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1. Introduction

Let H, be the Siegel upper half plane of degree 2, and

F(Z):F([,Z,t/), ZZ(; ;)EHZ,

be a Siegel modular form of degree 2 and weight k with respect to I', = Sp(2, Z). Asis
well known, F(Z) admits an expansion of the form

o0
F(Z)=" (1. )™~
m=0

called the Fourier—Jacobi expansion, and each coefficient function ¢,,(¢, z) becomes
a Jacobi form of weight k and index m with respect to I'y = SL(2, 7). This expansion
is fundamental in the excellent proof of the Saito-Kurokawa lifting by Maal,
Andrianov, and Zagier, which is a good lifting from ordinary modular forms of
weight 2k — 2 with respect to I'j to Siegel modular forms of degree 2 and weight
k with respect to I, (cf. [3]).

We wish to consider the Fourier—Jacobi expansion for non-holomorphic Siegel
modular forms and we are interested in some correspondence between three distinct
non-holomorphic automorphic forms, that is, Siegel modular forms, ordinary
modular forms, and Jacobi forms. However, we have no suitable formulation of
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this expansion for non-holomorphic forms, which we regard as the one of the most
fundamental tools for the study of automorphic forms. Under this motivation,
we study a kind of generalized Whittaker model of irreducible admissible represen-
tations of G = Sp(2, R) explained below.

Let M;A;N,; be a Langlands decomposition of the Jacobi maximal parabolic
subgroup P; of G corresponding to the long root. Then the unipotent radical N,
of P, isisomorphic to the three-dimensional Heisenberg group H(RR) and the identity
component M of M is isomorphic to SL(2, R). Remark that M is the centralizer of
the center of N, in the Levi part M;A; of P; with respect to the conjugate action. The
semidirect product group R; = M5 x N; is not reductive and is isomorphic to the
Jacobi group SL(2, R) x H(R). Now we consider the intertwining space

T, = Hom, x)(m, C*Indg (p))

from an irreducible admissible representation = of G into the reduced generalized
Gelfand-Graev representation C wlndgj (p) induced from an irreducible unitary rep-
resentation p of R;. Here g is the complexification of the Lie algebra of G and K is a
maximal compact subgroup of G. These embeddings of 7 into C°°Indgj(p) are a
variety of generalized Whittaker models for 7 (cf. [18]).

We treat this intertwining space 7, , restricting to a multiplicity one K-type
(t*, V) of =, where the asterisk means the contragradient representation. Then
the restriction to t* induces the isomorphism from 7, . to a subspace of the space
Cr(Ry\ G/K) of F, ® Vr-valued smooth functions on G such that

frgk) = (p(r) ® 1))/ (2), for (r,g,k) € Ry x G x K.

Now we define the space of Fourier—Jacobi type spherical functions J , »(t) of type
(p, m; 1) to be the above subspace of Cr(Ry\ G/K). When 7 belongs to the
holomorphic discrete series, these functions which are moderate growth on A;
appear in the coefficients of the Fourier—Jacobi expansion of (holomorphic) Siegel
modular forms. Also we can consider these generalized spherical functions as
the real local Whittaker—Shintani functions on Sp(2, R) of Fourier—Jacobi type
in the paper of Murase and Sugano [12; §§4,5].

Our main interests for the Fourier—Jacobi type spherical functions are twofold:
one is to decide the multiplicity for these functions. The other is to obtain explicit
formulas of the radial parts of these functions. In this paper we restrict these prob-
lems to the case that the representation = with the minimal K-type t* belongs to
the discrete series and attack them using the theorem of Yamashita [19; Theorem
2.4] explained in Section 5. The theorem of Yamashita asserts that the space
Jpx(7) 1s a subspace of C°(R;\ G/K) characterized by the Schmid operators.
To decide this subspace explicitly, we write down the action of the Schmid operators
and solve the resulting (generally infinite-dimensional) system of differential
equations. The main result of this paper is the following theorem:
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MAIN THEOREM (see the theorems in Sections 6 and 7). Let w be a discrete series
representation of Sp(2, R) and t* be the minimal K-type of n. For each irreducible
unitary representation p of Ry of type m, let T, and J, (t) be as above and let
T, () be the subspace of T px(v) consisting of all f € J () which are moderate
growth on Ay. Then we have

dimZ,, = dimJ,:() <3, dimJ5,(1) < 1.

Moreover, the radial parts of the functions in J, (1) are expressed by Meijer’s
G-function G;:g<x‘b1”‘é’a2b3> or more degenerate similar functions.

Here the term ‘type 7’ means that the stabilizer of the equivalent class of p|y, in R;
is Ry itself. We treat the case of holomorphic and anti-holomorphic discrete series
representations in Section 6, and the case of large (in the sense of Vogan [16]) ones
in Section 7. For irreducible unitary representations of R; of not type m, the
Fourier—Jacobi type spherical functions are reduced essentially to the ordinary
Whittaker functions on Sp(2, R). We treat this case in Section 8.

We remark that Meijer’s G-function Gg:g (x‘ bla‘[;za2b3 ([11]) with special parameters
a; and b; degenerates into the (classical) Whittaker function W u(x), the function of
the form x*e#¥, and so on (see Appendix). This fact also interests us in the study
of the process of the degeneration of generalized spherical functions as special
functions.

A similar problem for generalized principal series representations of G induced
from the Jacobi maximal parabolic subgroup P; (P,-principal series representations)
is treated in [7]. We will discuss other generalized principal series representations in a
forthcoming paper.

This paper is half of the author’s thesis [6], except for some additions and
modifications. He would like to express his gratitude to Professor T. Oda for many
valuable guidance.

2. Preliminaries

2.1. GROUPS AND ALGEBRAS

Asusual, we denote by Z, R, and C the ring of rational integers, the real number field
and the complex number field, respectively, and by Z - ,, the set of integers n such
that n = m. Moreover, we use the convention throughout this paper that unwritten
components of a matrix are zero. Let M,(R) and M,(C) be the space of real
and complex matrices of size n, respectively. Put

(0 1y
Jz—(_lz Oz)eM4(R>,

where 1, € M»(R) is a unit matrix. Let G be the real symplectic group Sp(2, R) of
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degree two given by
Sp(z, R) = {g S M4(R) i thZ = ng—17 detg = 1}

Here ‘g means the transpose of g, det g the determinant of g, and g~! the inverse of g.
Let 0(g) = ‘g”' (g € G) be a Cartan involution of G. Then

K:{geG|0(g)=g}={<_AB i) €G ’ A,BeMz(R)}

is a maximal compact subgroup of G and is isomorphic to the unitary group U(2) via
the homomorphism

K> (_AB ﬁ)'ﬁA"‘V—IBG UQR)={g e My(C)|'g g =1sdetg #0}.

Let g = {X € M4(R)|JL,X +'XJ, = 0} be the Lie algebra of G. If we denote the
differential of 6 again by 0, then we have 0(X) = —'X (X € g). Let f and p be
the +1 and —1 eigenspaces of 6 in g, respectively. Then

A B
f:{Xe( » A)‘A,BeMz(R),ZA:—A,fB:B},

A B
p=1Xe¢e A,Be M>(R),"A=A,'B= By,
B -4
and we have a Cartan decomposition g = f @ p. Remark that t is the Lie algebra of K
and is isomorphic to the unitary algebra u(2) via the linear map

fB(_AB §>'QA+~/—_13€u(2)={XeMz(C)|X+f5r=0}.

For a Lie algebra [, we denote by [ = [®r C the complexification of [ and by
U(I¢) the universal enveloping algebra of I¢. Let {Z, H', Y, Y’} be a basis of fc,
where Z (resp. H', Y, Y) is an element 4 B¢ fc  with

(4, B) = (02, —/=T - 1) (resp. (02,—\/——1<l _1>>, ((_1 1),;)2), (02,<l 1))).
Remark that {H’, X, X} with X:%(Y—«/—_IY’) and X’:%(—Y— V—1Y") is an

slp-triple, i.e. [H', X] =2X, [H, X] = —2X, and [X, X] = H'.
Put

T =iV-1Z+H), I,=V-1(Z-H) and bh=RT & RT.

Then ) is a compact Cartan subalgebra of g. For a linear form f:h — C, we write
B(T)) = /—1p; € C and identify p with (f,,f,) € C?. Then the set of roots
A =A®Mc,gc) of (he,ge) is given by A= {£(2,0), £(0,2), £(1,1), (1, =1)}.
We fix a positive root system A* = {(2,0), (0,2), (1, 1), (1, =1)}. For each root
B € A, denote the root space for f by gg and define a root vector Xg in gz by
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1 A 1 v
0 0 1 V=
X = 3 X — ’
A Ve S oy Ny T
0 0 V= 1
0 0 1 —VI
1 V=1 1 —J=I
X = N X _ =
2710 0 = J=1 1
V= -1 J=1 -1

and X_s = "X; (B € A™). Here X means the complex conjugate of X. Put A} and A
the set of compact and non-compact positive roots, respectively. Then
AF ={1,-1)} and Al ={(2,0), (0,2), (1,1)}, and we have a decomposition
pc=p, ®p_ with p, =3 g+ 05 and p_ =3 51+ g g Moreover, put [f] =
B + B for each B € A. Then the set

<
V-1

forms an orthonormal basis of p with respect to the Killing form for some constant c.
Here we remark that ||||> = 4 or 2.

