1 Computational Neuroscience

Neuroscience is a scientific area that aims to understand the nervous system, in particular,
the brain. The brain is studied by researchers from different disciplines, such as anatomy,
physiology, medicine, physics, biology, biochemistry, genetics, psychology, mathemat-
ics, and computer science. The challenging field of neuroscience must cross boundaries,
and a multidisciplinary approach with the combined efforts from multiple scientists is
necessary to understand the brain. Neuroscience has also given rise to other disciplines,
including neuroeducation, neuroethics, neurolaw, neuroaesthetics, and neuromarketing, to
name a few.

Computational neuroscience is an increasingly important branch of neuroscience that
employs mathematical models, theoretical analyses, and abstractions of the brain. Com-
putational neuroscience develops and tests hypotheses of brain mechanisms. Models are
often analytically intractable. Models are compared to experimental data using carefully
designed numerical experiments. Data-driven computational neuroscience employs sta-
tistical and computational models learned from data, obtained from disparate sources,
such as the electrical activity of a neuron or a confocal microscopy image of a neuron,
a recording of a neuronal population, magnetic resonance imaging of the whole brain, or
microarray data from a patient with Parkinson’s disease (PD). Models are evaluated and
can be used to make predictions that must be experimentally verified.

This chapter starts with a basic introduction of the multilevel organization of the brain
in Section 1.1 and some figures from the human brain in Section 1.2. Section 1.3 presents
the main brain research initiatives worldwide. Section 1.4 covers helpful and recently
developed neurotechnologies to understand the brain and record data. Data-driven
computational neuroscience is elaborated in Section 1.5 from a statistical and machine
learning perspective, in which data-sharing and bidirectional brain—computer benefits are
described. Finally, the data sets employed throughout the book are described at length in
Section 1.6.

1.1 The Multilevel Organization of the Brain

1.1.1  Multiscale Organization

The brain is a complex system whose functional and structural organization is character-
ized by a hierarchy of spatial and temporal scales (Bassett and Gazzaniga, 2011). The
relationship between the mind and brain is far from being understood (Ascoli, 2015),
but characterizing the structure of the brain and its organizing principles is a necessary
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first step. Different levels of organization range from the molecular and cellular levels to
networks, systems, and behavior. All of these levels form the physical and biological bases
of cognition. Moreover, the structure within any given scale is organized into modules.

Neuroscientists — and hence societies, jobs, conferences, and publications — are usually
categorized according to the organizational level they primarily address. However, these
levels do not define independent domains, and their conceptual integration should be tar-
geted. Therefore, all neuroscientists should have a basic understanding of the functions of
the brain at different scales. Although the dependence on specialized and expensive equip-
ment is a reason to investigate a single level of organization in experimental approaches,
homogeneous computational tools are also available for theoretical approaches. Thus,
integrative multilevel concepts addressing how one level constrains or informs another
are lacking. For example, it is unknown how a mechanism at the genetic level influences
the characteristics of large-scale systems, such as the behavior of an organism. An excep-
tion is the Hodgkin—Huxley formalism, which explains how the properties of membrane
components determine the electrical behavior of entire neurons.

Nevertheless, cross-level integration is a difficult task. Relationships between phenom-
ena at different levels are nonlinear and highly complex. These relationships are difficult
to articulate in mathematical terms, and scientists have achieved the first step by inves-
tigating how variables at one level influence variables at another level. Unlike exper-
imental approaches with technical or ethical limitations used to study some variables,
computational approaches benefit from the free manipulation of parameters and complete
reproducibility. Computational models can foster multilevel investigations. A multilevel
computational model might integrate elements from compartmental neuron models, micro-
circuit representations of neuronal populations, and activity propagation in large-scale
neuronal networks.

1.1.2  Spatial and Temporal Scaling

In the spatial domain, the brain has many levels of organization, ranging from the molecu-
lar level of a few Angstroms (1A = 10~!%m), to the whole nervous system of over a meter.
The neuron is a cell that is specialized for signal processing. Neurons generate electric
potentials to transmit information to other cells via special connections called synapses.
Mechanisms operating at the subcellular level play a role in information-processing capa-
bilities. Neurons use cascades of biochemical reactions that must be understood at the
molecular level, including the transcription of genetic information. The complexity of a
single neuron makes computational models essential, and substantial progress has been
achieved at this level.

Minicolumns are vertical columns that extend through the cortical layers of the brain.
Minicolumns are the anatomical basis of columns, contain approximately 100 neurons and
are 30 microns in diameter. More complex constructs include subareas (e.g., S2), areas
(e.g., the somatosensory cortex), lobes (e.g., the temporal lobe), and the complete cerebral
cortex.

Neurons connect to each other to form neural circuits. Networks of interconnected
neurons exhibit complex behaviors and enable additional information-processing capabil-
ities that are not present in a single neuron. This unique property of emergence of neural
computation extends beyond the mere multiplication of single-processor capabilities. The
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brain is also organized into higher-order levels. Networks with a specific architecture
and specialized information-processing capabilities are included in larger structures or
systems that interact and enable more complex information-processing tasks and new
emergent properties. The central nervous system depends on the dynamic interaction of
many specialized subsystems and the interaction of the brain with the environment.

In the temporal domain, the organization of the brain dynamically changes over multi-
ple temporal scales. Inherent rhythms of brain activity vary in different frequencies (the
highest frequency gamma band is >30 Hz, whereas the delta band is 1-2 Hz) and relate to
different cognitive capacities. Learning and memory change neuronal connection patterns
(through synaptic plasticity) on both short (seconds to minutes) and long (hours to days to
months) timescales.

1.1.3  Modular Organization

Organization within a given scale is modular. Thus, the brain is decomposed into
subsystems or modules. For example, anatomical modules in the spatial domain are
present in cortical minicolumns or columns, whereas short- and long-term memory are the
modules in the temporal domain. Within-module elements are more highly connected
than between-module elements. This organization provides a compartmentalization
that reduces the interdependence of modules and enhances robustness. Hierarchy and
modularity together allow the formation of complex architectures of subsystems within
subsystems with a high degree of functional specificity. Furthermore, modularity enables
behavioral adaptation because each module functions and changes its function without
negatively affecting the rest of the system.

The modular architecture has been more formally described by complex network the-
ory applied to neuroimaging data (Sporns, 2010). The functional and structural hierar-
chical modularity of the connectivity of the human brain has been reported. Within these
modular structures, brain regions perform different roles, as hubs with higher connectivity
or as local processors. These regional roles are evident in both structural and functional
connectivity networks and might have neurophysiological correlates. Each region dis-
plays different patterns of energetic activity and maintains different trajectories of synaptic
development and redevelopment or plasticity. Hierarchical modularity is compatible with
the minimization of energy consumption in developing and maintaining wiring, where
most of the energy is used for the function of synapses. Physical constraints of wiring are
also compatible with the spatial configuration of the observed connectivity (close regions
interact strongly, whereas long-range anatomical connections or functional interactions
connect very different modules).

The physical anatomical constraints of the human brain also constrain its function.
Thus, two coherently active regions of the brain are often connected by a direct white
matter pathway. Recently, researchers have attempted to map the wiring of the brain
at different levels of spatial resolution (Section 1.3). Researchers have not yet clearly
determined how structural connectivity might help predict function because a one-to-
one relationship between structure and function is not plausible, and function appears to
emerge from multiscale structures (a many-to-many mapping). Emergence occurs between
multiple physical and functional levels. Causation seems to occur both upward and down-
ward between multiple levels (located either in close proximity or distant regions) of
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the brain, creating a complementary or mutually constraining environment of mental and
physical functions. The brain is nonreducible, and its organization is not a simple sum of
its parts.

1.2 The Human Brain

The human brain has a similar structure to the brains of other mammals, but it is larger
than any other species in relation to body size, namely, it has the largest encephalization
quotient. Much of the expansion is derived from the part of the brain called the cerebral
cortex, which is a thick layer of neural tissue that covers most of the brain. This layer
is folded in a way that increases the surface area to fit into the available volume. The
cerebral cortex is divided into four lobes, called the frontal lobe, parietal lobe, temporal
lobe, and occipital lobe (see Figure 1.1). Numerous cortical areas exist within each lobe,
each of which is associated with a particular function, including vision, motor control,
language, etc. The left and right sides of the cortex are broadly similar in shape, and most
critical areas are replicated on both sides. However, some areas, particularly areas that are
involved in language, show strong lateralization. In most people, the left hemisphere is
dominant for language, whereas the right hemisphere is usually responsible for spatiotem-
poral reasoning.

Some quantitative measures of this organ are described below. The brain weighs
between 1,200 and 2,000 grams in adults (see Figure 1.2) and between 350 and 400 grams
in newborns and accounts for only 2% of an adult’s total body weight. The average brain is
140 mm wide, 167 mm long, and 93 mm high. With a thickness of 1.5 to 4.5 mm and a total
surface area of 2,500 cm? (Peters and Jones, 1984), the cerebral cortex accounts for greater
than 80% of the brain mass but contains only 19% of all brain neurons (similar to other
mammals). The total cerebral cortical volume is divided across the four lobes as follows:
frontal lobe (41%), temporal lobe (22%), parietal lobe (19%), and occipital lobe (18%).
As estimated using a novel quantitative tool called isotopic fractionation (Herculano-
Houzel and Lent, 2005), the cerebral cortex contains 86 billion neurons (greater than the
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Figure 1.1 Lobes in the human cerebral cortex. Image taken from the Wikimedia Commons
repository. For the color version, please refer to the plate section.
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210 STUDY OF BRAINS OF SIX EMINENT SCIENTISTS AND SCHOLARS. STUDY OF BRAINS OF SIX EMINENT SCIENTISTS AND SCHOLARS. 211
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65 | Poet and novelist. Russian. 2012 Lord Jeftrey. | Jurist. English. 147
Jurist. French. 1935 Asseline. 49 Journalist. French. 1468
63 | N German deseent. | 1830 Skobelefl, 8 | General. Russian. 1457
o | M American. 1814 Bischoft, C. H. E. 1) ysician. German. 1452
4 | T ian, German. 1800 Gylden. 55 | Astronomer. Swedish. 1452
64 Physician. Englich. | 1786 Kobell. % | Geologist, German, | 1445
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Olney, Edward. 59 Mathematician., American. 1701 Dllyu)'lren. | 68 UTEEOn. French. 1437
Leovi, Herman, 60 | Composer. German. 1690 Siljestrom. | 76 | Physicist. Swedish. 1422
Wincholl, A. 67 | Geologist. Aumerican. 1666 Rice, A, T. | 35 | Diplomat and editor. American, 1418
Thackeray. 52 | Humorist. English. 1658 Oliver. | o5 ich merican. 1418
Lenz, Radolf. Coinposcr. German. ? 1636 Meyr, M. 61 | Philosopher. erman, 1415
Goodsir. 53 | Anatomist. English. 1629 Leidy, Philip. 53 | Physician. merican 1415
Mrtice, 68 . American. 1612 Nussbaum. | & urgeon. erman. 1410
Atherton. r American, 1602 7 | Historian. nglish. 1410
Siemens, 6s erman, 600 Huber. 49 | Author. 3 409
n, G 61 Canadian 1606 Pond, J. B. 65 | Soldier and lecture-manager. | American, 1407
Konstantinoff. 25 Bulgarian. 1585 kil Mathematician. English. 1408
Pepper, William. American. 1693 Assizat. 45 Journalist. French, 1403
Harrison, R. 45 Canadian. 1690 ) 78 | Anatomist. German. 1400
Hermann, F. B. W. 7 German, 1690 Bertillon. 62 | Anthropologist. French. 1898
iebeck. 61 Gorman. 1680 Golta. 68 | Physiologist. German. 1395
Biichner. 51 | Hygienist. German. 1560 Couderean. 50 | Physician. French. 1390
Bittner. 57 | Playwright. Germao. 1656 Whewell, 72 | Fhilosopher. English, 1359
Lavollay. Merchant and publicist. French. 1650 Wistar, Tsanc J. 78 | General. American. 1389
pe. 57 | Paleontologist. American. 1645 Wilson. 61 | U. 8. Vieepresident. American. 1389
McKnight. 57 | Physician. American. 1645 Sailagyl. 61 | Statesman. Hungarian. 1380
Allen, Harrison. 56 | Anatomist. American. 1681 e 6 German. 1850
Simpson. 5 | Physician. Eoglish. 1531 Sobmid. 6 erman, 1374
Train, G. F. 75 | Promoter. American. 1625 Hovelacque. 52 rench. 1378
Taguchi. 66 | Anatomist. Tapanese. 1620 Bischoff, T. L. W. 76 erman, 1370
Dirichlet. | 54 | Mathematician, French. 1520 Cheve. ch. \ 1365
De Morny. 54 | Statesman. French. 1620 Gross, 8, D. merican. 1361
Wabster. 70 | Statesman. American. 1518 Hermann, 0. F. 51 erman, 1368
Lord Campbell. 82 | Statesman. English, 1817 debig. 70 erman. 1352
Wright, 0. 45 | Philosopher. American. 1516 Schlagintweit. 512 German, 1352
Schleich, 55 | Author. German. 1503 Fallmerayer. 71 German, 1346
Chalmers. 67 | Theologian. English. 1603 Bennett, 3 English. 1382
Mallery. 63 | Ethoologist. American. 1503 Pettenkofer. 82 erman, | 1820
Seguin, E. C. 55 | Neurologist. French descent. | 1505 el so French. 1313
Napoléon L1 65 | Sovereigo. 1 Zeyer, 56 erman. 1820
i 52 | Pathologist. German, 1499 Kolar. B4 TBohemian. 1300
Agunsiz, 6 Natoralies French descent, | 1495 Grant, . E. 5 | A English. | 1290
Giacomini. 58 | Anatomist. Ttalian. 1495 Whitman. o i American. 12829
De Morgan. 78 | Mathematician. English. 1494 Cory. 55 | Physician. English. 1276
auss, 78 | Mathematician. German. 1492 Guardia. o1 REE Spanish. e
Tetournean 71 | Anthropologist. French. 1402 Seguin, Fdouard. 68 | Puychintrist. rench. | 1287
i : 53 | Statoeman, Swedish, 1489 Tiedemann. 79 | Anatomist. German. 1254
TPowell. 68 | Anthropologist. American. 1488 Lasaolx. &7 | Ehilologiat. German. 1350
Plenfer. 63 | Physician. German. 1488 Laborde. 73 | Physiologist. French. 1234
Wuclfert. 6 | Jurist. German, 1485 okl Lo | AR o, [
roca. 56 | Anthropologist. French. 1484 Hausmann. 71 Naturalist. German. 12
Mortillet. | 77 | Anthropologist. nch. 1480 Ferris. 34 | Jorish. a American. ‘ Ws-g
Aylett. 58 | Physician. American. 1474 Gall. 70 _|_Phrenologist and anatomist. | German. 1

Figure 1.2 Name, age, occupation, nationality, and brain weight (grams) of different personalities.
Taken from Spitzka (1907).

number of all known stars in the universe) and 240 trillion synapses (Koch, 1999). The
relationship between the body and brain size that applies to other primates is not true for
humans, where the brain size is five to seven times larger than expected according to the
body size.

