™a)*), (z,sa)) ^ fJ.(wa + z, f(wa) + sa) - n{wa, f(wa)).

For each a , for each z G D — wa, let sa = f{wa + z)~ f{wa)'t then, since for all y G D,

We show that for large a , -f{wa)* > 0. Since (x*J{x)*) G dfi{x,f{x)),

but fi(x,f(x)) > fi(x,f(x) + 1), so f(x)* < 0; for sufficiently large a, —f(wa)* > 0.
From (*),

1 . 1 , 1 .

with uniform convergence over (3 sets, so / is /3 differentiate at z. D

3 . 2 . If a locai/y coijvex space X is (3DS then X x R is /9DS.

PROOF: Suppose / is a continuous convex function on a subset D of X x R, and
(zo,*o) £ -D- Let Z7 be an open neighbourhood of (zo,*o) in D. There exists M > 0
such that |/(a!O)^o)| < M; there exist an open balanced convex neighbourhood N of
xo in X and a > 0 such that for 7 = (to — a, to + a),

iV x/C/~1[(--M'-Af)]n*7.

Choose a differentiate function g on I which is non-positive and such that g(to) = 0
and g(r) —> — oo as r -> . (o±a . Define h : N —* R by

then /i is continuous and convex; so if X is /9DS there exists x\ 6 JV which is a /3
differentiability point of /i. There exists 6 G (0, a) such that for J = [t0 — b, t0 + b],
/(xi,<) +ff(t) attains its supremum on / at ti G J.

Fix e > 0 and let B G /?. Since h is fi differentiable at xj , for sufficiently small
S, for all (y,s) G B, for all A G (0,«),

0 ^ /(xj + AJ/,<J + As) + /(xj - Ay,*! - As) - 2/(x1)t1)

< [h(Xl + Ay) + ^(x! - Ay) - 2h{x1)}

- [</(*! + Xs) + </(<! - As) - 2g(t1)}
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[9] Convex spaces 135

hence / is /? differentiable at (xi,t\) € U. D

3 . 3 . A locally convex space X is /? DS if and only if it is f3 MDS.

PROOF: TO see the nontrivial result, let Y be a closed hyperplane in X; then X

is isomorphic t o F x K [6, p.156, (2)]. If X is /?MDS then from 3.1 Y is /3DS; by 3.2,
X is /?DS. D

We would have liked to prove a generic version of 3.2 which, if true, would turn

the conjectures of Section 4 into theorems.

4. T H E G E N E R I C C A S E .

We conjecture:

4 . 0 . If a locally convex Baire space X is /3 DS[gen] then so is X x R .

That the converse is true follows from 3.1. Equivalent formulations of the conjecture
are given in the diagram at the end of this section. For the Gateaux bornology, this is
a long standing open Banach space question; the Frechet version is known to be true
for a large class of locally convex spaces [4, Proposition 3.2].

In 4.3 we show that for a locally convex Baire space, X x R is MDS[gen] if and only
if X is WASP. This is a new result even for Banach spaces. We are then tantalisingly
close to 4.0 for the Gateaux case: if X is WASP, then from 3.2 and 4.3, X X R is both
GDS and MDS[gen].

It turns out that the conjecture is equivalent to the coincidence of f3 MDS [gen] and

/3DS[gen]. With this in mind we define a new class of spaces which is formally between

these, intuitively appears close to /3MDS[gen], but which turns out to coincide with

j8DS[gen].

We define an asymptotic seminorm on a locally convex space X to be a continuous

function / for which there is a seminorm g satisfying:

(1) if xa —* x and A —> oo then / (Az a ) /A —> g{x)\
(2) for all x <E X, / ( * ) = f(-x) and / ( x ) > g(x).

An asymptotic seminorm is convex and every seminorm is an asymptotic seminorm.

A locally convex space is defined to be /3 ADS [gen] when each asymptotic seminorm

is generically (3 differentiable. Clearly

/9DS[gen] = > 0ADS[gen] = > /3 MDS [gen].

4 . 1 . A locally convex space X is fiADS[gen] if and only if for every seminorm

p on X x R , p(- ,1) is generically f3 differentiable.