Put H, = diag(1, 0, —1,0), H, = diag(0, 1,0, —1) and a, = RH; & RH,. Then q,
is a maximal Abelian subalgebra of p. Let us define ¢; € a,* (i=1,2) by
ei(aiH1+ ayH,) = a;. Then the restricted root system X~ = X(ay, g) of (ay, g) is given
by T = {£2e;, +2es, €] £ ey, —e1 £ e}, and T = {2e1, 2es, e + ey} forms a posi-
tive root system. Denote the restricted root space for each o € X by g, and choose
a restricted root vector E, in g, as

{CllﬁlI(Xﬁ + X_p), 1BI(Xp — X_p) (B e A,T)} 2.1

By, =E13, Ey,=EFEy4, Eqro,=Es+Ej3, E,_.,=E ;- Ey43,

and E_, = 0E, = —'E, (¢ € %). Here E;; is a matrix whose (i, j)th entry is 1 and the
others are 0. If we put n, =) s+ g,, then we have an Iwasawa decomposition
g=1,Daqa, L

Set

ay = RH11 Ty = G2, @ Gei+e, 52 Oej—ey = b(R),
my = RH, @ qp,, D 9., = 5I(2, R),
and
Ay =expay, N;=expn; >~ H(R),
M; = Zg(ay)expmy >~ {£1} x SL(2, R).

Here Zg(ay) is the centralizer of a; in K, and H(R) and H(R) are the three-
dimensional Heisenberg algebra and group, respectively. Remark that the center
of ny (resp. Ny) equals to gy, (resp. expay,,). If we put Py = M;A;N;, then P;
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is a maximal parabolic subgroup of G corresponding to the long root 2¢; and the
right-hand side gives its Langlands decomposition. Of course, p; = m; @ a; & ny
is the Lie algebra of P;. We call Py (resp. p;) the Jacobi maximal parabolic subgroup
(resp. subalgebra) of G (resp. g). For every integer n, put g, = {X € g|[H,, X] =nX}.
Then

Q=MD a7, G =0ete, DGeymeyr G2 =0G2e» 0 =0g; ((=1,2),

and g, = {0} for n £ 0, £1, £2.

The Levi part M;A4; of P, acts on N, via the conjugate action. Let R; be the
semidirect product group M5 x N; with respect to this action. Here M is the ident-
ity component of the centralizer M, of the center of N; in M;A,;. Then R; is
not reductive and is isomorphic to the Jacobi group SL(2, R) x H(R). The Lie
algebra r; of Ry is given by r; = my @ ny >~ sl(2, R) @ h(R). Because of Iwasawa
decomposition, we have G = Ryj4,K and g=1; P a,; & L.

The following decompositions of the root vectors Xp for each feA, =
A} U (—A) are required in the later sections.

LEMMA 2.1.

Xi(Z,O) = :E%(Z =+ H/) + Hy £ 24/ _1E2317
Xean =X -X) £ (X + X) +2E, o, £ 2V —1E, 10,
Xi02 =+3(Z - H')+ Hy £ 2/~ 1Ex,,,

Proof. These are obtained by direct computation. O

2.2. PARAMETRIZATION OF REPRESENTATIONS OF K

Since the Cartan subalgebra b of g is compact, AT = {(1, —1)} is a positive system of
A(fc,be) and the set A={l=(4,4)|4 €7, =1} parametrizes the A:’—
dominant weights, and thus the equivalence classes of irreducible representations
of K, as can be seen from the highest weight theory (cf. Knapp [8; Theorem 4.28]).
For each /= (A1, ) € A, put dj; = A — 2, and let V; = @=0 Cv} be a (d; + 1)-
dimensional vector space with a basis {v}}o < <4 Now let us define the action
T of fc on V;v by

G2V = G + 2oV, w(XvE = (k+ D)vi,,,
G(H W, = Qk —dy)vi, (X)W = (d+ 1= k)i,

for 0 < k < d;. Here we understand vfl = V?1,1+1 = 0. Then (1;, V;) can be globalized
to K. The basis {v,i*}o <k <a, 18 called the standard basis of V.
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Both of p, become K-modules via the adjoint representation of K, and we have
isomorphisms p, =~ V(2 and p_ =~ V(g _» by the correspondence of the basis

(Xo0.2> Xa1,1) Xo,0) > 05 ” v20 680,
(X(=2,0)» X(=1,-1), X(0,—2)) 1= (véo"z), _v(lo,—z)’ V(zo'_z)),
respectively. For a given irreducible K-module ¥V, with the parameter 1 € A, the
tensor products p, ® V), have the irreducible decompositions V; ® p, =~
Bpenr V;+p. For each f € A;’, let PV, @ p, — V,+p be the projectors into the
irreducible factors of V; ® p,. In the later sections, we need the following Clebsch—
Gordan coefficients.
LEMMA 2.2.
(1) FOV (ﬁ? V) = ((27 0)7 (27 0)) or ((Oa _2)5 (Oa _2))! we have
PPt @) =L+ Dk +2v1, 0<k<d
PP @) = (k+ 1), + 1 -k, 0<k<d,
POt @vy) =1(d; + 1 —k)(d; +2 —k)vfjﬁ, 0<k<d,.
(2) For (B,7) =((1,1),(2,0)) or (=1, =1),(0, =2)), we have
PPojev)=k+ 1l 0<k<d -1,
Phevi @ vy =(d; — 2k, 0<k<d;
Pl @vy) =—(d; + 11—y, 1<k<d,

and the others are 0.

(3) For (B.7) = ((0,2), (2, 0)) or ((=2,0), (0, —2)), we have
Phi @)y =vi, 0<k<d -2,
Plotev) =2, 1<k<d -1,
PP v =vih, 2<k<d,

and the others are 0.
Proof. Omit (cf. Oda [13; Lemma 3.1, 3.2, 3.3]). O

2.3. REPRESENTATION THEORY OF R;

To describe the unitary gual oi the Jacobi group, we recall a parametrization of that
of the universal cover G; = SL(2, R) of G; = SL(2, R).

PROPOSITION 2.3. We have the following representatives for the unitary equival-
ence classes of irreducible unitary representations of Gj.
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(1) (unitary principal series) P, se€~v—1R 1=0,1, j:% except for the case
(s,7) = (0, 1).
(2) (complementary series) Cy 0 <s <1 fort=0,1and 0 <s <3 fort=+1
() ((limit of) discrete series) Di, k € %Z >9.
(4) (quotient representation) D, Dy .
2
(5) The trivial representation 1g, 0]2 G

Here only the representations P* and C witht =0, 1, DF withk € 7, >, and 1, give
those of Gj.
Proof. See Gelbart [5; Lemma 4.1, 4.2]. O

For each irreducible unitary representation =, let L = L, be the set of indices

defined by
{t+ 27}, for n = P; or C;,
L={{xk£2Z-0}, forn="D,
{0}, for n = 1g,.

Then there exists a basis {w;};c; of the underlying Harish—-Chandra module of = such
that the action of the complexification (g;)c of the Lie algebra g; of 61 is given
by wn(U)w; =Iw; and n(Vi)w; = %(21 + 1+ Dwin. Here {U, Vi) with U= —
«/—_1<_1 ) and Vy= %(i\}?l i‘f?) is a basis of (g;)c, and we understand that
w; =0 if / ¢ L and that z; = s (resp. k — 1, —1) for 7 = P’ and C° (resp. DF, 1g,).

Next we investigate the irreducible unitary representations of the Jacobi group (cf.
Berndt and Schmidt [1; Chapter 2]). Let N; >~ H(IR) be the unipotent radical of the
Jacobi maximal parabolic subgroup P; defined in Section 2.1. Remark that the cen-
ter Z of Ny is equal to exp gy,, and is also the center of R;. For an irreducible unitary
representation v of Ny, there exist m € R uniquely such that v(exp Ej, ) = e2nv/=1m by
Schur’s lemma. Then we call such v of type m. The following lemma is an immediate
consequence of the well known theorem of Stone-von Neumann.

LEMMA 2.4.

(1) Let v be an irreducible unitary representation of Ny of type m. If m = O, then vis a
character. On the other hand, v is infinite dimensional if m # Q.

(2) Let vandV be any two irreducible unitary representations of Ny of the same type
m # 0. Then v is unitary equivalent with Vv'.