The appearance of the neocortex is a decisive event during the evolution of the mam-
malian telencephalon. Its activity is directly related to those capacities that distinguish
humans from other mammals. By this reason, the neocortex can be considered as the most
human part of the nervous system (DeFelipe, 2011).

1.2.1  Brain Sizes Variability for Different Species

Figure 1.3 shows the brain size for different mammalian species from human to mouse.
The variability in brain weights is remarkable. For example, the insectivorous white-
toothed pygmy brain weighs 0.060 g, while the heaviest brain corresponds to the sperm
whale, with 9.200 kg on average. The brain of the Indian elephant weighs 6.900 kg, a
similar quantity to the brain of the blue whale, the largest animal on Earth that has a body
20 times larger. By contrast, the gorilla and striped dolphin have similar body weights,
although the gorilla’s brain weight is less than half of the dolphin’s.

The power law exponents that apply to the scaling of brain mass as a function of the
number of neurons are 1,550, 1,016, and 1,056 for rodents, insectivores, and primates,
respectively. The absolute number of neurons, in contrast to the body and brain size-
centered view, has been proposed as the most relevant parameter for determining the
cognitive abilities across species (Gazzaniga, 2008).
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Figure 1.3 Variability of brain sizes for several mammals. Primates: human (1.176 kg), chimpanzee
(273 g), baboon (151 g), mandrill (123 g), macaque (110 g). Carnivores: bear (289 g), lion (165 g),
cheetah (119 g), dog (95 g), cat (32 g). Artiodactyls: giraffe (700 g), kudu (166 g), mouflon (118 g),
goat (115 g), peccary (41 g). Marsupials: wallaby (28 g). Lagomorphs: rabbit (5.2 g). Rodents: rat
(2.6 g), mouse (0.5 g). Image from DeFelipe (2011).

1.3 Brain Research Initiatives

In recent years, several brain-mapping initiatives have been initiated worldwide and are
attempting to tackle one of the most fascinating challenges of the twenty-first century.
Although these initiatives have different goals and areas of expertise, the common aim
is to move closer to unlocking the elusive secrets of the human brain and to pursue
myriad previously inaccessible scientific questions. This joint effort will require the merg-
ing of historically distinct scientific disciplines, such as engineering, chemistry, physics,
and computer science, with neuroscience and psychology in so-called convergence sci-
ence. This section describes the main goals of some of these initiatives developed by the
European Commission, the United States, Japan, China, Canada, Korea, and Australia (see
Figure 1.4).
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Figure 1.4 Regions around the world participating in brain research initiatives.

The Human Brain Project (HBP)' (Amunts et al., 2016), launched by the European
Commission in 2013, is one of the first two Future and Emerging Technologies Flagship
projects, a long-term (10 years) multinational research project. This project is based on
the hypothesis that decoding the multiscale questions about the human brain requires
deeper insights into structure and function of the brain at all levels of organization —
from genes to the whole brain — with interdisciplinary experts, including neuroscientists,
physicists, and mathematicians, as well as modern information and communication tech-
nologies (ICTs). More than 100 partner institutions in 19 countries in Europe collaborate
by sharing data and tools. Four neuroscience subprojects, six research platforms, and two
subprojects — ethics and society — and coordination and central services that cross-link all
platforms and subprojects, as well as an education and training program that incorporates
a multidisciplinary outlook, constitute the main elements of the HBP. The neuroscience
subprojects aim to identify the organizational principles of spatial and temporal brain
architecture and consist of (a) the organization of the mouse brain, (b) the organization of
the human brain, (c) systems and cognitive neuroscience, and (d) theoretical neuroscience.
The six research platforms are (a) the neuroinformatics platform, an effective ecosystem
for software and data sharing; (b) the brain simulation platform, which aims to develop
data-driven models and brain simulations at all scales; (c) the high-performance analytics
and computing platform, which helps the neuroscience community compete using high-
end supercomputers and systems for large-scale data analytics; (d) the medical informatics
platform, which provides new diagnostic categories and new treatments for brain diseases
as a result of the convergence between ICT, biology, and medicine; (e) the neuromor-
phic computing platform, which implements brain-like principles in machine learning and
cognitive computing; and (f) the neurorobotics platform, which is developing simulating
robots controlled by spiking neural networks.

The Brain Research through Advancing Innovative Neurotechnologies Initiative
(BRAIN)?> (Martin and Chun, 2016) was launched by President Obama in April 2013

U rww . humanbrainproject.eu/en/.
2 www.braininitiative.org.
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to “accelerate the development and application of new technologies that will enable
researchers to produce dynamic pictures of the brain that show how individual brain
cells and complex neural circuits interact at the speed of thought.” The BRAIN Initiative
is a public—private partnership including the National Institutes of Health (NIH), the
National Science Foundation (NSF), the Defense Advanced Research Projects Agency
(DARPA), the Intelligence Advanced Research Projects Activity (IARPA), the Food and
Drug Administration (FDA), and over 20 private foundations, institutes, universities,
companies, and international partners. The BRAIN Initiative seeks to obtain a better
understanding of the inner workings of the human mind and to improve how we treat,
prevent, and cure brain disorders. These goals will be accomplished by pursuing the
following activities: (a) advancing neurotechnologies to enable scientists to monitor and
modulate brain circuit activity; (b) facilitating dynamic imaging to produce a dynamic
picture of brain function in real time; (c) exploring brain functionality to investigate how
the brain records, processes, uses, scores, and retrieves vast quantities of information; (d)
linking function and behavior by incorporating new theories and computational models;
and (e) advancing consumer applications by developing safe and effective products for
patients and consumers. In addition, the BRAIN Initiative provides a monthly report aimed
at a general audience describing the potential applications of these tools in research or in
clinical settings, with the objective of creating an environment that sustains the enthusiasm
of scientists, the general public, and even policy-makers.

The Brain Mapping by Integrated Neurotechnologies for Disease Studies
(Brain/MINDS)? (Okano et al., 2016) is a national brain project started by Japan in
2014 with a 10-year roadmap. Brain/MINDS has adopted a fundamentally different
approach compared to BRAIN and HBP by focusing on accelerating the development
of the common marmoset as a model for the exploration and discovery of knowledge-
based strategies for the eradication of major brain diseases. The achievement of this
goal requires (a) the development of a multiscale marmoset brain atlas and integrated
data platform to support functional studies, (b) the generation of a genetically modified
marmoset for experimental and preclinical studies, and (c) the creation of a clinical
data center using translational biomarkers for the diagnosis and treatment of human
brain diseases. Currently, 65 laboratories and 47 institutions in Japan and several partner
countries collaborate on this project. The research is organized into four major groups: (a)
structural and functional mapping of the marmoset brain, (b) development of innovative
neurotechnologies for brain mapping, (¢) human brain mapping and clinical research, and
(d) advanced technology and application development. The marmoset was chosen as the
experimental model because it maintains a unique phylogenetic position and because the
analysis of certain higher cognitive behaviors is, in some cases, easier in a nonhuman
primate than in rodents or other simple vertebrate models.

The China Brain Project (Poo et al., 2016) is a 15-year project (2016-2030) that
focuses on macaques and whose central pillar is understanding the neural basis of human
cognition to develop new preventive, diagnostic, and therapeutic approaches, as well as
brain-inspired computing methods and systems that are considered essential to achieving
more robust artificial intelligence. This approach is known as the “one body-two wings”
scheme. Research investigating the neural circuits underlying the mechanisms of cognition

3 www.brainminds.jp.

https://doi.org/10.1017/9781108642989.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108642989.003

1.3 Brain Research Initiatives 11

will aim to understand human cognitive processes at different levels: from behavior to
neural systems and circuits, to cells and molecules to the brain at the macroscopic and
mesoscopic levels. One of the “wings” is the study of the pathogenic mechanisms and the
development of effective and early diagnostic — at presymptomatic and prodromal stages —
and therapeutic approaches for brain disorders with a developmental (e.g., autism and men-
tal retardation), neuropsychiatric (e.g., depression and addiction), and neurodegenerative
(e.g., Alzheimer’s disease [AD] and PD) origin. This “wing” also refers to the efforts to
provide a scientific basis for Chinese medicine, whose underlying mechanisms are largely
unknown. The other “wing,” brain-inspired computation, assumes that the human brain
is currently the only truly generally intelligent system in nature that is capable of coping
with different cognitive functions with extremely low energy consumption. Consequently,
learning from the information processing mechanisms of the brain is clearly a promising
method for building stronger and more general machine intelligence. One of the challenges
of the China Brain Project is to make a general artificial intelligence that is capable of
multitasking, learning, and self-adapting.

Brain Canada (Jabalpurwala, 2016)* is a project that was established by the Govern-
ment of Canada in 2011 and expected to be completed in 6 years, but has been extended
annually since 2016. Its vision is to understand the function of the brain in both healthy
and disease states, improve lives, and achieve societal impacts. Brain Canada is achieving
its goal by (a) increasing the scale and scope of funding to accelerate the pace of Canadian
brain research; (b) creating a collective commitment to brain research across the public,
private, and voluntary sectors; and (c) delivering transformative, original, and outstanding
research programs. The approach is based on three main ideas: (a) one brain that considers
this organ as a single complex system in which brain diseases and disorders often share
common underlying mechanisms, such as cell loss, abnormal functioning of nerve cells,
or chemical and molecular imbalances; (b) collaborative research encouraging high-risk,
high-reward investigations that enable and support multidisciplinary teams; and (c) one
community that includes governments, voluntary health organizations, philanthropists,
business leaders, patients, caregivers, health administrators, clinicians, and, of course,
researchers and their host institutions.

The Korea Brain Initiative (Jeong et al., 2016) was announced in May 2016, and the
project was launched in 2018. The overall plan includes the development of novel neu-
rotechnologies and the reinforcement of the neuroindustry with a vision to advance brain
science by establishing and facilitating local, national, and global collaborative networks.
The primary goal of the initiative is to foster neuroscience that improves the scientific
understanding of the principles of higher brain functions to produce a new dynamic picture
of healthy and diseased brains. Additional goals are to develop personalized treatments
for mental and neurological disorders by extrapolating the concept of precision medicine
and to stimulate collaboration among scientific institutes, academia and industry. The
scope of the research project includes (a) constructing brain maps at multiple scales, (b)
developing innovative neurotechnologies for brain mapping, (c) strengthening artificial
intelligence-related research and development, and (d) developing personalized medicine
for neurological disorders.

4 www.braincanada.ca.
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A proposed Australian Brain Initiative is being developed by members of the Aus-
tralian Brain Alliance.’ This initiative was presented and discussed with the scientific
community, government, and public in 2017. Its mission is to create an innovative and
healthy nation by cracking the brain’s code through an understanding of the mechanisms
underlying the development of the neural circuitry, how the brain encodes and retrieves
information, complex behaviors, and the adaptations to external and internal changes.
The initiative is designed to address the following four challenges: (a) optimizing and
restoring healthy brain function throughout life, (b) developing neural interfaces to record
and control brain activity to restore its function, (c¢) understanding the neural basis of
learning across the lifespan, and (d) delivering new insights into brain-inspired computing.

The International Brain Initiative was launched on September 19, 2016 in the United
Nations’ General Assembly in New York City with the United States, Argentina, Japan,
and Germany as partners. One of the several goals for the initiative is to create universal
brain-mapping tools. Two interesting ideas proposed at the meeting were the creation
of (a) an International Brain Observatory, with tools such as powerful microscopes and
supercomputing resources that scientists around the world could access, and (b) an Inter-
national Brain Station that would automatically convert data from studies of the human
brain or animal gene expression into standardized formats that would allow more people to
analyze them (Reardon, 2016a). At the same time, the World Health Organization (WHO)
wishes to ensure that the early discoveries and technological advances of the different
brain initiatives are translated into tests and treatments for brain disorders, avoiding health
disparities between developed and underdeveloped countries (Reardon, 2016b).

1.4 Neurotechnologies

Neurotechnology is the area of technology that includes every advance that helps
researchers understand the brain. The field has only reached maturity in the last 20 years,
particularly due to the advent of various brain imaging techniques. However, extensive
research is still needed. In addition to visualizing the brain both for clinical and research
purposes, which is the focus of this section, technologies are available that are designed
to improve and repair brain functions. Drugs are available to control depression or sleep;
improve motor coordination in patients with PD, Huntington’s disease (HD), amyotrophic
lateral sclerosis (ALS), and stroke; reduce epileptic episodes; and alleviate phantom pain
perception, among others.

1.4.1  Visualizing a Single Neuron

Currently, fine-scale recordings of the electrical activity of a single neuron or a small group
of neurons (even in living humans) is relatively easy. Needle-like electrodes are inserted
into the brains of laboratory animals to stimulate neurons. In addition to being an invasive
technique, this approach provides an incomplete picture of the whole brain and samples
brain activity very sparsely. The probable multineuronal level of organization (system,

5 www.brainalliance.org.au/.
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network, cellular, subcellular, and molecular levels) is not visualized using single-neuron
recordings. New properties appear at each level of complexity.

The use of advanced microscopes is critical to examine neurons and their structures.
Confocal microscopy (or confocal laser scanning microscopy), whose principle was
patented in 1957 by Minsky (1988), one of the fathers of artificial intelligence, overcomes
some limitations of traditional wide-field fluorescence microscopes. Confocal microscopes
can examine thick samples, particularly samples with dense fluorescent staining of
complex structures, where the relevant information may be hidden by out-of-focus
haze. By adding a spatial pinhole placed at the confocal plane of the lens to eliminate
out-of-focus light, the optical resolution and contrast are increased. Unlike a conventional
microscope that can just view structures in the sample at the depth that the light penetrates,
a confocal microscope only captures images at one depth level at a time. The depth of
focus is controlled and limited. The surface of the sample is then scanned by moving
either the sample or the light beam (horizontally), thereby reconstructing a 2D image at
a specified depth. Next, vertical movements allow researchers to capture sets of images
at different depths (optical sectioning), and 3D images of the sample are created using
appropriate software.