PROOF: Suppose that X is /? ADS[gen] and let p be a seminorm on X X R . Using
3.0, it suffices to prove that q : X -» R , defined by q(x) = (p(x, l ) + p(-x, 1)) / 2 , is
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136 R. Eyland and B. Sharp [10]

generically 0 differentiable. It is easily seen that q is an asymptotic seminorm with

associated seminorm p(-,0). So, by hypothesis, q is generically 0 differentiable.

Conversely suppose that for each seminorm p on X X K, p(- ,1) is generically 0

differentiable. Let / be an asymptotic seminorm with associated seminorm g. Routine

but nasty calculations show that defining

makes p a seminorm o n l x R such that f(x) — p(x% 1). It follows that / is generically
0 differentiable. D

4 . 2 . A locally convex Baire space X is 0 ADS[gen] if and only if X x R is

0MDS[gen].

For the proof we need the following lemma which is easily verified.

LEMMA . Suppose Y is a locally convex space and f is a continuous convex func-

tion on y x R x R . Define ht and g, on Y x R by

ht(x,s) = f(x,t,s) and g,(x,t) = f(x,t,s).

Then f is (3 differentiable at (x,t,s) if and only if ht is 0 differentiable at (x,s) and

g, is (3 differentiable at (x,t).

PROOF OF 4.2: Suppose X x E is /3MDS[gen]. Then, by 3.1, X is /3DS[gen] and

so /3ADS[gen].

Conversely, since X is Hausdorff we may write X = Y x R; let p be a seminorm
o n X x R = F x R x R ; define p. and qt on Y x R by

,i) and qt{y,s) = p{y,s,t).

Define sets G' and G" by

G' = {(z,u,w) eY xRxR: puis 0 differentiable at (z,w)},

G" = {(z,u,w) £Y xRxR: qwis 0 differentiable at {z,u)}.

Let Gp (Gq) denote the set of /3 differentiability points of pi (<?i); it follows easily
from the absolute homogeneity of p that for a ̂  0, p, is 0 differentiable at (sy, st) if
and only if pi is 0 differentiable at (y,t) (and analogously for q) so

G' = {(sy,s,st) £ Y x R x R : s £ 0, (y,t) € Gp}

G" = {(ty,st,t) € Y x R x R : t jL 0, [y,s) e Gq}.
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[11] Convex spaces 137

For any generic set 5 in X, {(tx, t) : t ^ 0, x £ S} is generic in X X R; it follows from
4.1 that Gp and Gq are generic in X hence G' and G" are generic in X x R. From
the lemma, G' PI G" is the set of /? differentiability points of p and, since X is a Baire
space, it is generic. D

From 4.2 and 3.1 we have 4.3 and 4.4.

4 . 3 . A locally convex space Baire space X is f3 DS[gen] if and only if X x l is
PMDS[gen].

In particular, for X a locally convex Baire space, X is WASP if and only if X X R
is MDS[gen]. Warren Moors has shown us an alternative proof of this.

If, in 4.3, it were also true that X x R x R is /?MDS[gen] then from 3.1 the
conjecture would be affirmed.

4 . 4 . Alocaily convex space Baire space is f3 DS[gen] itand only iiit is /? ADS[gen].

It is not known whether there are spaces which are GDS but not WASP; in 4.5 we
characterise such spaces.

4 . 5 . A locally convex space X is GDS and not WASP if and only if every semi-

norm is Gateaux differentiable on a dense set and there exists an asymptotic seminorm

which is not generically Gateaux differentiable.

The generic results of Sections 3 and 4 are summarised in the following diagram:
for the dense case all classes are equivalent. If X is bound covering and Q complete
(see [4]), for example if X is Banach, and 0 is the Frechet bornology, then all classes
(both dense and generic) coincide.

- /3DS[gen] £ADS[gen] /3MDS[gen]

X x l

Heavy lines denote equivalences (for example, X is /?DS[gen] if and only if X x R
is /3MDS[gen]). For the light lines, down and/or right are true (for example, if X x E is
/3 ADS[gen] then X is /?MDS[gen]) and up and/or left are open questions (for example,
our conjecture is up on the extreme left).

Further, all open questions are logically equivalent.
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