Proof. See Corwin-Greenleaf [2; pp. 46-47, 51-52]. O

Fix an irreducible unitary representation (v,,, U,,) of N; of type m # 0. Since the
equivalence class of v,, is determined by m from Lemma 2.4, the stabilizer of
the equivalence class of v,, in the Levi part M ;A4 of P; with respect to the conjugate
action coincides with the centralizer of the center of N, i.e. M;. From the theory of
the Weil representation, v,, can be extended to a continuous projective unitary rep-
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resentation (V,,, Uy,) of Ry by V,,(i1) = W,u(g)vm(n) for n = g -n € M5 x Ny with the
Weil representation W, of M. Here v,, has a factor set « which is a proper 2-cocycle,
and W, considered as the representation of G; has the irreducible decomposition
Wm — ,D?ign(m) D ,Dzign(m)'

3 3

PROPOSITION 2.5 (Satake [14; Appendix I, Proposition 2]). Let (v,,, U,,) with
m # 0 be as above. For every irreducible unitary representation (ny, Wy, ) ofJ\N/If; which
does not factor through My, put p,, () = n1(g) & V(i) for n=g-n€ Mjx Nj.
Then p,, , is an irreducible unitary representation of R;. Conversely, all irreducible
unitary representations of Ry with non-trivial central character are obtained in this
manner. Moreover p, ., is square-integrable iff my is so.

Next let us consider the irreducible unitary representation (p, F,) of R; which is
trivial on the center Z. Then such p can be considered as a representation of
R;/Z ~ G, x R®. Now we investigate the unitary dual of G; x R? by Mackey’s
orbital analysis [10]. The unitary character (4, u) i— e>™~1tmi+mi of R? is identified
with ‘(my, my) € IR2. Under this identification, the action of G; on the unitary dual
R2 of R? induced from the conjugate action of G; on R? Eecomes "(my, my)1—
g'(my, my) for g € Gy and "(my, my) € R2. Then it is clear that R? has two G;-orbits;
{/(0,0)} and R*\{/(0, 0)}. The stabilizer of /(0,0) in G, is obviously G, itself. If
we take a representative o = (1, 0) in the latter orbit, then the stabilizer of ¢ in

G becomes G, = 0 l; ‘b € R} =~ R. Mackey’s method tells us that the unitary

dual of G, x R? exactly consists of the following two families:

(1) m - 1z2 with an irreducible unitary representation 7| of Gy,

G X R? . .
(2) Ind Gl E:Rz(y - ¢) with a unitary character y of G,.

Therefore we have the following proposition.

PROPOSITION 2.6. Let (p, F,) be an irreducible unitary representation of Ry with
trivial central character. Then (p, F,) is unitary equivalent to one of the following
representations.

(D) pg0(1) = m1(g) ® Vo(nn) for n = g - n € My x Ny, where (my, Why,) is an irreducible
unitary representation of M§ and (Vo, Uy) is the trivial representaiton of Ry,
2) p = lndﬁﬁn, with r € R, where

1 n 1 ny m
No = { n(no, ny, ny, n3) = ! 0 . ! nlz B AlneRr
—ny 1 ‘ 1
2n/=T(mo+rm3)

and n,:n(ng, ni, hp, n3)1— €

Anirreducible unitary representation (p, F,) of R, is called of type m if p is unitary
equivalent to the tensor product representation p,, ,, = m1 ® V, in Proposition 2.5
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for m # 0 or in Proposition 2.6 for m = 0, that is, the stabilizer of the equivalent class
of ply, in Ry is Ry itself.

Now we describe the action p = p, ,, on the representation space F, = Wy, Q Uy,
with respect to a suitable basis. Fix a basis {X;, X_, Z} of ()¢ and {V,, V_, U} of

(my)c. Here
Xy =3(E,\—e, + V—1E, 1)), Z = —/—1Ey, (22)
Ve =i{Hy £ V—1(Es, — E_2,)}, U= —v=1(Es, + E-2,).

Then the multiplications are given by
Vi, V]=U, [UVi==+2Ve, [Xe,X_1=Z, [Z X:]=0, 23)

Vi, X£] =0, [Vi, Xg]=—-Xs, [U Xil=%Xy, [Z,Vi]=0,

and [Z, U] = 0. Taking account of the irreducible decomposition of the Weil rep-
resentation W,, for m # 0, we can take the following basis of U, (cf. Berndt
and Schmidt [1; Chapter 3]): Let J be the set of indices defined by

_ [ tsign(m)G 4+ Z 5 0)}, for m # 0,
I= { {0}, ’ for m = 0. (2.4)

Then U, has a basis {u]'};c; such that the action of (v/)¢ is given by

V(2" = 2mmud’, V(U = ju’,
Vm(Xi)u j:l:l’ Vm(Vi)ur'n = q:Wquin (2.5)

vm(X;)uj = —an(] + 2) Uiz1s ‘~)m(V3F)ujr'n = :I:nm(j:':%) (] :F%)u;?fﬂ'

Here the double sign depends on either m > 0 or m < 0, and we understand that

u' = 0ifj ¢ Jand that 1/m = 0 for m = 0. On the other hand, let 7; be an irreducible
unltary representation of M °. As we explained in the subsequent paragraph of Prop-
osition 2.3, there is a basis {w;};c; of Wy, such that the action of (m;)c is given by

i (Uywy = lwy,  mi(Va)wr = 5(z1 + 1 £ Dwps, (2.6)

with the suitable parameter z;. Using (2.2), (2.5) and (2.6), we can define the action
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P = Pr,m Of ()¢ on F = Wy, @ Uy, with the basis {w; ® u]"}jcp jes as follows:

Pry.m(Ere )W @ ") = 2amv/—1(w; ® u'),

Py m(Eer—e) o0 @) = (wy @ 1)) — 2mm (j F 1) (wy @ 1d).

Py m(Eere) 0y @ U = F/=1{(w; @ ) + 2mm(j F 1) (v ® u))}.
Py m(H2) (w1 ® 1]")

1 Vi . .
= :Fﬁ(w/ ®ult,) + wm(j F3)(J F3)m @ uli))+
+3@ +H I+ D2 @u) + 5 — 1+ Dw 2 @),
pn],m(Ezez)(W/ ® ujm)

YN non e

1 m . . m
— g ®u,) — nm(j F3)(J F3)w @ uly)+
e+ 1+ D © ) =31 =1+ Dim2 8 1))},
pnl,m(E72ez)(W[ ® Hjm)

T e

1 . .
+ %(W/ ® ufyy) +m(j F3)(J F3) (w1 @ ufy)—
— 31+ D @uM) + 1z — 1+ D(wia @ UM}

Here the double sign depends on either m > 0 or m < 0, and we understand that
w@ul'=01if / ¢ L or j ¢ J and that 1/m =0 for m = 0.

2.4. PARAMETRIZATION OF DISCRETE SERIES REPRESENTATIONS OF G

In this subsection, we recall the Harish-Chandra parametrization of the discrete
series representations of G = Sp(2, R). For the general case, see [8; Chapter 1X].

Let h = RT} @ RT; be the compact Cartan subalgebra of g defined in Section 2
and consider the corresponding Cartan subgroup

wn={n= (2, %)

of G. Then the characters of this Cartan subgroup are given by

cp = diag(cos 01, cos 0) 0—
59 = diag(sin 6y, sinf,) * "

01,0 Rz}

hgi— exp(v —1(m 0y + m»05)), m; € 7,

and the derivations of these characters determine the weight lattice in bf..
In order to parametrize the discrete series representations of G, we enumerate all
the positive root systems compatible to A = {(1, —1)}:

(I) A?_ = {(17 _1)9 (27 0)’ (17 1)1 (0» 2)}3
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(D) Ay = {(1, 1), (2,0), (1, 1), (0, -2)},
(III) A?il = {(17 _1)7 (27 0)7 (07 _2)9 (_17 _1)}’

Let J be a variable running over the set of indices I, I1, III, IV and let us denote the set
of non-compact positive roots for the index J by A}, = A} —A7. Let E; be the
subset consisting of A -dominant weights such that (A, ) > 0 forany f € A;n. Then
the set |J}Y,Z, gives the Harish-Chandra parametrization of the discrete series
representations of G. Let us write by m the discrete series representation with
the Harish-Chandra parameter A € |JY,Z,. Then m, is called holomorphic if
A € Eyand anti-holomorphicif A € Ery. Moreover if A € By U Eyyy, 7y is called large
(in the sense of Vogan [16]).

The Blattner formula gives the description of the K-types of 7. In particular, the
minimal K-type (t,, V;) of ma is given by the formula 4= A — p,. + p,, where p,
(resp. p,) is the half sum of compact (resp. non-compact) positive roots in Aj}.
We call such 4 the Blattner parameter of m.

3. Fourier—Jacobi Type Spherical Functions
3.1. RADIAL PART

Let (p, F,) be an irreducible unitary representation of R, and let (z, V;) be a
finite-dimensional K-module. We denote by Cr(Ry\ G/K) the space of smooth
functions F: G — F, ® V; with the property

F(rgh) = (p() @ «k)")F(g),  (rng.k) € Ry x Gx K.
Put C*(A4y; p, 1) the space of smooth functions ¢: 4; — F, ® V; satisfying
(p(m) ® t(m))p(a) = ¢(a), meR;NK=M;NK, acAj. (3.1)

Here we remark that all elements in M§ N K are commutative with a € 4;. Then the
restriction to A, gives a linear map from C7°(Ry \ G/K) to C*(A4y; p, 1), which is
injective. For each f € C7%(R; \ G/K), we call f|,, € C*(Ay; p, ©) the radial part
of f, where |4, means the restriction to 4,.