The amount of magnification achieved by an optical microscope is limited by the wave-
length of light. The shorter the wavelength of the light waves, the smaller the objects
the microscope can see. The photons of visible light have a relatively large wavelength.
However, electrons form waves with a much shorter length. This principle is the basis
of electron microscopy, which uses a beam of accelerated electrons as a source of illu-
mination instead of light. This technique allows researchers to examine tissues in greater
detail — their ultrastructure — with magnifications of up to 10 million times, whereas most
light microscopes achieve magnifications of less than 2,000x. At higher magnifications,
the light waves start interfering with one another, and the images become blurry. The two
most common types are the transmission electron microscope and the scanning electron
microscope (SEM). Advances in microscopy for neuroscience are reviewed in Wilt et al.
(2009).

Figure 1.5 shows (a) a confocal microscopy image of an intracellular injected layer III
pyramidal neuron in the human cingulate cortex, and (b) an electron microscopy image of
synapses in the rat cerebral cortex.

1.4.2  Tracking Circuits of Neuronal Activity

However, we need to record neural activity across complete neural circuits. A map of the
anatomical connections, or synapses, among neurons (the so-called connectome) is only a
starting point that is unable to depict the constantly varying electrical activity underlying
specific cognitive processes. The interesting issue is how a collection of neurons interact
intricately and give rise to an emergent property (Yuste and Church, 2014). Moreover, due
to their plasticity, neurons are continuously subjected to dynamic rearrangements.

Large-scale recordings can be accomplished with the aid of nanotechnology; prototype
arrays with more than 100,000 electrodes on a silicon base are able to track thousands
of neurons in the retina. Stacking these arrays into 3D structures would multiply their
scalability.
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Figure 1.5 (a) An intracellular injected layer III pyramidal neuron of the human cingulate cortex
imaged with a Leica TCS 4D confocal scanning laser attached to a Leitz DMIRB fluorescence
microscope. DAPI staining is presented in blue. Image kindly supplied by Javier DeFelipe
(Benavides-Piccione et al., 2013). (b) SEM image of the rat cerebral cortex. Arrows indicate some
asymmetric synapses. Scale bar: 1 um. Image kindly supplied by Javier DeFelipe (Morales et al.,
2011). For the color version, please refer to the plate section.

(b)

Figure 1.6 (a) Z-stack projection of a hippocampal astrocyte expressing the genetically encoded
calcium indicator GCaMP6f. (b) Pseudocolor calcium images of the astrocyte depicted in (a) before
electrical stimulation of the Schaffer collaterals. (c) The same image after stimulation. Scale bar: 20
pum. Images provided by Ana Covelo from the Alfonso Araque laboratory at the University of
Minnesota. For the color version, please refer to the plate section.

In addition to electrical sensors (electrodes), new techniques for imaging neuronal activ-
ity are based on physics, chemistry, genetics, and engineering. Thus, in calcium imaging,
cells are genetically engineered to fluoresce when calcium ions enter the neuron after it
fires. The firing patterns of more than 1,000 neurons can be partially reconstructed in
vitro or in vivo. This technique operates too slowly (limited time resolution compared
to electrical recordings) to track the rapid firing of neurons. Additionally, new types of
microscopes that show the simultaneous activity of neuronal populations in 3D are needed.
Figure 1.6 shows a calcium image of a hippocampal astrocyte.

In voltage imaging, specific dyes alter the optical properties as the voltage of the
neuronal membrane changes. The dyes are deposited on the neuron or across the cell
membrane through genetic engineering. Although this technique is still in its infancy, the
activity of every neuron in an entire circuit could be potentially recorded. Voltage sensors
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may be composed of organic dyes, genetic indicators, or even nonbiological materials
borrowed from nanotechnology (i.e., nanoparticle quantum dots or nanodiamonds), which
are sensitive to neuronal activity.

The delivery and collection of light from neural circuits located deep below the sur-
face of the brain is difficult. Computational optics may help control the fluorescence
emitted from dyes when subsurface neurons fire in a similar manner to the method used
by astronomers to correct image distortions due to atmospheric effects on starlight. New
optical hardware includes two-photon imaging, high-numerical aperture objectives, and
light-field cameras, to name a few. Techniques such as microendoscopy are used by
neuroradiologists to penetrate further into the tissue and image deeper structures. In this
case, a flexible tube with light guides is inserted into the femoral artery and moved to
many parts of the body (including the brain). Based on synthetic biology, lab animals
have been genetically engineered to synthesize a molecule (“molecular ticker tape™) that
changes when a neuron is activated, or artificial cells function as sentinels that patrol the
body or are placed near a neuron to detect its firing through a nanosized circuit implanted
in the artificial cells that wirelessly transmits the data to a nearby computer.

In addition to monitoring circuits of neuronal activity, the ability to freely activate and
inactivate these circuits will help researchers determine the functions of the selected cells
and control some forms of brain activity (e.g., epileptic seizures, Parkinsonian tremors,
reward responses). Recent technologies for this application rely on optical signals, such
as optogenetics and optochemistry. In the former approach, genetically engineered neu-
rons produce light-sensitive proteins (bacteria- or algae-derived), causing them to either
become activated or inactivated upon exposure to light of a particular wavelength through
an optical fiber. In the latter approach, neurotransmitters are attached to light-sensitive
chemicals that are activated upon exposure to light. These techniques are minimally inva-
sive, provide great spatial and temporal single-cell resolution, and have been applied to
living tissues.

1.4.3 Imaging Large Brain Regions

Methods have been developed to track the activity of neurons across the whole brain
within the field called cognitive neuroscience. Thus, in electroencephalography (EEG),
electrodes placed on the skull measure the coordinated activity of more than 100,000
neurons. The brainwave activity associated with neuronal depolarization is registered over
a few milliseconds, but without identifying whether a specific neuron is active. Thus, EEG
offers high temporal (real-time) resolution but poor spatial resolution because the precise
origin of the signal is difficult to locate (Burle et al., 2015). Other electrical techniques
include magnetoencephalography (MEG), which measures the magnetic fields produced
by electrical activity in the brain and is less sensitive to the head geometry compared
to EEG, and electrocorticography (ECoG), an invasive procedure requiring a surgical
incision into the skull to implant the electrode grid.

Other techniques are based on metabolism and indirectly measure neuronal activity.
Metabolic techniques are classically considered as having very good spatial resolution but
rather poor temporal resolution, while the opposite trends are observed for electrophysi-
ological techniques. The most widely used technique is functional magnetic resonance
imaging (fMRI). This technique illuminates active brain areas in 3D maps, where each
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Figure 1.7 (a) EEG image. Screen shot of a patient during slow wave sleep when he or she is snoring
(stage 3); the image represents 30 seconds. The high amplitude EEG is highlighted in red. Public
domain from the English Wikipedia. (b) An fMRI image obtained during working memory tasks.
Freely available at ideas . ted.com. For the color version, please refer to the plate section.

(cerebral cortical) voxel is composed of more than 600,000 neurons. The high spatial
resolution and low temporal resolution (seconds and minutes) of fMRI allow researchers
to record changes in blood flow within voxels, see Glover (2011) for a review. Positron
emission tomography (PET) analyzes changes in blood flow and the consumption of oxy-
gen and glucose. Single-photon emission computed tomography (SPECT) also monitors
blood flow. PET and SPECT have a high detection sensitivity, see Lu and Yuan (2015) for
a review of both. Near infrared spectroscopy (NIRS) is an optical technique used to
measure blood oxygenation in the brain. Light in the near infrared part of the spectrum is
transmitted through the skull, and the extent to which the remerging light is attenuated is
measured, which depends on blood oxygenation.

Figure 1.7(a) shows an EEG image from a patient during slow wave sleep; Figure 1.7(b)
shows an fMRI image obtained during working memory tasks.

The previous techniques are functional and are predominantly used in cognitive neu-
roscience because they enable researchers to determine the location and timing of neural
activity associated with performance on a cognitive task in patients with a disease and
in healthy subjects. However, anatomical techniques are used differently, e.g., to localize
neuropathies or to compare the size of specific brain structures between subjects through a
volumetric analysis. A powerful technique is magnetic resonance imaging (MRI), which
allows researchers to distinguish gray matter (neuronal cell bodies) from white matter
(myelinated tracts). MRI visualizes anatomical structures based on the behavior of atoms
in water (their protons) in a magnetic field. New anatomical techniques, such as diffusion
tensor imaging (DTI), are designed to specifically visualize myelinated tracts. Figure 1.8
shows MRI and DTI.

Even when these techniques are used in combination in multimodal neuroimaging, e.g.,
EEG and MEG or EEG and fMRI (Uludag and Roebroeck, 2014), their applications are
limited. Using images of large brain regions, researchers can coarsely examine neuronal
activity because they are unable to identify whether circuits are activated or inactivated.

Figure 1.9 presents the approximate temporal (x-axis) and spatial (y-axis) resolution
achieved using the main neurotechnologies. Approaches and techniques span from the
nanoscale to the macroscale in terms of spatial and temporal resolution.
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(b)

Figure 1.8 (a) MRI. Image available at Wikimedia Commons. (b) DTI of the lateral brain tractogram.
Anonymous clinical image provided by Aaron G. Filler in Wikipedia. For the color version, please
refer to the plate section.
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Figure 1.9 Spatial and temporal resolution of the main neurotechnologies. Acronyms explained
within the text.

Nevertheless, new technologies that allow researchers to monitor, interpret, and alter the
collective activity of vast neuronal populations (thousands or even millions of neurons)
distributed across brain regions are required to improve our understanding of how the
whole brain functions to drive thinking, behavior, cognition (perception, emotion, decision
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making, consciousness, etc.), and the consequences of circuit malfunctions in patients
with neurological disorders (schizophrenia, autism, AD, and PD). Large initiatives being
conducted worldwide (Section 1.3) are attempting to advance the development of these
technologies.

1.5 Data-Driven Computational Neuroscience

Hypothesis-driven research has been (and even still is) the standard approach used in the
great majority of neuroscience projects. The null hypothesis must be clearly stated, data
must be collected in a repeatable manner with a clear sampling design, and conclusions
must be based on p-values (see Section 4.2). In a high percentage of cases, neuroscience
research practices are still based on pre-Internet methods and employ the following steps:
(a) experimental design, (b) data collection, (c) local storage of data, (d) inaccessible
metadata, (e) data analysis using software installed on local computers, and (f) publication
of a summary of the results.

The daily practice of brain science is only beginning to benefit from cloudification, a
“software as a service” framework in which locally installed programs are replaced by
web apps. Cloud neuroscience proposes that the data, code, and analytical results all live
in the cloud together as a set of programs that run in a scalable manner and are accessible
anywhere. Benefits of this approach include the simplification of global collaborations, the
facilitation of open science, and the testing of a variety of models using the same data set,
allowing neuroscientists to accelerate the discovery process. A crucial factor in this new
view of neuroscience research is the so-called data-driven paradigm that amasses vast
quantities of data for the automatic modeling of complex interactions between the brain
and behavior, for example, and informs about the diagnosis and prevention of neurological
disorders and psychiatric diseases. The access to anatomical, biochemical, connectivity,
developmental, and gene expression (ABCDE) data will allow researchers to view the sci-
entific process as a virtuous cycle, namely, a collective effort where each new experiment
yields data, and after their analysis, new or refined models are created that suggest novel
experiments and allow the cycle to be repeated if necessary (Neuro Cloud Consortium,
2016).

Neuroscience is becoming more data-centric, as increasing numbers of brain atlases,
connectomes, and imaging data sets are being published. The number of projects that
provide large data sets for testing a specific hypothesis and enabling data-intensive
discovery is increasing (Akil et al., 2011). Three examples are described next. The
first example is the Human Connectome Project® that takes advantage of high-throughput
anatomical methods, such as resting-state functional magnetic resonance imaging
(R-fMRI) for macroconnectome, or serial section electron microscopy for microcon-
nectome. In the functional connectome, R-fMRI studies the brain at rest and reveals large-
amplitude spontaneous low-frequency fluctuations in the fMRI signal that are temporally
connected across functionally related areas and appear to show a universal architecture
of positive and negative functional connections and interindividual variability (Biswal
et al., 2010). The 1,000 Functional Connectomes Project data set provides researchers

6 www . humanconnectomeproject .org.
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Table 1.1 Multiples of the unit byte for digital information

Unit of digital information Previous unit Bytes
1 kilobyte 1,024 bytes 103

1 megabyte 1,024 kilobytes 100

1 gigabyte 1,024 megabytes 10°

1 terabyte 1,024 gigabytes 1012
1 petabyte 1,024 terabytes 101
1 exabyte 1,024 petabytes 10'8
1 zettabyte 1,024 exabytes 102!

the opportunity to simultaneously interrogate multiple functional circuits without the
requirement for an a priori hypothesis. For the anatomical connectome (Lichtman et al.,
2014), electron microscopy images at the nanometre level provide sufficient resolution to
visualize the finest details of synaptic connections, showing all cells and all organelles.
A substantial amount of data are generated from electron microscopy images. A single
cubic millimeter of the rat cortex generates approximately 2 petabytes of data. See
Table 1.1 for an idea of the amount of data that this number represents.

A complete visualization of the rat cortex requires an exabyte, which far exceeds the
storage capability of any system that is currently available. A complete visualization of
the human cortex, which is approximately 1,000 larger than the rodent cortex, will require
a zettabyte to depict the anatomical features of 86 billion neurons communicating with
each other via more than 250 trillion synapses. In terms of the time required to generate
the data, electron microscopes can currently process several terabytes of data per hour,
allowing a researcher to process a cubic millimeter of rodent brain in approximately 800
hours. A complete visualization of the mouse cortex will require at least a decade. In Yuste
and Church (2014), the ability to monitor and optically control a large percentage of the
100,000 neurons in a fruit fly brain was predicted to be achieved in 2019, whereas these
data will not be recorded in the mouse before 2024.

The second example is the Neuroscience Information Framework (NIF)’ that
provides access to more than 3,500 resources (data sets, tools, and materials), where
some domains, such as electrophysiology and behavior, are underrepresented compared to
genomics and neuroanatomy. The third example is the Allen Institute for Brain Science,’
which maintains and curates more than 3,000 terabytes of data. However, the vast majority
of data and metadata in neuroscience continue to remain inaccessible.

Akil et al. (2011) provide several recommendations for best practices in mining neu-
roscience data. (a) First, powerful tools must be developed to study the temporal and
spatial changes in brain anatomy and activity. (b) The informatics infrastructure must be
sufficiently flexible to incorporate new types of data. (c) Best practices for producing new
neuroscience data must be defined. (d) A cultural shift in the field of neuroscience to allow
data sharing is needed. (¢) Community ontologies and identifiers are needed. (f) Data must
be published in standardized table formats to facilitate data science. (g) Interdisciplinary
research in fields such as computer science, machine learning, and visualization should

7 neuinfo. org/.
8 www.alleninstitute.org/.
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be fostered. (h) Educational strategies for the next generation of neuroscientists must be
improved to ensure proficiency in data mining. These good practices will allow researchers
to take advantage of the heterogeneity of neuroscience data with multiple spatial and
temporal scales (Section 1.4) in all levels of neuronal organization: molecules (genotypes,
protein interactions), cells (morphology and electrophysiology), cellular compartments
(protein localization), brain regions, whole brain (functional and anatomical imaging), and
organism (behavior) (French and Pavlidis, 2007) and to produce reproducible, collabo-
rative, and large-scale neuroscience data needed for the twenty-first century. Ethical and
legal issues must also be addressed (similar to the genome project).

1.5.1  Collecting Neuroscience Data

In addition to the obstacle of technology, the different ways laboratories work is another
issue. Laboratories record different neurons in different brain regions from different ani-
mals performing different tasks. These disparate data are difficult to compare and combine.
Modern neuroscience has shown a trend toward complementing the traditional, small lab-
oratory culture by rewarding individual investigators with large, multidisciplinary teams
using highly reproducible standards who are making all their methods, data, metadata, and
software publicly available (Bouchard et al., 2016).

A survey by Tenopir et al. (2011) investigating data-sharing practices among scientists
showed that approximately 50% of the respondents do not share data. However, 85%
indicated an interest in having access to other researchers’ data sets. In neuroscience,
the culture of small laboratories that do not share data, metadata, or software is one
of the causes of the replication crisis. The scandal highlighting bad scientific practices
(Eklund et al., 2016) after the reanalysis of R-fMRI data from the public 1,000 Functional
Connectomes Project may affect more than 3,000 published studies, almost all of which
were funded by several national agencies. On the other hand, Wicherts et al. (2011) found
that studies with accessible data tended to have fewer errors and more robust statistical and
machine learning modeling approaches than studies where data sets were not available.

The culture shift in sharing data across laboratories is transforming “vertical” efforts,
namely, applying single techniques to single problems in single species, into “horizontal”
efforts, where the emphasis is placed on integrating data collected using a wide range
of techniques (Sejnowski et al., 2014). These ‘“horizontal” efforts will transform the
current situation with many small models that encompass limited data sets and are more
descriptive than explanatory. Sharing the long-tail data (Fergurson et al., 2014) is a way
of obtaining large-scale data in neuroscience by merging small, granular data sets collected
by individual laboratories in the course of day-to-day research. In the neurotrauma
field, the traumatic brain injury (Maas et al.,, 2011) and spinal cord injury (Nielson
et al., 2014) communities provide examples of the potential benefits of sharing long-tail
neuroscience data.

Benefits of data sharing include (a) increased transparency and reproducibility of the
results, (b) improving the research approach to employ the most recently developed exper-
iments incorporating various research strategies, and (c) reduced economic costs derived
from the lack of transparency and data inaccessibility. However, several reasons for the
lack of motivation to share data also exist: (a) the competition to be the first to analyze
the data set and to be recognized for publishing novel findings, (b) concerns regarding the
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privacy of the human research participants, as the regulatory mechanisms for consent for
use of data in the context of open access databases have not been completely established,
(c) public—private partnerships involved in large-scale data projects can produce tensions
derived from the different interests, and (d) problems derived from credit sharing in the
academic community based on authorship status on publications. Leitner et al. (2016)
provide a comparative study of citations of data published in neuroscience between papers
sharing data sets and papers without this material, and the former achieve a significantly
larger citation impact than the latter.

Examples of data-sharing initiatives in neuroscience include (a) NeuroMorpho.Org
(Ascoli et al., 2017), which follows pragmatic recipes to ensure a win—win outcome for
both researchers who are sharing and receiving data. The good practices for the roles
of data curators are to (i) serve the end-users by developing a complement, rather than
duplicating existing resources with a clear scientific need; (ii) adopt standard formats that
maximize interoperability rather than proprietary formats; (iii) design intuitive ergonomics
requiring only minimal instructions; (iv) solicit feedback from the users to improve func-
tionality; (v) publish statistics on data access, downloads, and reuse; (vi) facilitate the
contribution of data by assuming that conversion and standardization are the curators’ job;
(vii) use concise, consistent, and specific metadata annotation; (viii) publicly acknowledge
the labs contributing data; and (ix) be patient and persistent in finding, requesting, and
collating data, establish quality standards to maximize research utility, and diversify the
experience of your team. (b) At the Allen Institute for Brain Science, large teams are
generating complete, accurate and permanent resources for the mouse and human brain.
The need for a highly specialized workforce that collaborates and submerges the ego to
the needs of the group as a whole is a characteristic of team science at this institution, a
condition for developing large-scale data and open science. Based on this philosophy, the
scientific rewards are not in the promise of first or senior authorship, but in the participation
in a historic mission at the frontier of science where new knowledge is generated to benefit
all humans (Koch and Jones, 2016). (c) The national and international brain initiatives
described in Section 1.3 are all also working within this data-sharing perspective.

The people-powered research science (PPRS) revolution is creating a global commu-
nity of new “experts,” proving that anyone with motivation and a computer is able to help
scientists and accelerate scientific progress. PPRS is viewed as a kind of citizen science
that is based on the Internet and has provided people who were previously excluded
from academic science the opportunity to collect and generate data or to contribute as
individuals or teams to analyze the data (Roskams and Popovic, 2016). Examples of PPRS
in neuroscience include (a) Eyewire (Helmstaedter et al., 2013), where over 250,000
players from more than 140 different countries have been contributing to the first-ever 3D
reconstructions of high-resolution networks of cells within the mouse retina since 2010;
(b) DREAM, a crowd-sourcing approach in the form of challenges that have developed
new models in the field of neuroscience based on machine learning to predict the future
progression of ALS (Kiiffner et al., 2015); (¢) Mozak (Roskams and Popovic, 2016),
a gaming platform designed to rapidly accelerate our understanding of memory diver-
sity by providing gradual training to become an expert neuron reconstructor; and (d) the
BigNeuron project (Peng et al., 2015), a community effort that combines modern bioimag-
ing informatics, recent improvements in labeling and microscopy, and the wide need for
openness and standardization to provide a resource for the automated reconstruction of the
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dendritic and axonal morphology of single neurons. While science has always benefited
from standing on the shoulders of giants, the PPRS revolution will enable neuroscientists
to stand on the shoulders of everyone.

1.5.2  Statistics and Machine Learning: The Two Cultures

This section discusses the similarities and differences between two disciplines, statistics
and machine learning, whose objective is to analyze data by transforming them into com-
putational models from which new knowledge and predictions are obtained.

1.5.2.1 Statistics

During the second half of the twentieth century, the nature of statistical practice changed
with the advent of the computer. The progress in computer technology led to changes
in statistical methodology and statistical ideas. Examples include the inversion of large
matrices, iterative methods for the estimation of parameters, and the introduction of vari-
ous types of resampling methods, such as bootstrapping, dynamic interactive visualization
of data sets, and Bayesian statistics, a field that would not have been developed without the
assistance of computers. Statistics was regarded as a mathematical discipline; however, it
is currently regarded as a computational discipline focused on understanding the scientific
problem and providing a correct interpretation (Hand, 2015).

The advent of computers also led to dramatic changes in statistical practice. The very
easy use of software packages, particularly by statistically uninformed people, created
risks of its own. This easy use has also contributed to trying many possible analyses instead
of previously determining the proper method. An effective statistical analysis depends
critically on understanding the scientific question, and thus automatic or rote strategies
impose high risks. With the move to electronic rather than manual data collection, the
dangers of multiple testing and overfitting became even greater.

The dominant statistical paradigm used in neuroscience studies is the null hypothesis
significance testing (NHST), a hypothesis-driven approach (Section 4.2), in contrast with
the data-driven approach advocated in this book (Section 1.5). The use of NHST in neuro-
science must solve problems derived from the use of extremely small sample sizes and the
so-called pseudo-replication that appears when non-independent samples are analyzed.

Nature journals published a set of guidelines for the correct reporting of statistical
analyses that was presented by the Nature of Neuroscience journal (Nature Neuroscience
Editorial, 2005). These guidelines are listed below. (a) Consult statistical experts to help
design experiments and analyses, preferably before the data are collected. (b) Summarize
all data sets with descriptive statistics before further analyses are performed. (c) Ensure
that the statistical evidence is clearly described, providing information about what tests
were used, how many samples were analyzed, the types of comparisons that were per-
formed, the significance level found, etc. (d) Justify the choice of the analysis and confirm
that the data conform to the assumptions underlying the tests (for example, most parametric
tests require the data to be normally distributed). (¢) Avoid the risk of false-positive results
by using multiple comparisons tests (this situation is typically used for functional imaging
data when multiple voxels are compared). Six years after these guidelines were published,
Nieuwenhuis et al. (2011) found that in 157 of 513 behavioral, systems, and cognitive
neuroscience articles published in Science, Nature, Nature Neuroscience, Neuron, and The
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Journal of Neuroscience during 2009 and 2010, the authors compared 2 experimental
effects. In 79 papers, the authors used an incorrect procedure to compare the 2 effects.
The most common error was to report the difference between their significance levels
instead of the statistical significance (Section 4.2) of their differences. When the same
study was performed on 120 cellular and molecular neuroscience articles published in
Nature Neuroscience during the same 2 years, no single study used the correct statistical
procedure to compare effect sizes.

These facts highlight the need for solid statistical training for neuroscience researchers,
both in classical and novel statistical methods for data acquisition and analysis.” Each
of the methods used to collect neural data from human and animal subjects, such as
neuroimaging (radiography, fMRI, MEG, and PET), electrophysiology from multiples
electrodes (EEG, ECoG, and spike trains), calcium imaging, optogenetics, and anatomical
methods (diffusion imaging, electron microscopy, and fluorescent microscopy), produces
data with its own set of statistical and analytical challenges.

Part II of this book contains three chapters devoted to the introduction of statistical
methodology. Chapter 2 introduces several graphical and numerical representations of uni-
variate, bivariate, or multivariate data, such as pie charts, barplots, histograms, summary
statistics and principal component analysis. Chapter 3 presents probability theory and
some of the most common univariate and multivariate distributions in both discrete and
continuous domains. This chapter also describes methods for simulating random variables
and basic concepts of information theory. Parameter estimation and hypothesis tests are
presented in Chapter 4.

1.5.2.2 Machine Learning

We are living in an era of abundant data, and tools for searching, visualizing, modeling,
and understanding large data sets are needed. These tools should be able to (a) faithfully
capture the intrinsic uncertainty of the domain, (b) induce models from data in an auto-
mated and adaptive manner, (c) exhibit robustness against noisy and imprecise data, and
(d) scale well to large data sets. Machine learning methods incorporate these characteristics
by defining a space for possible models and developing learning-from-data procedures of
model parameters and structures. Machine learning provides tools for extracting reliable
and meaningful relationships and for generating accurate predictions and reliable decisions
(Hinton, 2011); this approach is likely to be one of the most transformative technologies
of the twenty-first century. Currently, humanity has a new way of deriving knowledge
apart from evolution, experience, and culture, namely, from machines that are able to learn
automatically.

Machine learning is the field in which researchers build computers that improve auto-
matically through experience and is also viewed as systems that learn from data. Machine
learning is considered an interdisciplinary field focusing on both the mathematical foun-
dations and practical applications with connections to pattern recognition, data mining,
adaptive control, statistical modeling, data analytics, data science, and artificial intelli-
gence. Its applications cover a wide spectrum of topics, e.g., automatic speech recognition,
computer vision (object, face, and handwriting recognition), information retrieval and web

9 As far back as 1938, Wells (1938) wrote, . .. a certain elementary training in statistical method is becoming
as necessary for anyone living in this world of today as reading and writing ...”
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searches, financial prediction and automated trading, Industry 4.0, sport analytics, medical
diagnosis, personalized medicine, bioinformatics, neuroscience, etc.

Conceptually, machine learning algorithms are viewed as searching through a large
space of candidate models of different types to identify the model that optimizes the
previously established performance metric (Jordan and Mitchell, 2015). Machine learning
algorithms vary (a) in the way they represent candidate models (naive Bayes, classification
trees, logistic regression, finite-mixture models, etc.) and (b) in the way in which they
search through this space of models (exact or heuristic optimization algorithms). A key
scientific and practical goal is to theoretically characterize the capabilities of specific learn-
ing algorithms. First, obtain the shape of the decision boundary to discriminate between
positive and negative instances (in a binary classification problem). Second, characterize
the sample complexity (the amount of data required to learn accurately) and computational
complexity (how much computation is required), and how both (sample and computa-
tional) depend on features of the learning algorithm.

The most widely used machine learning methods are supervised learning methods.
Starting from a collection of (x,¢) pairs, the goal is to produce a prediction ¢* in response
to a query x*. Different types of output ¢ have been studied: (a) the simple binary clas-
sification problem, where ¢ is a 1D vector, ¢, with two possible values; (b) multi-class
classification, where ¢ has R possible labels; (c) multi-label classification, where c is a
d-dimensional vector that simultaneously adopts several of the d labels; and (d) general
structured prediction, where ¢ is a combinatorial object whose components may be
required to satisfy some set of constraints. Supervised learning also includes cases in which
¢ has real valued components (regression or multi-output regression problems) that are not
covered in this book. Many forms of modeling (providing mappings from x* to ¢*) exist:
non-probabilistic classifiers (Chapter 7), such as k-nearest neighbors, classification trees,
rule induction, artificial neural networks and support vector machines, and probabilistic
classifiers (Chapter 8), such as discriminant analysis, logistic regression analyses, and
Bayesian network classifiers.

Unsupervised learning or clustering is defined as the problem of determining the
partitioning or grouping of similar data in the absence of explicit labels, as ¢. Non-
probabilistic clustering (Chapter 11) includes the topics of hierarchical and partitional
clustering, whereas probabilistic clustering (Chapter 12) is mainly based on finite-mixture
models and the expectation-maximization algorithm.