Let (7, V) be another finite-dimensional K-module. For each C-linear map
u: C(Ry\ G/K) — CX(R/\G/K), we have a unique C-linear map R(u):
C®(A4y; p, 1) — C*(A4y; p,7v) with the property (uf)l,, = Rw)(fl4,) for fe
Cx.(R;\ G/K). We call R(u) the radial part of u.

3.2. FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS

Let (p, F,) be an irreducible unitary representation of R; and consider a C*°-induced
representation C“Indgj (p) with the representation space

C;O(RJ \G) = {F:G - F, C* | F(rg) = p(r)F(g), (r,g) € Ry x G}
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on which G acts by the right translation. Then C°(R;\ G) has structure of
(ac, K)-module. Moreover let (z, V;) be an irreducible representation of K and take
an irreducible admissible representation n of G with the K-type t*, where t* is
the contragredient representation of . Now we consider the intertwining space

I, = Hom, x)(m, C*Indg, (p))

between (gc, K)-modules. Let i: t* — n|gx be a K-equivariant map and let i* be the
pullback via i. Then the map

T, —> Homg(z*, C*Ind, (p)) =~ C°(R; \ G/K)

gives a restriction of T € 7, , to the K-type t*. Here the last isomorphism is given by
the correspondence between 1 € Homg(t*, C°°Indgj (p)) and the function FIl e
Cx(R;\ G/K) such that 1(v*)(g) = (v*, Fll(g)) for v* € Vi» and g € G with the
canonical bilinear form (-, -) on Vi x (F, ® V). Now we denote the image of T
in C7°.(R; \ G/K) by T; and define the space J, (1) of Fourier—Jacobi type spherical
functions of type (p, m; t) on G by

Txm= |J (1| Tez,}

ieHomg (t*,7| k)

If p = p,, ,, 1s arepresentation of type m and a, = exp rH; = diag(¢, 1, e, e=e,
then we put

To 0 =1{f € Tpx(0) | fla,(a) is of moderate growth when r — oo},

and call / € 7, ,(t) a Fourier—Jacobi type spherical function with moderate growth .

4. Differential Operators

4.1. SCHMID OPERATOR AND SHIFT OPERATOR

Let C°(R;\ G/K) and C*(4,; p,7) be as in Section 3.1. We introduce certain
differential operators on CJ° (R, \ G/K) and calculate their radial parts. First of
all, the following two lemmas are obvious. (cf. Knapp [8; Chapter VIII])

LEMMA 4.1. For a € Ay, we have g = Ad(a)r; + a; + 1.

LEMMA 4.2. Let f € CS?T(RJ \ G/K). For X € U(tc), Y € U((vs)c), Z € U((ay)c)
and a € Ay, we have

(Ad@™)Y)ZXf (@) = p(¥) ® «(~X)(Zf )(a).
Moreover, Hy acts on C°(R;\ G/K) by
d d
H\f(ay) = af(ar) = éd_ff(ar)
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Take an orthonormal basis {X;} of p with respect to the Killing form of g. Now we
define a first order gradient type differential operator V,.:C*(R;\ G/K)—

C;?T@Adpp (R/\G/K) by

Voof =Y Ry f®X.  feCR/\G/K)
where

d
Rx/f(9) = 1/ (g-exp(tX)) for X € gc.g € G.

t=0

This differential operator V, . is called the Schmid operator. Moreover, define
Vo C(R\ G/K) — C g ad,, (RI\G/K) by

VE =1 IBIPRy,, £ ® Xap, [ € CE(R\ G/K).
pezy

If we take the basis (2.1) of p as {X;} then we have V,, . f = SCZ(V;rJf +V,.f), and
hence, V; @V, gives a decomposition of V, . corresponding to pc = p, & p_
up to constant multiple. For each fe A’ and A€ A, the shift operator
Vi’;: CL(R\G/K) — €. (Ry\G/K) is defined as the composition of V;E,n with

PTitp
the projector P*¥ from V, ® p, into the irreducible component V,

v;ljz =5, ® Piﬁ)fo@.

Jp*

PROPOSITION 4.3. For ¢ € C*®(Ay; p, 1), we have

R(VE )op(a,) = [fd% +1r, ® (t®Ady,)(£1(Z + H)) — 4%
F V=1 p(Er) @ (1, ® 1) |(¢(ar) ® Xa0)+
+[17, ® C® Ad G = 1) F1(X + X))+
(B F V1 Eere) ® (1, ® 1) | (0(ar) @ X))+
+ |15, ® c® Ady)(F1(Z — H) - 2+
T p(H F 2V 1E) @ (11, ® 1) | (0(a) © Xa02),

Proof. Let f € C°.(R; \ G/K). To prove the assertions, it suffices to compute the
terms ‘1—‘||/3||2RX7/f® X for every ff € A,. We note the obvious relations

E2L’1 = szd(ar_l)EZel ’ Eelii’z = éAd(ar_l)Eeliezr
Eize, = Ad(a; ") Exae,, H, = Ad(a; ) H,.
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By using Lemmas 2.1, 4.2 and the definition of the tensor product, we have

Ry £0)® Ko =|é g+ 17, © 9 Ady J4(Z + ) = 2
— WIEp(Er) © O} (@) ® Xo0).

Here we also use the relation [Z + H', X(2,0)] = 4X(2,0). The similar calculation shows
the equalities

R f(ar) @ X(20)
= {z;d% +17, ® (1@ Ady )(—3(Z+ H')) — 2+

+ 2V p(Ea) @ (1, @ 1)} (@) @ Xi20),

%RX;(H) f(ar) & X:i:(l,l)
={lr, ® t @ Ad, )3(X — X) £3(X + X))+
+ Ep(Ee—e; F V= 1Ee10) ® (Iy, ® 1)} (f (@) @ Xeun) =
= 2f(ar) ® X+2.0)s
RX;(()AZ) f(ar) ® Xi(O,Z)

={1r, @ c@Ad)(FLZ - 1) -2+
(> F 2V =1E2) @ (1, @ 1)} (/@) ® Xe02),
by using the relations

[2X, Xa.n] =4X020), [Z — H', X0,42)] = £4X(0,12),
[2X, X_1-1] = —4X( 20, [Z+ H', X(_20)] = —4X(2,0)-

Combining these identities, we get the assertions immediately. O

4.2. ACTIONS OF THE DIFFERENTIAL OPERATORS

Let (p, ) = (P, m» W, ® Uy) be an irreducible unitary representation of R; of
type m, and let {w; ® u"}jc; je; be the basis of F, given in Section 2.3. Moreover
let (t;, V;) be an irreducible K-module with 4 = (41, 42) € A and {vi}ogkgdz be
the standard basis of V;. We express a C*-function ¢: 4y — F, Q@ V, as

d;
p(@) =33 " crjul@)w ®ul' ® vi) (4.1)

k=0 leL jeJ

with C*-functions ¢;(a) on A;.
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LEMMA 4.4. Ifwe write o € C™(Ay; p, t)as(4.1), thenc;ji(a) = 0forj+ 1 #k — /1.
Therefore ¢ € C*(Ay; p, t) can be expressed as

d;

k=0 jel (@)W @ u' ® V), 4.2)
I=I(j.k)eL

with I(j, k) = —j+k — /1.
Proof. Since

RJﬂK:MjﬂK:GXpRTZ ~ SO(2, R)
with

AS
T, = T(Z — H') = Eze, + E_3e,,

every ¢ € C*(Ay; py, > T2) must satisfy the condition
(Pr, m(exp 0T2) @ T)(exp 0T2))p(a) = p(a), forany 0 € R, any a € Ay,
from (3.1). For ¢ expressed as (4.1), this condition is equivalent to

eﬂe(;ﬂ) . eﬂe(il—k) cr k(@) = e 4(a).

forany 0 € R,anya € Ay andeachje J,/ € Land 0 < k < d; from the action of 75
given in Section 2. Therefore we have ¢;;(a) = 0 or j+ [/ = k — ;. The expression
(4.2) is obvious. O

Now we write down the actions of the radial parts of the shift operators Vfinj:ﬁ on
C®(Ay; pr,»m, 7;) using the basis (W ® U/ @ Vi}ierjeso <k <d;-

PROPOSITION 4.5. Let us denote ¢ € C*(Ay; p,,»m, ;) as (4.2). For each f§ € A,
we have the formula

R(Y) . )o(a)

d;
Z Z B, i+ B, I+
= k=0 joJ [C{ e ra)(w ® u' ® sz;;/)) + Cé Fejla)(wr ® WL ® vk&l)—l)—'—
I=1,k)eL

+ CPEeua)w @ U, ® Vil ) + C e ula)(wia @ u' ® v,i:ﬂ’;_z)}

with the coefficients Cf’i and the parameter k() given below.
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() Iff=1(0,2), then k(B) = k and

e —5(1—5 +(—k+ 22— 2+ damE, CfF = 8um(j - Y)e,

ctm=—ai Ot =2y =g

Chr=ch=z-1+1

) Ifp=Q,1), then k() =k + 1 and

=l =@k + 1){éd%+ (—k+41-2) +4nm§2},

Cht = —4nm(j —)(d;, — 2. CF™ = 2(d; — 2k)E,

. _ 1
it = 2am(j =)/ =P +1-k). = =5 (d+1-k).
Cy"=C" = (1 =1+ 1)(d; +1—k).

(3) If f=(2,0), then k() = k +2 and

it =cl = %(k-i-1)(k+2){fdi€+(—k+iz+2dz)+4nm§2},

CHt = —dmm(j =Yk + 1)(d + 1=k,  C™ =20k + 1)(d; + 1 — k)¢,
Y =am(j =Y (G = 3(d; + 1 —k)(d; +2—k),

ch = L(d,z +1—k)d; +2 k),

cht = cﬂ* Ye =1+ 1)(d; + 1 = k)(d; +2 — k).

Similarly we have

RV, % )olar)
tl'/i

= k=0 jeJ [Cl’;’iq,k(a,.)(m U @ Vi) + C *eira)(w @ u Uiy ® vk’(ﬁ)+1)
I=1(j.k)eL

+ C/3 ¢jr(a)(wr ® u/+2 ® vk, /3)+2) + C cj (@)W ® u "® vV, (ﬂ)+2)i|

with
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() Iff=(2,0), then K(B) =k — 2 and

, / d '
Clt =l =t ggt k=24 -2~ dnme, CfF =4,

/b . ' 1 /B . .
Gl ==8mm(j+3)e =g I = 2mm(j+3)(+3).
clr=cl=z+1+1.

Q) Ifp=(1,1), then K'(f) =k —1 and

/ o d
cl+=ch :_(dﬁl—k){gd—éﬂk—zl—2)—4nm§2},

CPr = —2(d; — 2k)¢, CF™ = dam(j + Y)(d; — 2k)¢,
/ 1 'B.— . .
cht = — 5 (k+ 1), P = —2mm(j+ 1) (G + 3k + D),

cIr=cl =@ +1+DEk+1).

(3) If p=(0,2), then K'(B) = k and

cPt=clm =1 +1-k)d; +2 —k){ﬁ(?—é+(k— J2) —4nm52},
CHH = 2k + 1)dy + 1= k)é,  CF =dnm(j+ 1)k + )(d; + 1 = k)¢,
, 1 g
P =kt Dk +2). G = —am(j+ ) (7 + 3k + Dk +2).
Pt =l =1 + 1+ D)k + Dk +2).
Here the double sign depends on either m = 0 or m < 0, and we understand that
w[®uj’?1®v,’;“=0if1¢L,j¢J, k<0, ord, <k, and that 1/m =0 for m = 0.

Proof. For each f € A, we calculate the composition of the radial parts R(V:U
in Proposition 4.3 with the projectors P*#. Then we have the equalities

RV )olar)

d;

B Z d 1 y /12

= f—| —_— » ) 2 - - el 7;

kX—(;/eJ [{gdé‘i‘l}' ®T):l:/3(:l: (Z+H)) 4:|22 lé ,D(Ez )®1V/,iﬂ}
I=I(j,k)eL

x ¢iula)(w @ u' @ P (v ® Xi0))+

+{lr, ® UapG (X = X) £5(X+ X)) + Ep(Eer—e, F vV~ 1Eei4e) ® Ly, Jx
x ¢jr(a)(w @ ul' ® P ® Xoqn))+

{15, @ Lap(FHZ — H) =24 p(H F 2V = 1E2) @ 1, | x

X Cj,k(ar)(W1 ® u]'-" ® Piﬂ(\/i ® Xi(()’z)))] .
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Thus the assertions can be proved immediately from the Clebsch-Gordan
coefficients in Lemma 2.2 and the actions 7, of f¢ and p,, ,, of (r;) given in Sections
2.2 and 2.3. O

5. Characterization of Spherical Functions

Let © be a discrete series representation of G and (p, F,) be an irreducible unitary
representation of R;. Now we refer the following proposition which enables us
to identify the intertwining space Z,, with a solution space of some differential
equations.

PROPOSITION 5.1. Let © = np be a discrete series representation of G with the
Harish-Chandra parameter A € E; and (5, V) be the minimal K-type of n. Then
we have a linear isomorphism I, ~ J, »(t;) and

Tpa(t) ={F € C° (R\G/K) |V, F=0, VpeA},]

PsTo

Sfor any irreducible unitary representation (p, F ) of Ry. Here the index J* means IV,
I, IT and 1 for J =1, 11, 111 and 1V, respectively.

Proof. For holomorphic or anti-holomorphic discrete series representations, this
assertion is reduced to the theorem of Cauchy—Riemann. For large discrete series
representations m,, it follows from the result of Yamashita [19; Theorem 2.4], since
each of the Blattner parameters A is far from the walls (see [19; Definition 1.7]). [J

6. The Holomorphic Case

In this section, we describe the spaces J,.(t) and J, (v) for discrete series
representations 7 of G of type I or IV, the minimal K-types t* of n, and irreducible
unitary representations p = p, ,, of Ry of type m, using the system of the differential
equations in Proposition 5.1. The case of m # 0 is treated in Section 6.2, and that of
m = 0 in Section 6.3. For simplicity, we discuss only for n of type I, because the
‘symmetric’ argument holds for = of type IV.

6.1. DIFFERENTIAL EQUATIONS

Let m=mnp be a holomorphic discrete series representation of G with the
Harish-Chandra parameter A = (A1, A2) € E; and 1} be the minimal K-type of r,
ie. A=(=A2—2,—-A;—1) from the Blattner formula. For each (p, F,) =
Oy > Wiy ®Uy), we express @ € C°(Ay; p,Or as (4.2) with [(j, k) = —j+
k4 Ay +2.

PROPOSITION 6.1. Let =, t;, and p be as above. Then ¢ € C*(Ay; p, T)r is in
T p.a(ti)l4, iff each coefficient c; i (a;) of @ satisfies the following system of differential
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equations

Acina) + By i Gan @)+

+ C 42, k+2cj+2 k+2(a)) + D/ k+2cj k+2(a1) — 0 (61)
E kS, k(a) + F, +1 k+1Cj+1, k+1(a)+
+ G 12, k+2c/+2 k+2(ar) + H f k+2Ci,k+2(ar) =0, (6.2)

/kCJ r(ar) +J /+1 ka1 G (@) +

+ K+2 ka2Cir2k2(ar) + L k+2Cj,k+2(ar) =0, (6.3)
where
d . _
A]k d_é_(k—i_Al +3)+4nm£2, Bj—k = 87'5}’7’1(]—%)5, ik = _4£a
. . _ 1 .
Gl =2mm(j —3)(j —3). Cix =3’ D =z —1(, k) +1,
Ef =(k+ 1){%_5 —(k+A+4H+ 4nm§2}, = —dmm(j — 1)(d;, — 2k)¢,

Fip = 2d; = 2k)¢, Gl = =2nm(j —3)(j —3)(d; + 1~ k),

- 1 .
Gj,k:—%(dri—l k), jk_—(zl—l(],k)+l)(d;~+1—k),

:2(k+1)(k+2){ 4 _ k-4, +A1+1)+4nm5}

J*kz —dmm(j ——)(k+1)(d~ + 1=k, J=20k+1)d; + 1 -k,

J
K = nm(] ~ )=+ 1 —k)d; +2 k),

K= o (ds 41— R)ds +2— ),
L5 = %(21 — 1. k) + 1)(d; + 1 = k)(d; +2 — k).

Here Equation (6.1) (resp. (6.2), (6.3)) is valid for j e J,0 <k < d; —2 (resp.
—1<k<d,—1,-2<k<d);)andl(j, k) € L, and the double sign depends on either
mz=0 or m<0. Moreover, we understand cj; =0 if j&J, k<0, d, <k or
I(j,k) ¢ L and zy = s (resp. n — 1, —1) for m; = P; and C; (resp. D,Jfl, lg,).