Domingos (2015) considers five groups of machine learning approaches with respect to
how the machines should learn while extracting the maximum possible knowledge from
the data: (a) the symbolic approach based on logic and philosophy, (b) the connectionist
approach, with foundations in the way the brain functions using neuroscience as the basic
theory and the backpropagation (of artificial neural networks) as the main algorithm, (c) the
evolutionist approach based on evolutionary biology and using evolutionary computation
(i.e., genetic algorithms) as its main algorithm, (d) the Bayesian approach that uses
statistics and probabilistic inference as fundamentals and is based on the idea of adapting
the world interpretation as new evidence arrives, and (e) the analogist approach, which
searches in its memory for similar situations that worked properly in the past to solve the
current problem, and k-nearest neighbors is its favorite algorithm.

Machine learning is a young, continuously expanding discipline in which new meth-
ods and algorithms are being developed daily, mainly within the new paradigm of
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big data.'? Large data sets require scalable algorithms whose time and space requirements
are linearly or sublinearly correlated with the size of the problem (number of points
or number of dimensions). Several opportunities and challenges in machine learning
remain: (a) contrasting current machine learning approaches to naturally occurring
systems (humans and animals) that in some situations can discover patterns from only
one instance, something called one-shot learning in the jargon of artificial intelligence,
(b) organizing different types of skills and types of knowledge (supervised and unsuper-
vised) into a single-to-more-difficult sequence, (c) constructing lifelong or never-ending
computer learners that continuously operate for years, (d) team-based learning inspired
by people who often work on teams to collect and analyze data, and (e) mixed-initiative
learning that provides new machine learning methods the ability to work collaboratively
with humans.

Predictions made by machine learning systems (or artificial intelligence in general) must
be accurate. In addition, humans should understand the whys of the recommended deci-
sions. For example, if a system selects Miss Smith for a very risky neurological surgery,
or if another system predicts that Mr. Jones’s cognitive deterioration will be aggravated in
the next 2 years, understanding what those decisions are based on is important.

Hence the need to develop transparent, reliable, trustable, and explainable models avoid-
ing the black boxes implicit in some machine learning paradigms. Among the paradigms
presented in this book, classification trees, rule induction, Bayesian classifiers, Bayesian
networks, and Markov networks stand out for their transparency, whereas random forests,
support vector machines, artificial neural networks, and deep learning excel for their opac-
ity and difficult interpretation. Explainable artificial intelligence is a trend that tries to
develop systems that are interpretable for humans (Rudin, 2019).

Ethics is another aspect to take into account when developing intelligent systems in
order to prevent them from having associated prejudices. Such prejudices can come either
from the individual who has developed the system (and has conscious or unconscious
preferences) or from the biases (for example, gender, race, age) implicit in the data set on
which the automatic learning algorithm is applied, with problems both in the gathering or
usage of data. Eliminating harmful biases is essential.

1.5.2.3 Statistics versus Machine Learning

This book is primarily concerned with the use of statistical methods and machine learning
algorithms for transforming neuroscience data into computational models that are able
to provide appropriate solutions for supervised and unsupervised classification problems
(also called classification and clustering, respectively), as well as for discovering asso-
ciations among the variables describing a problem. Statistics and machine learning are
viewed as two different cultures for drawing conclusions from data (Breiman, 2001b).
In both cultures, the input variables, X, also known as predictor (machine learning) or
independent (statistics) variables, are mapped to the output or response variables, C, as
illustrated in Figure 1.10.

10 Four v’s define the main issues of big data: (i) volume of the data to be processed, requiring different storage
and processing capabilities than traditionally; (ii) velocity, referring to the speed with which data is
generated; (iii) variety of sources of the data to be processed, including structured, semi-structured, and
unstructured data; and (iv) veracity, which refers to the good quality of the data being analyzed.
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X — Natuwre ——> C

Figure 1.10 Transforming input variables, X, into output variables, C, through a process enacted by
Nature.

(a) (b)

140 160 180 200 220

Figure 1.11 (a) Supervised classification (Part III). (b) Clustering (Part IV). (c) Discovery of
associations (Part V). (d) Spatial statistics (Part VI).

In this book, we consider four main data analysis goals:

« Prediction: forecast the responses for future input variables. We consider discrete, both
1D and multidimensional, output variables.

« Clustering: merge similar inputs into groups.

« Discovery of associations: represent the relationships among the variables.

« Spatial statistics: study of the 2D/3D arrangement of points.

Figure 1.11 shows examples of each of these goals, which are developed throughout
Parts III, IV, V, and VI of this book, respectively. All chapters in Part III assume that
the output is unidimensional, ¢, except for Chapter 10, which considers a multidimen-
sional output response, ¢. Chapters 11 and 12 in Part IV include situations where the
output variable is hidden and should be determined by the model. Part V of the book,
which is developed in Chapters 13 and 14, does not necessarily consider the distinction
between input x, and output ¢ and aims to discover the relationships among all variables.
Chapter 15 in Part V includes exploratory data analysis and statistical modeling, as well
as the simulation of spatial point processes.
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X Bayesian classifiers

_>C

Logistic regression

Figure 1.12 Examples of stochastic data models for prediction (supervised classification).

X— Unknown —C

Classification trees

Rule induction

Support vector machines
Artificial neural networks

Figure 1.13 Examples of algorithm-based models for prediction (supervised classification).

The statistical methodology for modeling data is based on probability theory and
assumes that a stochastic data model is responsible for mapping x to ¢. In this approach,
data analysis is based on the assumption of a stochastic data model for the inside of the
box of Figure 1.10. A common assumption is that data are generated by independent
draws from ¢ = f(x;0), where f is the mapping function specified by the model, and 0
represents the parameters of the model (which are estimated from the data). Examples of
stochastic data models for supervised classification are Bayesian classifiers and logistic
regression, as illustrated in Figure 1.12.

Machine learning modeling considers the inside of the box to be complex and unknown.
The approach is to find a mapping function f(x), an algorithm that operates on x to predict
the responses ¢. Examples of algorithm-based models are classification trees, rules, support
vector machines, and artificial neural networks, as shown in Figure 1.13.

Next we discuss the differences in some important issues between statistical and
machine learning approaches. Table 1.2 presents some of these differences.

Model Assumptions. Statistical modeling requires a solid mathematical background
and is based on its purest form on probability and measure theories, decision theory,
Markov chains, asymptotic analysis, etc. The dependency of stochastic models on strong
assumptions (e.g., multivariate Gaussian density, homoscedasticity, etc.) is justified by
their mathematical malleability. In almost all real-world situations, however, these assump-
tions are not verified. In contrast, machine learning algorithms do not assume that condi-
tions are met in the data set.

Model Selection. In statistics, the most appropriate model is selected as the model that
best fits the data in terms of a measure related to the (penalized or marginal) likelihood.
This process is usually enacted using a likelihood ratio-based hypothesis test comparing
the fit between the current model and a candidate model. The candidate model will replace
the current model only if the differences in likelihood are statistically significant. Search
approaches include standard forward selection (starting from the empty model and incor-
porating the most informative variable at each step until there is no further improvement),
backward elimination (starting from a model with all variables and deleting the worst
variable at any time), and stepwise selection (where the inclusion and deletion stages are
intermingled).
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Table 1.2 Main differences between statistics and machine learning
approaches to data modeling

Statistics Machine learning

Stochastic data model Algorithm modeling

Model selection Structure and parameter learning
Fitting Learning

Likelihood ratio Predictive accuracy

Forward, backward, stepwise Metaheuristic

Collinearity Feature subset selection
Bayesian approaches Ensembles

Probabilistic output Deterministic output

Modeling in the machine learning field relies on two ideas: (a) using a score measuring
the goodness of the proposed model that is more directly related to the final aim; for
example, if the main goal is prediction, the estimated classification accuracy, the Fi-
measure, or the area under the ROC curve (see Section 5.2 for details) are score candi-
dates; and (b) searching in the space of possible models using more sophisticated and
intelligent metaheuristics, such as simulated annealing, tabu search, and genetic algorithms
(Section 6.3.1). The use of these metaheuristics that require intensive computational algo-
rithms is justified by the usually large cardinality (sometimes more than exponential in the
number of variables) of the space of models.

In any case, both cultures agree on the principle of Occam’s razor (Thorburn, 1915) or
law of parsimony, that is, simpler models are better.

Feature Subset Selection. The term “curse of dimensionality” introduced by Bellman
(1957) is associated with the need to find a small number of input variables in prediction
models that contain most of the information required for the output variables. In statistics,
these variables are selected based on the concept of collinearity and assumes that a pre-
viously fixed number of variables k of the total number of predictor variables n, k < n,
should be chosen. The machine learning approach for feature subset selection is more
computational and tries to find the best combination of input variables (Section 6.3) for
the output variable in terms of predictive accuracy. From this perspective, the search is
conducted in a space whose cardinality is given by 2".

More than One Model. Breiman (2001b) referred to the situation where different
models with approximately the same predictive accuracy are produced, which is known as
the Rashomon effect.!! This effect is typically when the initial number of input variables
is very large. Instead of choosing one of the models and discarding the rest, one possible
alternative is to merge or combine the outputs of the different models, particularly if
the models belong to different families and the errors are committed in different cases.
In machine learning, this approach is known as ensemble learning (Chapter 9) and is
considered a practical implementation of the full (or selective) Bayesian approaches to
models developed in statistics.

Validation. The honest estimation of the generalization power of the predictive models
(see Section 5.3) is conducted in a similar way in both cultures. Both the statistics and
machine learning communities partition the data set into training and test sets, or use

1 This effect takes its name from Akira Kurosawa’s film Rashomon, in which a crime witnessed by four
individuals is described in four mutually contradictory ways.
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Table 1.3 Statistical and machine learning methods described in

this book

Statistics Machine learning

Feature selection (filter) Feature selection (wrapper)
k-nearest neighbors k-nearest neighbors
Classification trees Classification trees
Discriminant analysis Rule induction

Logistic regression Artificial neural networks
Bayesian network classifiers Support vector machines
Multidimensional classification Metaclassifiers
Hierarchical clustering Multi-label classification

Partitional clustering
Probabilistic clustering
Spatial statistics

Probabilistic graphical models .
Machine

-Bayesian networks learning

-Markov networks

Statistics

Figure 1.14 Probabilistic graphical models including Bayesian networks and Markov networks at the
intersection between statistics and machine learning.

more sophisticated methods, including k-fold cross-validation, and bootstrapping. The
probabilistic output provided by statistical models, which is richer than the deterministic
response produced by almost all machine learning algorithms, indicates that statistical
models can be validated with better measures, such as the Brier score.

Both the statistics and machine learning cultures are complementary rather than contra-
dictory. Indeed, many machine learning algorithms incorporate statistics in their process,
and some modern statistical modeling techniques have been developed by the machine
learning community. An example is the probabilistic graphical models represented by
Bayesian networks (Chapter 13) and Markov networks (Chapter 14) (Koller and Friedman,
2009), as illustrated in Figure 1.14.

Table 1.3 contains a list of other methods and algorithms covered in this book and
organized as belonging to statistics or machine learning. Note that this organization is
somewhat ambiguous, as k-nearest neighbors and classification trees were developed inde-
pendently in both fields and constitutes an example of cooperation. k-nearest neighbor
methods (Section 7.1) date back to the early 1950s (Fix and Hodges, 1951) and have been
thoroughly investigated by the statistical community. Very similar algorithms, which are
known as instance-based learning (Aha et al., 1991) and case-based reasoning (Kolod-
ner, 1993), have been developed by the machine learning community. Classification trees
(Section 7.2) were independently developed. They are designated as classification and
regression trees (CART) in the statistics community (Breiman et al., 1984) and decision
trees in the machine learning field (Quinlan, 1986). Seminal books comparing approaches
from both cultures are Weiss and Kulikowski (1991) and Michie et al. (1994).
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1.5.3  Brain-Inspired Machine Learning Methods and Hardware

The principles of the functions of the brain and the computer differ. The brain is able
to work with novelty, complexity, and ambiguity, whereas computers are fast and very
precise. However, the knowledge about the brain can serve as inspiration in the design of
machines, both software and hardware, for example by applying the lessons learned from
connectome graphs to making computers smarter.

In software, strategies used to unravel the algorithmic specializations of the sensory
cerebral cortex are inspiring the next generation of high-performance machine learning.
Brains exhibit a remarkable capacity for recognizing and learning about physical and
abstract data that far exceeds the capabilities of the currently available state-of-the-art
machine learning systems. A performance gap exists not only for high-level cognitive
processes (e.g., understanding) but also for basic sensor information-processing tasks
supporting these higher-level functions. Contemporary theories of cortical computing
suggest that for sensory information-processing tasks, the brain employs algorithms with
a limited set of computing primitives. These structural and/or functional motifs are used
by one or more cortical area(s) to implement “core functions” of cortical algorithms that
represent, transform data, and learn from data. A program of the American IARPA called
Machine Intelligence from Cortical Networks (MICrONS) proposed in 2014 seeks
to revolutionize machine learning by reverse-engineering the algorithms of the brain.
MICrONS aims to design and implement novel machine learning algorithms that use the
same “core functions” employed by the brain. Algorithms derived from the visual cortex
will be tested on visual scenes, algorithms derived from olfactory cortex will be tested on
olfactory cues, etc.

In hardware, neuromorphic computing takes its inspiration from observations of the
complexity of the biological brain and considers brain knowledge as principles that can
be applied to the design of hardware engineering systems. Seminal work on bio-inspired
microelectronics culminated in the book published by Mead (1989). More recent examples
of large-scale neuromorphic systems include (a) the IBM TrueNorth chip (Merolla et al.,
2014), which is the outcome of a decade of work by the DARPA SYNAPSE program
aimed at delivering a very dense, energy-efficient platform capable of supporting a range
of cognitive applications, (b) Neurogrid (Benjamin et al., 2014), which is based on the
heritage of Mead (1989), and uses subthreshold analogue circuits to model neuron and
synapse dynamics in biological real time, (c) the SpiNNAker project (Furber et al., 2014),
which has developed a massively parallel digital computer whose communication infras-
tructure is motivated by the objective of modeling large-scale spiking neural networks
with connectivity similar to the brain in biological real time, and (d) the BrainScaleS
neuromorphic system (Schemmel et al., 2010) developed at the University of Heidelberg
with the aim of implementing physical models of neuronal processes.

1.6 Real Examples Discussed in This Book

The book is organized into the following six parts: I Introduction (Chapter 1), I Statistics
(Chapters 2—4), III Supervised Classification (Chapters 5-10), IV Unsupervised Classifica-
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Table 1.4 Book organization

Chapter Title Data Set

2 Exploratory data analysis 1. Interneurons vs. pyramidal neurons

3 Probability theory and random variables 1. Interneurons vs. pyramidal neurons

4 Probabilistic inference 1. Interneurons vs. pyramidal neurons

6 Feature subset selection 2. GABAergic interneuron nomenclature
7 Non-probabilistic classifiers 1. Interneurons vs. pyramidal neurons

8 Probabilistic classifiers 1. Interneurons vs. pyramidal neurons

9 Metaclassifiers 1. Interneurons vs. pyramidal neurons

10 Multidimensional classifiers 3. Quality of life in Parkinson’s disease
11 Non-probabilistic clustering 4. Dendritic spines

12 Probabilistic clustering 4. Dendritic spines

13 Bayesian networks 5. Basal dendritic trees

14 Markov networks 6. Brain connectivity

15 Spatial statistics 7. Spatial location of synapses in the neocortex

tion (Chapters 11-12), V Probabilistic Graphical Models (Chapters 13—14), and VI Spatial
Statistics (Chapter 15). Some real-world neuroscience examples are used to illustrate the
methods described in each chapter in Parts III to VI. Seven data sets were used for these
illustrations, and they are described below, see Table 1.4.

1.6.1 Data Set 1: Interneurons versus Pyramidal Neurons

Discerning different neuronal cell types is an essential first step toward understanding
neural circuits. Classical classifications of neuronal cell types used qualitative descriptors
(de No, 1922), with nomenclature varying among researchers. Quantitative classifications
using both unsupervised and (less frequently) supervised classification methods are more
recent. They are actually necessary to obtain an objective set of descriptors for each cell
type that most investigators agree upon.

Neocortical GABAergic interneurons are particularly difficult to distinguish and will be
the main issue analyzed in Data Set 2 below. First, we will try to solve an easier problem:
automatically distinguishing pyramidal cells from interneurons in the mouse neocortex
based solely on their morphological features. These cells are the two principal neuronal
types in the cerebral cortex (Ramoén y Cajal, 1899), see Figure 1.15.

Obviously, the “ground truth,” given by the presence or absence of an apical dendrite,
is used to reliably label each cell as a pyramidal neuron P or interneuron I, but it is not
included in the morphological features.

The rows in the data set contain 327 cells composed of 199 interneurons (60.86%) and
128 pyramidal cells (39.14%) from the cortex of PND 14 C57/B6 mice. All pyramidal
neurons had clear apical dendrites. Many different subtypes of interneurons were identified
and collected from several different laboratory studies. A complete description of methods
used to prepare the brain slices and the histological procedures is provided in Guerra et al.
(2011). Neuronal morphologies were reconstructed using Neurolucida (MicroBrightField
[Glaser and Glaser, 1990]). The columns in the data set show 64 morphological features of
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(a) (b)

Figure 1.15 (a) Basket cell (interneuron). (b) Pyramidal cell. Both cells are located in the mouse
neocortex, and their axonal arbor and their dendritic tree are shown in blue and red, respectively.
Reprinted with permission from Guerra et al. (2011). For the color version, please refer to the
plate section.

the reconstruction of each cell measured with the Neurolucida Explorer program, as well
as the relative distance from the soma to the pia. Table 1.5 (somatic and axonal features)
and Table 1.6 (dendritic features) list all 65 variables.

Some features, such as the somatic area and perimeter, number of axons and dendrites,
axonal and dendritic length, axonal and dendritic branch angles, and number of axonal
and dendritic nodes (branch points), are measured directly. Other features, such as the
soma roundness, axonal and dendritic Sholl lengths (Sholl, 1953), convex hull analysis,
and fractal analysis, are computed. Sholl length measures the radial distribution of the
lengths of axonal or dendritic arbors around the soma. Concentric spheres centered on
the soma are drawn at radius intervals of » pum. r = 100 um for axons and r = 50 um for
dendrites. Then, the Sholl length at » um is calculated as a fraction of the length of (axonal
or dendritic) segments contained in the first Sholl ring divided by the total length of (axonal
or dendritic) segments. The Sholl length at 2r um is calculated as a fraction of the length
of (axonal or dendritic) segments contained in the Sholl section from r to 2r (belonging
to the second Sholl) divided by the total length of (axonal or dendritic) segments, and so
forth. The convex hull analysis draws a 2D and 3D convex shape around the axons or
dendrites. The area and perimeter of the 2D shape and the volume and surface area of the
3D shape are then calculated. The fractal analysis calculates the fractal dimension of the
axon or dendrites using a linear regression analysis and therefore measures the extent to
which the axonal or dendritic arbor fills the space. The relative distance from the soma to
the pia is the ratio of the straight-line distance from the soma to the pia and the straight-line
distance from the white matter to the pia. Thus, a value close to 0 (resp. 1) corresponds to
a soma in a superficial (resp. deep) layer.
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Table 1.5 Somatic and axonal features in Data Set 1

Feature

Description

Soma
Xy
Xa
X3
Xy
Xs
X

Somatic perimeter (1m)
Somatic area (um?)
Somatic aspect ratio
Somatic compactness
Somatic form factor
Somatic roundness

Axon
X7
X3

Axonal node total (branching points)
Total axonal length (pm)

Total surface area of axon (umz)

Ratio of axonal length to surface area
Highest order axon segment

Axonal torsion ratio

Axonal planar angle ave

Axonal planar angle stdv

Axonal local angle ave

Axonal local angle stdv

Axonal spline angle ave

Axonal spline angle stdv

Ave tortuosity of axonal segments

Stdv of tortuosity of axonal segments
Axonal segment length ave

Axonal segment length stdv

Ave tortuosity of axonal nodes

Stdv of tortuosity of axonal nodes
Number axonal Sholl sections

Axonal Sholl length at 100 um (fraction)
Axonal Sholl length at 200 um (fraction)
Axonal Sholl length at 300 um (fraction)
Axonal length density2

Axonal node density2

Convex hull axon area

Convex hull axon perimeter

Convex hull axon volume

Convex hull axon surface area

k-dim (fractal analysis)-axon

33

We are searching for a procedure that automatically distinguishes pyramidal cells from
interneurons using this type of data, with cells characterized based on some morphological
features and prior supervised information about the type of neuron (P or I).

An interesting issue is to identify which morphological features help distinguish the two
neuron types i.e., to perform feature subset selection (Chapter 6).

Chapters 7 to 9 will show the performance of a battery of different supervised classifi-
cation algorithms applied to this example. Note that procedures that omit this prior infor-
mation aim to discover new or confirm some known hypotheses about subtypes of cells.
This problem is tackled by unsupervised classification methods, which are described in
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Table 1.6 Dendritic features in Data Set 1; the relative distance
to the pia is included at the bottom

Feature Description

Dendrites

X36 Number of dendrites

X37 Dendritic node total (branching points)
X33 Total dendritic length (p1m)

X39 Ave length of dendrites (um)

X40 Total surface area of dendrites (um?)
Xa1 Ratio of dendritic length to surface area
Xap Highest order dendritic segment

X43 Dendritic torsion ratio

Xug Dendritic planar angle ave

X45 Dendritic planar angle stdv

Xu6 Dendritic local angle ave

Xa7 Dendritic local angle stdv

Xug Dendritic spline angle ave

Xa9 Dendritic spline angle stdv

Xs50 Ave tortuosity of dendritic segments
Xs51 Stdv of tortuosity of dendritic segments
X570 Dendritic segment length ave

Xs3 Dendritic segment length stdv

Xs4 Ave tortuosity of dendritic nodes

Xss Stdv of tortuosity of dendritic nodes
Xs6 Number of dendritic Sholl sections

X57 Dendritic Sholl length at 50 um (fraction)
Xsg Dendritic Sholl length at 100 um (fraction)
Xs9 Dendritic Sholl length at 150 pm (fraction)
X60 Convex hull dendrite area

Xo1 Convex hull dendrite perimeter

Xe2 Convex hull dendrite volume

Xe3 Convex hull dendrite surface area

Xe4 k-dim (fractal analysis)-dendrites

Xo5 Relative distance to pia

Chapters 11 and 12. Surprisingly, this unsupervised approach is used by most researchers
to classify cortical neurons based on morphological, physiological and/or molecular fea-
tures (Cauli et al., 2000; Kozloski et al., 2001; Wong et al., 2002; Tsiola et al., 2003;
Andjelic et al., 2009; Helmstaedter et al., 2009a, 2009b; Karagiannis et al., 2009; McGarry
et al., 2010; Battaglia et al., 2013; Helm et al., 2013; Perrenoud et al., 2013).

In addition to morphology, Ascoli et al. (2008) and Yuste et al. (2020) suggested a mul-
timodal neuronal type definition, including physiological, molecular, and morphological
features.

1.6.2 Data Set 2: GABAergic Interneuron Nomenclature

The data for this example have been borrowed from a paper by DeFelipe et al. (2013)
that develops a methodology based on a new community-based strategy (crowd sourcing)
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Figure 1.16 Screenshot of 1 of the 320 neurons included in the web-based interactive system. For
each of the six class variables, the experts can select the most appropriate category describing the
morphology of the neuron. For the color version, please refer to the plate section.

applied by a set of neuroanatomy experts with the objective of creating an accepted nomen-
clature for cortical GABAergic interneurons. The new methodology involves a web-based
interactive system that enables experts to classify neurons with predetermined criteria (see
Figure 1.16). Each expert has the option of classifying each neuron according to six class
variables based on neuronal morphology. The first of these class variables refers to the
geometric position of the neuron axonal arbor relative to cortical layers and includes the
following categories: intralaminar, interneurons with axonal arbors that are mainly
located in the layer of the parent soma, and translaminar, otherwise. The second
class variable refers to the distribution of the axonal arbor relative to the size of corti-
cal “columns” and covers two categories: intracolumnar, when the distance of the
axonal arbors from the soma is not more than 300 um in the horizontal dimension; and
transcolumnar, if the neuron does not meet this constraint. The third class vari-
able corresponds to the relative locations of the axonal and dendritic arbors and also
includes two categories: centered, when the dendritic arbor is mainly located at the
center of the axonal arborization, and displaced, otherwise. A fourth class is consid-
ered for interneurons categorized as translaminar and displaced. This variable has three
possible categories: ascending, when the axonal arbor is mainly distributed toward
the cortical surface; descending, when the distribution is mainly toward the white
matter; and both, for neurons with axonal arbors distributed toward both the cortical
surface and the white matter. The fifth class variable covers the common names of the
cell types present in the literature (Jones and Peters, 1984): arcade, Cajal-Retzius,
chandelier, common basket, common type, horse-tail, large basket,
Martinotti,neurogliaform, and other. Finally, the sixth class variable examines
whether a sufficient (or insufficient) number of morphological axonal characteristics is
available to classify the interneuron and considers two categories: characterized and
uncharacterized.
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Table 1.7 Data set containing information for the 241 3D reconstructed interneurons. For each
neuron, 2,886 morphological variables have been recorded, as well as the categorization provided
by the 42 neuroanatomy experts into the 6 class variables, C; to Cs

o Cs
Neuron X X5.886 El E42 El E42
1 10.8 20.3 1 1 1 1
241 9.2 18.9 2 2 1 2

Forty-two neuroanatomy experts from different labs in Europe, the United States, Japan,
and China participated in the experiment, providing their categorization for the 6 class vari-
ables. Branched structure, convex hull, Sholl, fractal, fan-in diagram, vertex, and branch
angle morphological analyses were performed on each of the 241 neurons whose 3D recon-
structions were available at NeuroMorpho.Org using the MicroBrightField Neurolucida
package.

The initial data set (see Table 1.7) contains the 2,886 morphological variables described
below, and the categorization provided by each of the 42 experts (E1,...,E42) according
to the 6 class variables described in Figure 1.16 for each of the 241 interneurons.

In the original data set, in the Convex-Hull-2D block (see below), the number of inter-
sections was measured in concentric spheres centered at the soma with increasing radii
of 20 um. Based on the advice of the neuroanatomists, this small radius was extended to
60 um, resulting in a reduction of 300 variables. Thus, 2,586 final morphological variables
were considered over which Chapter 6 will perform feature subset selection. The variables
are organized into the following blocks:

« Box-Counting-Trees-Axons. The fractal dimension of the axon using the box-counting
method (Mandelbrot, 1982). The fractal dimension is a quantity that indicates how com-
pletely the neuron fills the space. This value is measured by considering only the axonal
arbor. The block contains a variable denoted as Xj.

« Box-Counting-Trees-Dendrites. The fractal dimension of the dendrites using the box-

counting method. The block contains a variable denoted as Xj.

Branch-Angle-Axon. We used planar, local, and spline angles that measure the direction

of the branches at different levels. We computed the mean, standard deviation, and

median of the three angles for the axonal arbor. Also, we measured these variables
by dividing the data set according to the centrifugal order of the segments. The block
contains variables from X3 to Xgo9.

Branch-Angle-Dendrite. Similarly, for the dendritic arbor, the result is variables from

Xo30 to X1,100-

« Cell-Bodies. The area, aspect ratio, compactness, convexity, contour size (maximum and

minimum Feret), form factor, perimeter, roundness, and solidity of the soma. The block

contains variables from Xj jo; to Xj 110.

Convex-Hull-2D. This analysis measures the area and the perimeter of the 2D convex hull

that includes the entire neuronal morphology. The block contains variables from Xj 113

to X1,114-

Convex-Hull-3D. This analysis measures the volume and the surface of the 3D convex

hull that includes the entire neuronal morphology. The block contains variables from

X1,115 to X 118-
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« Neuron-Summary-Axon. The number of axonal endings, the total length of the axon, the
mean length of the axonal trees, and the number of nodes (branching points) in the axon.
The block contains variables from Xj 119 to Xy 122.

« Neuron-Summary-Dendrites. The number of endings, the number of nodes (branching
points), the total length, and the mean length of each dendritic arbor. The block contains
variables from X123 to Xj 126.

« Polar-Axon. The polar histogram is a 360° projection of data that accounts for the neurite

length and direction. In the projection, the length of a wedge is equivalent to the total

length of neurites in a specified direction. A fan-in diagram is generated to further
study axon directionality. This diagram is divided into sectors. The numbers in the polar
variables represent the sector in which the variable is measured. This approach only

considers the axonal arbor. The block contains variables from Xj,127 to X 162.

Polar-Dendrite. This analysis only considers the dendritic arbor. The block contains

variables from X 163 to Xj,198.