Proof. This assertion is obtained from Proposition 5.1 by comparing between the
coefficients of (w; ® u/' ® vk) in both sides of the equations R(V )(p(a,) = 0 foreach
pe An v and by makmg appropriate changes of the indices. O

6.2. THE CASE OF m # 0

In this subsection, let (p, 7)) = (0, s Wr, ® U,,) be of type m # 0. For simplicity,

we treat only the case of m > 0, and a variable x = 4wmé? is used frequently.
We discuss first the case that the Blattner parameter 1 is not far from the wall, that

is, dp=0 and 1. Let d, =0, i.e. A; — A, = 1. From (6.3), it is easy to see that
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(z1,)) = (A2 +%% if ¢jo(a,) #0. Since A +% > 0, then we have n; = D:{ﬁ; if
Jp.x(1:) #{0}. For such ny, the coefficient function c%’o(ar) of @ € Jpx(t)ly4, is
xA+De=> up to constants. Let d; =1, i.e. A — A, =2. Then we find that if
Gola) 0 (resp. ¢i@) #0) then (z1.)) = (A +3.0) (resp. (Az+3.}) or
(Ar + % , %)), from (6.2) and (6.3). Hence we have J, »(7,) = {0} except for the cases
of m = DX2+%+kO with kg =0 and 1. For &, = DX2+%, the pair of the coefficient
functions (cy(ar), ¢z 1(ar) of @ € Tpr(ti)ly4, is (Vanm xMiHDe= st up to

constants. Similarly the coefficient function c1(ar) of ¢ for m =D}

/\er% 18

x2Me=¥ up to constants.
Next we consider the case of d, > 2. The following lemma is a consequence of
Proposition 6.1.

LEMMA 6.2. Let d; > 2. Then each coefficient c;i(a,) of ¢ € T, (7)|4, satisfies the
following relations.

Anmé(j + 3) ¢ ar1(ar) = (k+ Dejalay), (6.4)

8rmE’(z1 — 1, k) — e aia(ar) = —(k + 1)k +2)¢;1(@,), (6.5)

Here (6.4) (resp. (6.5)) isvalidforjeJ, —1 <k <d,—1(resp. -1 <k<d,—2)
and I(j, k) € L.
Proof. From Proposition 6.1, the relations

{édif - (A1 +2)+ 4nm§2}cj,k(a,,) + 4nmé(j + 1) ¢jv1h+1(ar) =0, (6.6)

(k + 1){5% — (Ay +2) + d4nmé? }cj,k(a,.)— ©7)

— dnmé(j + 5)(d), — k)¢ k1 (ar) =0
hold. Here (6.6) (resp. (6.7)) which is valid for jeJ, 0<k<d,—1 (resp.
—1 <k <d;)and [(j, k) € L1is obtained from (6.1) (resp. (6.3)) and (6.2). We obtain
the relation (6.4) immediately from (6.6) and (6.7).
Next we prove (6.5). From (6.2) and (6.3), the relations

(k + D)k + 2)¢ji(ar) — dnmé (j + 3)(k + 2)¢j1ser1(ar)+
+ 2mm(j +3)(J +3)(d; — 1 — k)ejponia(a)+
+(z1 — I, k) — 1)(d), — 1 — k)¢jjy2(a;) = 0

holds forj € J, —1 < k < d), — l and [(j, k) € L. Combining this with (6.4), we obtain
Equation (6.5). ]

From (6.4), we find that ¢; x(a,) = 0 except for the indicesj € Jand 0 < k < d; such
that /(3,0)=A>+3 <I(,k) <A1 +31=1G,d;). Hence, we have J,.(t;) = {0}
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except for the case of n; = D,fl with A, +% <m <A+ % Here we use the relation
(6.3) for k=-2 and (6.5). If we put ko=n; — A, —% for such n;, then
I(%,ko) =n; and the coefficient ¢ Lo (a,) is given by a solution of the differential
equation {2x(d/dx) — (A;+1— ko) + x}u 4 (@) =0 from Proposition 6.1. Thus
we have ¢ (a;) =c- xdMiF1=k)e=3 with some constant c.

Now we can state the following result.

THEOREM 6.3. Let 1 = ©p be a holomorphic discrete series representation of G with
the Harish-Chandra parameter A = (A1, Ay) € E; and v be the minimal K-type of .
Moreover let (p, Fp) = (pp, > Way ® Unm) be an irreducible unitary representation
of Ry of type m>0. Then the space J,(t;) is not zero iff m = D;’I with
Ar+3 <m <A+ For such m, we have dim jpyn(t;y) =dimJ; (v;) =1 and
the coefficient function cyy (a,) with ko =mn — Ay —3 of ¢® € Tpa(ti)ly, is

A=k e =3 4y 10 constants. The other coefficients are gzven by the formulas (6.4)

and (6.5) inductively from c%’ko(a,,).

Similarly, we can prove the following theorem for m < 0.

THEOREM 6.4. Let n and t; be as in Theorem 6.3, and let (p, F,) =
(Pryms Way @ Uyy) be of type m < 0. Then J (t;) = T a(t) = {0}

The ‘symmetric’ argument shows the following results.

THEOREM 6.5. Let 1 = mp be an anti-holomorphic discrete series representation of
G with the Harish-Chandra parameter A = (A1, A2) € Ery and v} be the minimal
K-type of m with .=(=Ay+1,—A1+2). Moreover, let (p,F,)= (g m>
Wr, ® Uy) be an irreducible unitary representation of Ry of type m < 0. Then the
space J, (1)) is not zero iff m = D, with —A4 + <m< —-M\ + For such
w1, we have dim jp (1) =dimJ, (1,1) = l and the coeﬁ?czentﬂmctlon €1k, (a,) with
ko=—-n —Ay+1 s0fp e, 7r('EA)|AJ expressedas (4.2) withl(j, k) = —j +k+ Ay —1
is XA M2k o 2‘ up to constants, where X' = —4nmé*. The other coefficients are
given from c_%.ko(a,,) inductively by the formulas

dnmé(j — N ejm1u—-1(ay) = —(d; — k + Dejul(ay),
8nm& (21 + 1(j, k) — Deju—aay) = (d; — k + 1)(d; — k + 2)c;i(ay),

Here the first (resp. the second) formula is valid for je J, 1 <k <d,+1 (resp.
2<k<d,+1)and I(, k) € L.

THEOREM 6.6. Let n and t; be as in Theorem 6.5. Moreover let (p, F) = (pg, >
W, ® Up) be of type m > 0. Then J, z(v;) = T (1) = {0}.
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6.3. THE CASEOF m =0

In this subsection, let (p, F,) = (py, 0. Wa, ® Up) be of type 0. In this case, we can
write @ € C®(A4y; p, T)r as

d;
ola,) = Z cos(a)(wr ® uy ® vy). (6.8)

k=0
1=1(0,k)eL

First, we consider the case of n; # 1g,. Let d; =0, 1.e. A| — Ay = 1. From (6.3), it is
easy to see that if c¢oo(a,) #0 then z;=A; =A+ 1. Hence we have
Jpr(1:) ={0} except for the case of m = DXIH. For such m;, we have
coola,) =c- M2 with some constant ¢. Next, let d; = 1, i.e. A; — A, =2. From
(6.2) and (6.3), we can find immediately that ¢y o(a,) = 0 and that if ¢o 1(a,) # 0 then
z1 = Ay. Therefore, if J,.(t;) # (0} then my =Dy ,,. For such my, ¢p1(a,) is
&M*2 up to constants. Now let us consider the case that the Blattner parameter
A is far from the wall, that is d; > 2. Proposition 6.1 induces the relations

(k+ Deorlay) — (21 —k — Ay = 3)co pg2(ar) =0,
(k+ 1)k + 2)cor(ar) — (z1 —k — Ay = 3)(d, — 1 — k)co rs2(ar) = 0,

of cor(ay) and co x42(a,). Here the first relation is valid for 0 < k < d; —2 and the
second for —1 <k < d; — 1. From these relations, we find that c¢y(a,) =0 for
0<k<d, —1 Then we have z; =A; if cyq4,(a;) #0 from (6.1) and, hence,
T = DX]H if J, z(7;) # {0}. The coefficient ¢ 4, (a;) is ghat2 up to constants.

Next let n; = 1g,. Then p = Pig,.0 is the trivial representation 1z, of R;, and
@ € C*(Ay; p, 1)) can be expressed as

0, for 1 <0 or A, > 0,
o(a) = o, (@(wy ® “8 ® vﬁ:l), for 21 >0 and 1, <0. (6.9)
Taking acount of the inequality A; > 0, we have 1, = —A; — 2 < 0 and, hence,

C™(Ay; 1g,, 1;) = {0} from (6.9).
Now we obtain the following result.

THEOREM 6.7. Let n and v} be as in Theorem 6.3. Moreover, let (p, F,) =
(Pz,.00 Wry ®Uo) be an irreducible unitary representation of Rj of type 0. Then
the space J,(t;) is not zero iff m = DX1+1~ For such m, we have
dimjp,n(m):dimj;’n(r;v): 1, and qoej;’n(u)uj can be written as cygq,(ay)
WA, +1 ® ug ® Véi;,) by the coefficient function cy 4,(a;) = c - ENF2 ith some constant
c.

The ‘symmetric’ argument shows the following result.

THEOREM 6.8. Let n and t; be as in Theorem 6.5. Moreover, let (p, F,) =
(Pr,.00 Wy ®Uo) be an irreducible unitary representation of Ry of type 0. Then
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the space J,(t;) is not zero iff m =D . For such m, we have
P o Ar+1
dimjp,n(m)zﬁmj;n(u): 1, and ¢ € Jpx(1)l4, can be written as coo(ay)
(wA2,1®u8®v6) by the coefficient function co,o(ar)zc-é_’\‘+2 with some
constant c.