Segment-Axons. The total, mean, median, and standard deviation of the length of the

segments belonging to the axonal arbor of the neuron. Also, we measured these variables

by dividing the data set according to the centrifugal order of the segments. The block

contains variables from Xj 199 to Xj 614.

Segment-Dendrites. Similarly, for dendrites, the block contains variables from X ¢;5 to

X694
Sholl-Axon. The number of intersections in concentric spheres centered at the soma with

increasing radii of 60 pm. The analysis also includes the number of endings, nodes,
and the total length of the segments included in those spheres. Only the axonal arbor is
analyzed. The block contains variables from Xj 95 to X1 g06-

Sholl-Dendrite. Similarly, for dendrites, the block contains variables from Xj go7 to Xj g46.
Tree-Totals-Axon. The number of endings and the number of segments of the axonal
arborization. These variables were also measured according to the centrifugal order. The
block contains variables from X g47 to X2 os2.

Tree-Totals-Dendrite. Similarly, for dendrites, the block contains variables from X5 53 to

X2,090-

« Vertex-Axon. Vertex analysis of the connectivity of the nodes in the branches is per-
formed to describe the topological and metric properties of the axonal arbor. The block
contains variables from X 091 to X2 506.

« Vertex-Dendrite. Similarly, for dendrites, the block contains variables from X 507 to

X2,586-

The data set presented in Table 1.7 can be transformed in several alternative ways to
reach a consensus among the responses of the 42 experts. After separately considering
each of the 6 class variables, one possibility is to establish a consensus threshold, the
simplest version of which would coincide with the majority vote. In this case, the category
assigned to each neuron will be the one with highest frequency. Another possibility is to
select those neurons with a given category frequency greater than 21 (half of the number
of experts) from the data set. The last option is to use the information provided by the
experts in terms of the relative frequency of each of the possible categories. This option
is illustrated in Table 1.8 for the class variable Cs, representing the common usage of the
interneuron names in the literature, encoded from 1 to 10.
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Table 1.8 Data set containing information for the 241 3D reconstructed interneurons. For each
neuron, 2,586 morphological variables have been recorded, as well as a probabilistic label for Cs,
from the categories provided by the 42 neuroanatomists

Cs
Neuron X; - Xpse6 1 2 3 4 5 6 7 8 9 10
1 108 --- 203 0.08 0.14 0.04 032 0.02 0.13 0.01 0.05 0.11 0.10
241 92 ... 189 0.07 0.10 0.05 023 0.08 021 0.03 0.06 0.12 0.05

1.6.3 Data Set 3: Quality of Life in Parkinson’s Disease

The data for this example were derived from a study by Borchani et al. (2012) that
attempted to predict the European Quality of Life-5 Dimensions (EQ-5D) from the
39-item Parkinson’s Disease Questionnaire (PDQ-39). The EQ-5D is a generic health-
related quality-of-life measure that is used in general populations and patients with
any disorder. EQ-5D contains five items (Figure 1.17), namely Mobility, Self-care,
Usual activities, Pain/Discomfort, and Anxiety/Depression. Each item has three possible
responses: no problems, some problems, and severe problems. However,
PDQ-39 (Figure 1.18) is a specific instrument that is widely used in individuals with
PD to capture patients’ perceptions of their illness. PDQ-39 measures the severity and
degree of disability in patients with PD using 39 questions covering 8 dimensions (see
Table 1.9): mobility, activities of daily living, emotional well-being, stigma, social support,
cognitions, communication, and bodily discomfort. Each question is scored on a five-point
scale: never, occasionally, sometimes, often, and always.

The analyzed data set includes 488 patients with PD, each of whom was characterized
with 39 predictor variables (PDQ-39) and 5 variables to be predicted (EQ-5D). The objec-
tive is to learn a multidimensional classifier that is able to assign the 5 classes of the EQ-5D
to each patient. As these 5 classes are believed to be interrelated, the solution of learning
5 unidimensional supervised classification models does not appear to be appropriate.
Therefore, an approach based on multidimensional classification should be adopted.
Chapter 10 will be devoted to this.

1.6.4 Data Set 4: Dendritic Spines

This example analyzes dendritic spines, which were first described by Cajal in 1888.
Dendrites of a single neuron can contain hundreds or thousands of spines. Although their
exact functions remain unclear (reviewed in Yuste [2010]), the morphology of dendritic
spines appears to be critical for their functions. Pyramidal neuron spines are the targets
of most excitatory synapses in the cerebral cortex. The shape of the dendritic spines may
determine their synaptic strength and learning rules. Quantitative analyses have revealed
strong correlations between spine morphological variables and the synaptic structure: (a)
the spine head volume and total spine volume in the neocortex are positively correlated
with the area of the post-synaptic density, with a remarkably small variance (Arellano
et al., 2007). This area is correlated with the number of presynaptic vesicles, the number
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By placing a tick in one box in each group below, please indicate
which statements best describe your own health state today.

MOBILITY

I have no problems in walking about

I have some problems in walking about
I am confined to bed

LLL

SELF-CARE

I have no problems with self-care

I have some problems washing or dressing myself
T am unable to wash or dress myself

LILL

USUAL ACTIVITIES (e.g., work, study, housework, family or
leisure activities)

T have no problems with performing my usual activities |
I have some problems with performing my usual activities |
I am unable to do my usual activities i
PAIN / DISCOMFORT

I have no pain or discomfort |
I have moderate pain or discomfort ]
I have extreme pain or discomfort 1
ANXIETY / DEPRESSION

I am not anxious or depressed |
I am moderately anxious or depressed 1
T am extremely anxious or depressed i

Figure 1.17 Five classes of the EQ-5D quality-of-life measure.

Please complete the following

Due to having Parkinson's disease,
how often during the last month

have you.... Never Occasionally Sometimes = Often  Always
or cannot do

at all
1 Had difficulty doing

the leisure activities which J J J J J

you would like to do?
2 Had difficulty looking after
your home, e.g., DIY, J J J J J

housework, cooking?

3 Had difficulty carrying bags

of shopping? J J J J J

4 Had problems walking half
a mile?

5  Had problems walking 100

yards? J J J J J
6  Had problems getting
around the house as easily | J J | |

as you would like?

Figure 1.18 Six questions of the PDQ-39 questionnaire.

of postsynaptic receptors, and the ready-releasable pool of transmitter, (b) the length of the
spine neck is proportional to the extent of biochemical and electrical isolation of the spine
from its parent dendrite (Harris and Stevens, 1989; Nusser et al., 1998; Yuste et al., 2000),
(c) larger spines can generate larger synaptic currents than smaller spines (Matsuzaki et al.,
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Table 1.9 The PDQ-39 items

Mobility:
pdq1
pdg2
pdg3
pdg4
pdg5
pdqg6
pdqg7
pdqg8
pdq9
pdqg10

Activities of daily living:

pdqii
pdqgi12
pdqi13
pdqi4
pdqg15
pdq16

Emotional well-being:

pdqil7
pdq18
pdq19
pdg20
pdg21
pdg22
Stigma:
pdg23
pdg24
pdg25
pdqg26
Social support:
pdg27
pdg28
pdg29
Cognitions:
pdg30
pdqg31
pdg32
pdg33
Communication:
pdqg34
pdg35
pdg36

Bodily discomfort:

pdq37
pdg38
pdqg39

Had difficulty doing the leisure activities you would like to do

Had difficulty looking after your home, e.g., DIY, housework, cooking
Had difficulty carrying bags of shopping

Had problems walking half a mile

Had problems walking 100 yards

Had problems getting around the house as easily as you would like
Had problems getting around in public

Needed someone else to accompany you when you went out

Felt frightened or worried about falling over in public

Been confined to the house more than you would like

Had difficulty washing yourself

Had difficulty dressing yourself

Had problems doing up buttons or shoe laces
Had problems writing clearly

Had difficulty cutting up your food

Had difficulty holding a drink without spilling it

Felt depressed

Felt isolated and lonely

Felt weepy or tearful

Felt angry or bitter

Felt anxious

Felt worried about your future

Felt you had to conceal your Parkinson’s from people
Avoided situations which involve eating or drinking in public
Felt embarrassed in public due to having PD

Felt worried by other people’s reaction to you

Had problems with your close personal relationships
Lacked support in the ways you need from your spouse or partner
Lacked support in the ways you need from your family or close friends

Unexpectedly fallen asleep during the day

Had problems with your concentration, e.g., when reading or watching TV
Felt your memory was bad

Had distressing dreams or hallucinations

Had difficulty with your speech
Felt unable to communicate with people properly
Felt ignored by people

Had painful muscle cramps or spasms
Had aches and pains in your joints or body
Felt unpleasantly hot or cold
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2004), and (d) dendritic spines are dynamic structures with fluctuations in volume that
appear to have important implications for cognition and memory (Dunaevsky et al., 1999;
Matus, 2000; Kasai et al., 2010).

Dendritic spines present a wide variety of morphologies, particularly in the human cor-
tex (Benavides-Piccione et al., 2013). Spines are highly motile and can undergo reshaping,
even in the adult. In fact, the loss or alteration of these structures has been described
in the pathogenesis of major neurological disorders. Thus, a statistical analysis of spine
morphology is indispensable for providing formal support for these and other hypotheses.

Although different morphology-based classifications of spines have been proposed, the
one that is still most widely used today categorizes spines into three essential types:
thin, mushroom, and stubby (Peters and Kaiserman-Abramof, 1970). This classification
relies solely on a visual inspection of microscopy images and focuses on the head-to-neck
diameter ratio, length-to-head diameter ratio, and head diameter. However, researchers
have also argued that the large diversity of spines portrays a continuum of morphologies
rather than the existence of discrete classes (Arellano et al., 2007). Therefore, a detailed
description of morphologies is needed to identify clusters of human spines that share
similar characteristics. This approach will likely require a certain probability of cluster
membership for a given spine, capturing that continuum.

The data set contains 2,000 individually 3D reconstructed dendritic spines from layer III
pyramidal neurons located in the cingulate cortex of a human male age 40 years and
constitutes a random sample extracted from the pool of more than 4,500 spines of this
individual analyzed in Luengo-Sanchez et al. (2018). Eight hundred eighty-six spines
(44.30%) were located on apical dendrites, whereas the remaining 1,114 spines (55.70%)
were located on basal dendrites. The tissue was obtained at autopsy (2—3 h postmortem).
Apical and basal dendrites were then scanned using confocal microscopy and completely
reconstructed in 3D using a methodology detailed elsewhere (Benavides-Piccione et al.,
2013). Then, for each spine, a particular threshold was selected to constitute a solid surface
that exactly matched its contour, see Figure 1.19.

An important issue is to extract a set of variables describing the 3D spine shapes. These
variables should be sufficiently representative to summarize the shape and sufficiently
meaningful to be easily interpreted by domain experts. Graph-based techniques handle
both global (coarser) and local (more detailed) features. The techniques extract a geometric
meaning from a 3D shape using a graph showing the linkage of shape components. Of the
many existing shape-matching methods (Tangelder and Veltkamp, 2008), we were partially
inspired by the concept of the Reeb graph defined by a geodesic distance (length of the
shortest path along the surface of the model) for this data set. A skeletal structure of the 3D
model in the form of a graph (Figure 1.20) is built. This graph captures the global topology
of the shape. Then, variables are attached to each graph node to consider local features.

Spines were approximated by a continuous surface composed of a sequence of seven
sections S; (coaxial tubular-shaped) with heights 4;,i = 1, ...,7. In each section, curves
defining top, 7;, and bottom, B;, regions were assumed to be ellipses with major (7%, BF)
and minor (7}, Bj) radii or axes. Thus, BE is the major radius of the ellipse separating
sections S;_1 and S;. The surface was required to be continuous, and therefore coherence

constraints were imposed on adjacent sections: B{" = TIIE LB =T",,Vi=1,...,7. Ratios
. BRB S . S
between sections S; and S, denoted by ¢;; = ﬁ, provide information about the widening
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Figure 1.19 From top to bottom and from left to right: confocal microscopy z projection image of a
dendritic segment from a horizontally projecting basal dendrite of an intracellular injected layer I11
pyramidal neuron of the human cingulate cortex (age 40 years). The complete morphology of each
dendritic spine is reconstructed in 3D. Estimation of the spine volume values using color codes
(blue-white: 0.0-0.8 um?). Ultimately, for each individual spine, 3D triangular meshes are output.
Scales are: 2.5 pum (figures to the left) and 1 pm (figures to the right). Reprinted with permission
from Luengo-Sanchez et al. (2018). For the color version, please refer to the plate section.

or narrowing along the spine. Three ratios, @24, (26, and @46, were considered. The grow-
ing direction of each ellipse of the spine is related to the mean direction of a region and
is measured with the cosine of the azimuth angle, cos(¢;), and by the polar angle 6; for
each ellipse, except the first one. The direction @ of the perpendicular vector to the ith
ellipse is called the instant direction and is determined with its azimuth angle and its polar
angle, ©;, namely, the inclination of the vector perpendicular to the ellipse with respect
to the z-axis. The volume of each region, V;, is an approximation of the volume between
two consecutive ellipses and computed from the convex hull of 7; and B;. The volume
of the spine, V, denotes the total volume of the spine and is computed as V = 21‘7:1 Vi.
In summary, the 54 features characterizing each spine (36 morphological features and 18
features necessary for their subsequent simulation) are shown in Table 1.10.

Figure 1.20 illustrates the meaning of the different morphological and simulation fea-
tures presented in Table 1.10. Chapters 11 and 12 will find groups of these spines.

1.6.5 Data Set 5: Basal Dendritic Trees

This example concerns dendritic morphology, which is essential for understanding con-
nectivity and the functional roles of neurons. Specifically, pyramidal neurons represent key
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Table 1.10 The 54 features (36 morphological features and 18 features for simulation purposes)
characterizing each spine in Data Set 4

Type Feature Description Number
Morphological h;—hy Height of each section 7
Morphological ~B5-BE Major axis of the ellipse of each section 6
Morphological B,-BY Minor axis of the ellipse of each section 6
Morphological @4, ©26, Qa6 Ratio between sections 3
Morphological cos(¢,)—cos(¢7) Cosine of the azimuth angle of the growing direction 6
Simulation 6,-6; Polar angle of the growing direction of each ellipse 6
Simulation Dr—Dy Direction of the perpendicular vector to the ellipse 6
Simulation 0,-07 Inclination of the vector perpendicular to the ellipse 6
Morphological V|-V; Volume of each region 7
Morphological V Volume of the spine 1

Figure 1.20 Illustration of the features used to characterize the spines. Observe the points at the
centroids of the ellipses. They are connected by vectors whose lengths are denoted by 4;. Each
ellipse is defined by its centroid, major axis (Tlf = Bf), and minor axis (7" | = B;). From the
vectors connecting the centroids of the ellipses, angles ¢;, 6;, and ®;, ©; are computed. The
volumes of each section, V;, are added for computing the volume V of the whole spine.

elements in the functional organization of the cerebral cortex, as they are the most frequent
neuronal type (70-85%) and the main source of cortical excitatory synapses. The structure
of the dendritic tree of pyramidal neurons affects the process of integration, and its size
influences the topographic sampling map and the mixing of inputs (Wen et al., 2009). The
branching patterns of the dendritic trees are related to synaptic input processing (Koch
and Segev, 2000; Héusser and Mel, 2003) and affect the electrical behavior of the neurons
(Mainen and Sejnowski, 1996; Vetter et al., 2001; Chen, 2009).
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Figure 1.21 Basal dendritic arbor of a pyramidal neuron, where each dendritic tree is drawn in a
different tone. Adapted from Lopez-Cruz et al. (2011).