7. The Large Case

As Section 6, we describe the spaces J,.(r) and J (D) for discrete series
representations 7 of G of type II or 111, the minimal K-types t* of 7, and irreducible
unitary representations p = p, ,, of R; of type m, using Proposition 5.1. The case
of m #£ 0 is treated in Section 7.2, and that of m = 0 in Section 7.3. For simplicity,
we discuss only for 7 of type II, because the ‘symmetric’ argument holds for the
case n of type III.

7.1. DIFFERENTIAL EQUATIONS

Let # = mp be a large discrete series representation of G with the Harish-Chandra
parameter A =(A;,A2) €ZEy and t; be the minimal K-type of =, i.e.
4 =(=Ay,—A1 —1) from the Blattner formula. For each (p,F,)= (0
Wi, ® Uy,), we express ¢ € C*(A4y; p, 1) as (4.2) with I(j, k) = —j + k + As.

PROPOSITION 7.1. Let =, 1;, and p be as above. Then ¢ € C®(Ay; p,t,) is in
T (i)l 4, iff each coefficient c;i(a,) of ¢ satisfies the following system of differential
equations.

+ +
Ajiciaar) + By gy Gt i1 (an)+

(7.1)
+ Gy paCirrii2(@) + Dy ciasa(ay) =0,
Ef ¢ FE A
ik Cik(ar) + Fy i Gairi (@) + (7.2)
+ Gy g a2 hi2(@) + Hiy 56 ki2(ar) = 0,
It ¢ ( JE :
kG2 k2(ar) + T3 e Gk (@) + (7.3)

+ ij,[kcj,k(ar) + Lﬁz,kcj-ﬂ,k(ar) =0,

+ pt + nt pt ot + . . oy
where Aj’k, Bj’k, Cjk Dj,k, F]k Gj,k and Hj,k are given in Proposition 6.1, and

Ej?fk = (k + 1){53— (k+/\2+2)+4nm€2},

d¢
d } .
=gtk =2d + A= 1) - dnm, T =4 T = —8am(j+3)¢,
I g .
K = 5 Kk = =2mm(j+3)(j+3), Ly =z1+1G.k)+ 1.
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Here Equation (7.1) (resp. (7.2), (7.3)) is valid for j € J (resp. je J,j+2€J),
0<k<d -2 (resp. —1<k<d,—1, 0<k<d,—2), and I(j, k) € L, and the
double sign depends on either m = 0 or m < 0. Moreover we understand c;; =0 if
jeJ, k<0, k>d,orl(jk)gLand1/m=0 for m=0. The parameter z; means
s (resp. ny — 1, —1) for m; = P; and C; (resp. D:fl, lg, ).

Proof. This assertion can be obtained similarly to Proposition 6.1. O

7.2. THE CASE OF m # 0

In this subsection, let (p, 7)) = (04, u» Whr, ® Uyy) be an irreducible unitary represen-
tation of R; of type m # 0. For simplicity, we treat only the case of m > 0, and a
variable x = 4nmé? is used frequently as before.

LEMMA 7.2. Each coefficient c;i(ay) of @(a,) € J,.(t;)|4, satisfies the following
relations.

5(% — (A1 +2)+ 4nm52}c_,~,k(a,.> +4nmé(j +3)¢ k(@) = 0, (7.4)

5i +k—A -1+ 47Tmf2}6j,k(ar) —2mm(j +3)(J +3) cir2h2(a)—

dé (7.5
—(z1 = 1G, k) — D¢jpi2(ar) = 0,
d? d
2 [ — JR— 2,
:é dfz 2(Al + 2)5 df + o50(6) } C],k(ar)"f_ (76)

+ 8m& (z1 — 1(j. k) — 1)¢jpsa(ar) =0,
where
a0(€) = (A1 +2)(A; + 3) — 2k + Ddnmé? — 16n°m>E*,
Here (7.4) (resp. (7.5) and (7.6)) is valid for jeJ, 0<k<d,—1 (resp.
0<k<d, —2)and (k) € L.
Proof. For 0 < k < d; — 2, therelations (7.4) and (7.5) are obtained from (7.1) and

(7.2). For k = d, — 1, the identity (7.4) coincides with (7.2).
By using (7.4), the equation

d d
{52 R ﬁo@)}c,,k(ar) = 16708 (j +3) ( +3) Gs24s2(ar) = 0
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holds for j e J, 0 <k <d, —2 and [(j, k) € L, where

B1(&) = —(2A| + 4 — 8nmé?),
Bo(&) = (AL + 2)(A1 + 3) — QA + 3)dnmé® + 167°m* &

Combining this with (7.5), we have (7.6). OJ

The next two lemmas assert that we may decide only suitable finite numbers of the
coefficient functions to solve the system in Proposition 7.1.

LEMMAT7.3. Fix joeJ and 0 < ko <d;, —3 such that ly = [(jo, ko) € L. Take a
number N such that 2 < N <d; — 1 — ko. Let us assume that ly+2 € L and the
Sfunctions c;i(ay) with I(j, k) =1y, lo+2 and ko <k <ko+ N satisfies the system
of equations in Proposition 7.1. If we define two functions cj4n+1 x+N+1(ar) by (7.4)
Jrom cjyn—1+1 kN (ar), then these satisfy the system in Proposition 7.1.

Proof. In order to get the assertion, it suffices to verify the relations (7.5) for
j=jo+N—-1 and k=ko+N—1 and (7.3) for j=jo+ N —3 and k=ko+
N — 1. Both of these relations can be seen by using the definition by (7.4) and
the assumption of the lemma through direct computation. First we prove the relation
(7.5)forj=jn =jo+ N —1land k = ky = ko + N — 1. By using (7.4), the left hand
side of (7.5) for j = jy and k = ky becomes

_4nmé(jN—%{éd~f_(Al +2) 4+ 4nmé }x
X Hff_f + (ky — 2 — Ay) + dnmé? }Cle,kNI(ar)_

= 2mm(in + DN — Dejys1hy+1(ar) — (210 = v, ky) — 1)CjN1,kN+z(ar)i|o

This equals to zero from the relation (7.5) for j = jy — 1 and k = ky — 1. Next we
show (7.3) for j =jy =jo+ N —3 and k = ky. Since

L 2 iy Gy 2.k (ar)

1 d
R e ] Cral R R ERINE
2
1 d
=——— 1= - (A1 +2)+4mm 2}x
4nmé(Jy +%){5di it -

—+ . + N + .
X [Ij"N+l,kN+lCj}ﬁl,kNJrl(ar) + Jj}v,kzv Cjrvokn (ay) + Kv]’fAﬁl,kN*ICj./w*LkN*I(ar)]

https://doi.org/10.1023/A:1017528120756 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528120756

FOURIER -JACOBI TYPE SPHERICAL FUNCTIONS 203

from (7.4) and (7.3), the left hand side of (7.3) for j =}, and k = ky becomes
d 2
édié + (ky +1=2d;, + Ay) — 4nm&” t ¢y, 12 ky+2(ar)+

1 d
+ |:4§ + W {gdf — (A1 +2) + 4nmé’ }Ijj;+1,kN+1i|Cj}\,+1,kN+l(ar)+
2

1 1 d 2] 4 §
+ |: m + by +3) {édf (A1 +2) +4nmé }Jj&’kN:|ch,kN(ar)+

1 d
+ m {éd_f — (A1 +2)+ 4nm£2}l{jzl,kwlcf}v17kN1(ar)'

Using the relation (7.4), we find that this is zero. O

LEMMA 7.4. Fix | € L.

(1) Supposethat! —2 € Land that the functions ¢j (a,) withI(j, k) = 1,1 + 2 j € Jand
0 < k < d; satisfy the system of equations in Proposition 71. Let us define c; i(a,)
with I(j,k)=1—2 and jeJ by (73) for 0<k<d,—2 and by (74) for
k=d,—1, d,. Then the functions cji(a,) with I(j,ky=1 [-2 jeJ and
0 < k < d; satisfy the system in Proposition 7.1.

(2) Suppose that | > 0 and that the functions cji(a.) with I(j, k) =1, 1 =2 j e J and
0 < k < d; satisfy the system of equations in Proposition 71. If | — 2 is not in
L, we assume further that the functions c; y(a,) with I(j, k) = [ satisfy (7.4). Moreover,
define c; i (a,) with [(j, k) = | + 2 by (7.1). Then the functions c; i(a,) with I(j, k) = |,
[+2,jeJ and 0 < k < d satisfy the system in Proposition 7.1.