Researchers do not understand how and why vastly different arbor shapes form. In the
last two decades, computational stochastic models have been used to measure relevant
parameters of real neuronal arbors. These models and their subsequent use for simulating
virtual neuron morphologies may help identify the basic structures and important features
of neuronal classes.

Neuronal processes are not always easy to trace, and data on the complete dendritic
tree of real neurons are rather scarce. However, in pyramidal neurons, the whole basal
dendritic arbor — about 90% of the dendritic length in neurons from layers II/IIl and
V (Larkman, 1991) — has been completely reconstructed in single horizontal sections
(Elston and Rosa, 1997). This information is valuable for validating the simulated virtual
neurons.

Thus, Data Set 5 includes a set of 3D reconstructions of 90 pyramidal neurons from
the mouse neocortex (two BC57 black mice, 2 months old). The neurons were located in
layer III of three different cortical regions: the secondary motor cortex (M2), secondary
somatosensory cortex (S2), and lateral secondary visual cortex and association tempo-
ral cortex (V2L/TeA). The whole basal dendritic trees of the neurons were traced using
the Neurolucida package (Glaser and Glaser, 1990). The tissue preparation and injection
process are detailed in Benavides-Piccione et al. (2006). The reconstructions are publicly
available at www . neuromorpho . org (Ascoli, 2007) as part of the DeFelipe laboratory
archive.

Each basal dendritic arbor is composed of approximately 6 main trunks, which we will
call dendritic trees, see Figure 1.21. One hundred four dendritic trees were observed in
M2, 103 in S2, and 156 in V2L/TeA.

A segment is the straight line between two branching points. For each pair of sibling
segments, a set of 41 morphological variables is measured from the 3D reconstructions
of real dendrites, as described in Lopez-Cruz et al. (2011). We distinguish two types of
variables: first, construction variables that define the morphology of a segment (segment
length, orientation, and bifurcation) and are necessary to incrementally build the virtual
dendritic trees; and second, evidence variables that measure the part of the morphology of
the dendritic tree located below a pair of sibling segments. Table 1.11 lists the 41 variables.
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Table 1.11 Construction (C) and evidence (E) morphological variables for Data Set 5

No. Type Variable No. Type  Variable
1 E Subtree degree (no. endings) 22 E Neighbor distance
2 E Subtree no. bifurcations (no. 23 E Neighbor inclination
nodes)
3 E Subtree total length 24 E Neighbor azimuth
4 E Subtree width 25 E Neighbor extension
5 E Subtree height 26 E Neighbor angle
6 E Subtree depth 27 E Parent segment length
7 E Subtree box volume 28 E Parent segment inclination
8 E Subtree max distance 29 E Parent segment azimuth
between nodes
9 E Subtree max distance to soma 30 E Root segment length
10 E Subtree max length 31 E Root segment inclination
11 E Subtree min length 32 E Root segment azimuth
12 E Subtree max order 33 E Segment centrifugal order
13 E Subtree min order 34 C Left segment length
14 E Subdendrite length 35 C Left segment inclination
15 E Subdendrite width 36 C Left segment azimuth
16 E Subdendrite height 37 C Left segment bifurcates
17 E Subdendrite depth 38 C Right/root segment length
18 E Subdendrite box volume 39 C Right/root segment inclination
19 E Subdendrite distance to soma 40 C Right/root segment azimuth
20 E Subdendrite inclination 41 C Right/root segment bifurcates
21 E Subdendrite azimuth

More specifically, evidence variables describe the context of the segment and how the
tree is constructed. These variables include information about the subtree (variables 1—
13), subdendrite (variables 14-21) and nearest segment (variables 22-26). The centrifugal
order (or branch order) of a segment is the number of bifurcations along the path to the
soma. For a given pair of sibling segments with an order a, the subtree is the part of
the dendritic tree including all the segments with an order less than a. Likewise, the
subdendrite is the path from the soma to the sibling segments’ branching point. Figure 1.22
shows a pair of sibling segments with a centrifugal order value of 5 (gray lines), its
subtree (gray area), and subdendrite (dotted area). Finally, the nearest segment refers to
the segment in the dendritic tree that does not belong to the subdendrite (neighboring
segment in Figure 1.22).

Parent segment morphological variables (27-29) and root segment morphological vari-
ables (30-32), as well as the centrifugal order of the segment (variable 33), complete the
set of evidence variables.

Construction variables specify the segment morphology (variables 34—41), whether the
segments (left/right) branch, and the spherical coordinates of each segment end point.

Chapter 13 will deal with these variables and use their statistical distributions to auto-
matically find their relationships in shaping the dendritic tree structure. Then, a simulation
algorithm will sample the distributions to output virtual dendrites that should be indistin-
guishable from real dendrites.
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Figure 1.22 Subtree (gray area), subdendrite (dotted area), neighboring, parent and root segments for
two sibling segments (gray lines). The numbers refer to the centrifugal order of the segments.
Adapted from Lopez-Cruz et al. (2011).

1.6.6  Data Set 6: Brain Connectivity

This data set, which was obtained from Huang et al. (2010), includes fluorodeoxyglucose
PET images from 232 subjects: 49 with AD, 116 with mild cognitive impairment (MCI),
and 67 normal controls (NCs). All images were downloaded from the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) database'? to define the progression of AD. Image
preprocessing, which is mainly performed with Statistical Parametric Mapping software
(Wellcome Department of Cognitive Neurology'?), ultimately yields average PET mea-
surements for 42 anatomical volumes of interest, which are known to be most frequently
affected by AD. These brain regions include the frontal, parietal, occipital, and temporal
lobes. Table 1.12 lists the 42 variables.

In Chapter 14, we will use these data to identify functional brain connectivity net-
works for the three different types of subjects: patients with AD, patients with MCI,
and NCs. Functional connectivity refers to the coherence of the activities among distinct
brain regions (Horwitz, 2003). We search for statistical dependencies between different
brain regions. Higher cognition is derived from the interactions between different brain
regions rather than individual regions working independently. Thus, patients with AD,
who are characterized by a global cognitive decline, may exhibit abnormal functional brain
connectivity patterns. For example, the hippocampus and other regions in the brains of
patients with AD exhibit reduced functional connectivity (Grady et al., 2001; Wang et al.,
2007; Supekar et al., 2008), whereas increased connectivity has been observed between
the frontal lobe and other regions in the brains of subjects with early AD and MCI, which
is interpreted as a compensatory reallocation or recruitment of cognitive resources (Gould
et al., 2006).

12 3dni.loni.usc.edu/.
I3 www.fil.ion.ucl.ac .uk/spm.

https://doi.org/10.1017/9781108642989.003 Published online by Cambridge University Press


www.adni.loni.usc.edu/
https://doi.org/10.1017/9781108642989.003

ssald Ausiaaun aBpuquied Ag auljuo paysiiand £00°68627980118/6//10L°01/610°10p//:sdny

Table 1.12 Variables representing anatomical volumes of interest for Data Set 6 (L = left hemisphere, R = right hemisphere)

Frontal lobe Parietal lobe Occipital lobe Temporal lobe
Var. Description Var. Description Var. Description Var. Description
Xi Frontal_Sup_L X13 Parietal_Sup_L X1 Occipital_Sup_L Xo7 Temporal_Sup_L
X7 Frontal_Sup_R Xi4 Parietal_Sup_R X2 Occipital_Sup_R Xo8 Temporal_Sup_R
X3 Frontal_Mid_L Xis Parietal_Inf_L X3 Occipital_Mid_L Xo9 Temporal_Pole_Sup_L
X4 Frontal_Mid_R Xi6 Parietal_Inf_R X4 Occipital_Mid_R X30 Temporal_Pole_Sup_R
Xs Frontal_Sup_Medial_L X17 Precuneus_L Xos Occipital_Inf_L X31 Temporal_Mid_L
Xe Frontal_Sup_Medial_R Xis Precuneus_R X6 Occipital_Inf_R X3 Temporal_Mid_R
X7 Frontal_Mid_Orb_L X9 Cingulum_Post_L X33 Temporal_Pole_Mid_L
X3 Frontal_Mid_Orb_R X0 Cingulum_Post_R X34 Temporal_Pole_Mid_R
X9 Rectus_L X35 Temporal_Inf_L
X10 Rectus_R X36 Temporal_Inf_R
X11 Cingulum_Ant_L X37 Fusiform_L
X172 Cingulum_Ant_R X33 Fusiform_R
X39 Hippocampus_L
X0 Hippocampus_R
X41 ParaHippocampal_L

ParaHippocampal_R
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1.6.7

Computational Neuroscience

Data Set 7: Spatial Location of Synapses in the Neocortex

One major issue in cortical circuitry is to determine the spatial distribution of synapses
and whether synaptic connections are specific (DeFelipe et al., 2002). Two major morpho-
logical types of synapses have been identified: asymmetric and symmetric (Gray, 1959).
The major sources of asymmetric synapses are spiny neurons (pyramidal and spiny non-
pyramidal cells) and extrinsic cortical afferents, whereas the vast majority of symmetric
synapses are formed by the population of aspiny or sparsely spiny interneurons.

The state-of-the-art methods for obtaining 3D data from which to estimate the spatial
distribution, size, and number of synapses from ultrathin sections of brain tissue are based
on serial reconstructions (Bock et al., 2011). The development of automated electron
microscopy techniques has attempted to overcome the extremely time-consuming and
difficult task of reconstructing large volumes of tissue (Briggman and Denk, 2006).

The tissues in this example (Merchan-Pérez et al., 2014) were obtained using a new
dual-beam electron microscope that combines a focused ion beam (FIB) column and a
SEM. The FIB column mills thin layers of material as a result of the collision of the
gallium ion beam with the tissue. The SEM is then applied to the milled surface, obtaining
a backscattered electron image. This milling/imaging process is automatically repeated to
obtain a large series of images that represent a 3D sample of the tissue. Image resolution
in the xy plane was 3.7 nm/pixel. The z-axis resolution (section thickness) was 20 nm.

Three male Wistar rats sacrificed on postnatal day 14 were used for this study. Animals
were administered a lethal intraperitoneal injection of sodium pentobarbital (40 mg/kg)
and were intracardially perfused with 2% paraformaldehyde and 2.5% glutaraldehyde
in 0.1 M phosphate buffer. All animals were handled in accordance with the guidelines
for animal research established in the European Union Directive 2010/63/EU, and all
procedures were approved by the local ethics committee of the Spanish National Research
Council.

Ten different samples of the neuropil in layer III of the somatosensory cortex were
obtained from three different animals. All samples selected for FIB milling/SEM imaging
were located at the mid-depth of layer III. After applying a 3D unbiased counting frame
and correcting for tissue shrinkage (Merchan-Pérez et al., 2009), the volume of tissue

Table 1.13 Descriptive characteristics of the 10 samples of the neuropil in layer IIT

Sample no. Number of Mean distance to Mean Feret’s diameter
and animal synapses per nearest neighbor of synaptic junctions
identification cubic micron (nm) + sd (nm) =+ sd

1 (W31) 0.9857 519.55 +136.35 377.19 + 159.63

2 (W31) 0.6936 594.07 + 192.28 462.18 £ 177.52

3 (W33) 0.9279 537.43 + 159.20 437.62 £+ 168.04

4 (W33) 1.0088 537.39 + 157.70 414.22 £ 169.04
5(W33) 0.9474 597.30 + 174.02 466.03 £ 215.91

6 (W33) 0.9399 533.21 + 163.29 423.38 £ 169.83

7 (W33) 0.9881 487.17 £ 172.30 397.29 + 168.22

8 (W35) 0.7997 568.21 + 178.51 427.90 £+ 168.15

9 (W35) 1.1267 501.38 + 156.97 378.35 + 166.60

10 (W35) 1.0178 523.74 + 150.36 405.43 £ 175.62
All samples 0.9399 535.78 + 166.81 417.06 £ 175.97

https://doi.org/10.1017/9781108642989.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108642989.003

1.6 Real Examples Discussed in This Book 49

Figure 1.23 Example of a tissue volume whose dimensions are 7.16 x 4.58 x 3.98 um.

(a) Asymmetric and symmetric synaptic junctions are shown in green and red, respectively.

(b) Segmentation of the synaptic functions. (c) The smallest spheres circumscribing the synaptic
junction used to calculate its Feret’s diameter. (d) The centroids of the spheres. Image from
Merchan-Pérez et al. (2014) reproduced with permission. For the color version, please refer to the
plate section.

analyzed from each sample ranged from 149.13 to 247.58 um?>. Synaptic junctions within
these volumes were visualized, automatically segmented, and reconstructed in three
dimensions using Espina software (Morales et al., 2011). There were 1,695 synaptic
junctions.

Table 1.13 contains the following information about the 10 samples: animal identifi-
cation; densities of synapses, which were calculated by dividing the actual number of
synaptic junctions by the volume of the counting frame; mean distance to the nearest
neighboring synapses, which was calculated as the distance between the centroids of
the synaptic junctions; and the mean Feret’s diameter of synaptic junctions, which was
computed as the diameter of the smallest sphere circumscribing the synaptic junction.
Centroids that were located closer to the boundaries of the counting frame than to any
other centroid were excluded from the calculations because their nearest neighbor might
be outside the counting frame at an unknown distance.

Figure 1.23 displays the segmentation of the reconstructed synaptic functions, the small-
est sphere containing each of the synapses, and the geometric centers, or centroids, of the
spheres for 1 of the 10 tissues. These centroids were determined to indicate the spatial
position of the synapses. The spatial statistical analysis of this data set is presented in
Chapter 15.
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