Proof. To see the assertion (1), it suffices to prove that the relations (7.4) forj € J
and 0 < k <d; —3 such that I(j,k) =1—2,(7.1) forj € J and 0 < k < d); — 2 such
that /(j, k) =1—2, and (7.2) for j € J and k = —1 such that /(j, —1) =/ — 2 hold.
For the assertion (2), we need to demonstrate that the relations (7.2) and (7.3) hold.
In place of (7.2), we may verify that the functions ¢ji(a,) and cji1x+1(a,) with
the indecies j € J and 0 < k < d, — 1 such that [(j, k) = [ € L satisfy the relation
(7.4). In analogy to the proof of Lemma 7.3, the above mentioned relations can
be shown from the definition of each function c¢;«(a,) and the assumption of the
lemma through direct computation. We leave the detail to the reader. O

Letn; = Pi (s € vV—1IR, 1= +1)orC; (0 <5 <1 t = +1)and fix an index ko such

that l(%,ko) € L and 0 < kg < d) — 2. Then the coefficients c%,ko(a,) and c%,koﬂ(ar)
satisfy the equation

d
{éd_é + (ko —2d;, + Ay + 1) — 47'[7’}’152}6%,](04_2((1}’)'{‘

+ (21 +1G, ko) + 1) eyg (@) =0
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from (7.3) for j = —%. This equation together with the relation (7.6) for j :% and
k = ko leads the following differential equation for c%,ko(a,);

d’ & d
{8x3 aa T Pa(x)4x? a2 T (x)2xa + VO(X)}C%,kO(ar) =0, (7.8)

where

P2(x) = ko — 2d; — Ay — x,
71(%) = (A1 +2)(A1 +3)— 2A1 + 3)(ko — 2d; + A1 + 1) — 2(ko— A1 — 1)x — ¥%,
Po(x) = (A1 + 2) (A1 + 3) (ko — 2d; + Ay — 1)—

— { ko + (ko = 2; + Ay + 1)+ (A1 +2)(As + 31+
20z 1G ko) + 1) (21 = 16 ko) = 1) e+
+ (ko +2d; — Ay — 2)x* + X°.
This is also true for the indices ky = d, — 1 and d,. Putting c%’ko(a,) = , We

find that y satisfies the differential equation of Meijer [3;5.4(1), p.210] for
(»,q,m,n)=(2,3,3,0) (cf. (A.17) in Appendix) with the parameters

221+ 54 2d, —2z1+ 5+ 2d,
W=, hHh =",
4 4
Ay +2 A +3 —ko+2d;, — Ay + 1
b=—5— bh=—75— b= 5 -

Therefore, up to constant multiple, the solution c%yko(a,.) of (7.8) satisfying the
ap, d
by, by, by
determine €Lk o(ay) (resp. a ko—2(ar)) by the relation (7.6) (resp. (7.7)) and Cliikg wilar)
(resp. c%ﬂkofz”(a,)) for i=1, 2 by (7.4) from each solution of (7.8) for
0<ky<d),—2(resp. kg =d); — 1 and d,), then these functions satisfy the system

in Proposition 7.1 obviously.

Next let 7 = D, with n; < — Ay +%. Then ky = —ny —l—%— A, 1s the maximum
value in the set of numbers k such that l(%, k)e Land 0 < k< — A, <d,. Since
€Lk +2(a;) =0, we have a differential equation

moderate growth condition is e%xG%:g x with the above parameters. If we

d? d
{4x2 ek QA + 3)2xa + oco(x)}c%’ko(ar) =0, (7.9)

from (7.6) for j =1 and k = ko, where

2(x) = (A1 4+ 2)(A1 +3) — ko + 1)x — X%

Putting €Lk (a,) = e%"y, we find that y satisfies the differential equation of Meijer for
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(,q,m,n)=(1,2,2,0) (cf. (A.18) in Appendix) with the parameters

AN +4+ko b A +2 b A +3
i 2 9 1_ 2 b 2_ 2

ai

Therefore the solution c%’ko(a,,) of (7.9) with the moderate growth property is

ar, a 34+2A
1, 42 ):x 41W,W(x)

up to constants, where the parameters (a1, by, b) are as above,

1+ 2k
K=— +4 0 and u=-1.

Of course, if we determine Cliikg (@) (i=1, 2)by(7.4) from each solution of (7.9),
then these coefficients satisfy the system in Proposition 7.1 clearly.

Let my = D, with ny > —Ay + % In this case, there exists no number k such that
l(%,k) €L and 0<k<d),. Let j, be the minimum value of j e J such that
[(j,0) € L, that is jo =n; + A,. Since jj 7&% and d; #0, we have the relation
2¢&¢j,.0(ar) + (o + Hcjpr1,1(a) = 0 from (7.2) for j =jo — 1 and k = —1. Using this
relation and (7.4), we can see that ¢j,o(a,) = ¢ - e**x*™1*? with some constant c.
If we determine the coefficients cj4;,(a;) (i=1, 2) by (7.4), then these satisfy
the system in Proposition 7.1, as we can see through direct computation.

Let n; = D,J{]. If ny > Ay +%, thereisnoj € J and 0 < k < d, such that [(j, k) € L.
Hence J,.(t;) ={0}. When n <A +%, there exists a number k& such that
l(%,k) e L and —A, <k <d;. Let ky be the minimum value of k& such that
IG.k) e L, ie. ko=n;+%—A;. From (7.3) for j=—3 and k=ko—2 we can
see that

lX _/«’0—21(;'-%—/\1—1
c%’ko(ar) =c-e'x 2

with some constant ¢. Since z; = n; — 1 and Z(%, ko) = ny, the relations (7.1) and (7.2)
for the coefficients ¢y (a,) and Cliikg—2 +i(a) =0 (0 <i<2)hold trivially.

From Lemma 7.3, 7.4 and the above computation for each 71, we get the following
result.

THEOREM 7.5. Let m = wp be a large discrete series representation of G with the
Harish-Chandra parameter A = (A1, Ay) € Eqy and t} be the minimal K-type of .
Moreover let (p, Fy) = (pn, u» Way @ Um) be an irreducible unitary representation
of Ry of type m > 0. Then;

D) Ifm =P (=%l seV-1IR)orC;(t==%%,0<s <1, thendim 7, z(x;) =3
and dim J;, .(t;) = 1. The coefficient function c%’ko(a,.) of ¢ €T, (T4, with
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the index 0 < ko < d; such that l(%, ko) € L is

2s+5+2d, —-2s+5+2d,

3

4 4
A+2 M+3 —kot+d,—AN+2 )
2 2 2

1x 3,0
G5 | x

up to constants, and the other coefficients are given by (7.1), (7.3), (74) and (7.6)
inductively from c%’ko(a,).

(2) IfTL1 = D:l—l (}’11 € %223\2, n > A —I—%), then jp’n('f)v) = jz,n(ri) = {0}.

3) Ifm = D;’l (n € %Z >3\Z, n; <Ay +%), then dim J ) »(t;) = 1 and T a(12) =
{0}.

@ If mi=D, (me %223\2, n < —Ap +%), then dimJ,.(t)) =2 and
dimJ, (v;) = 1. The coefficient function c%’ko(ar) of ¢ €T, (W)l with
kO = —n —|—%—A2 is

A +4+ko
Ly ~2,0 - 5 3424
e‘YGI,Z * A +2 2 AM+3)7 X W),
2 7 2
up to constants, where k = — %(1 + 2kg), = — %‘ The other coefficients are given by

(7.1) and (7.3) inductively from c%’ko(a,).
O If m=D, m 6%223\2, n > —A, +%), then dimJ, (1)) =1 and

ni

T +(12) = {0},

Similarly, we can prove the following theorem for m < 0.

THEOREM 7.6. Let n and t; be as in Theorem 7.5. Moreover, let (p, F,) =
Py > Wiy @ Upy) be of type m < 0. Then;

1 Ifm=P,(t= :I:%, se~—=1R)orCi (= :l:%, 0<s< %) then dim J , »(1;) = 1
ifr+% =A;+1 (mod2) =0 ifr—i—%z Az (mod 2) and T, ,(z;) = {0}.
2 If m= D:{l (n € %Z>3\Z, n > Ay +%), then dimJ,.(1;)=3 and
dim 7, ,(z;) = 1. The coefficient function c;, x,(ar) of ¢ € T, (t))| 4, with the indi-
ces jo € J and 0 < ko < d), such that [(jo, ko) = ny is
2A1+ 525y 2A14+T7-2j
v 30 4 ’ 4
OB A 2 A3 —kotdi— A2 |
2 2 7 2

¥ = —4mmé,

up to constants, and the other coefficients are given from cj, i,(a,) inductively.
(B) Ifmi =D (m €3Z>3\Z, m <A +3) thendim T, (1)) =1 and T, (1;) =
{0}.
@ If m =D, (m €37 >3\2) then J(v;) = T} .(t;) = {0}.
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By the ‘symmetric’ argument, the following results for discrete series represen-
tations of type III hold.

THEOREM 7.7. Let 1 = wp be a large discrete series representation of G with the
Harish-Chandra parameter A = (A1, Ay) € By and v be the minimal K-type of n
with .. = (=Ay + 1, =Ay). Moreover, let (p, Fp) = (g, p» Wr, ® Up) be anirreducible
unitary representation of R; of type m < 0. Then;

) Im=Pr==lseV-1R)orC (t =+ 0 <s <)), thendim 7, (1;) =3
and dimJ, (v;) = 1. For ¢ € J, (v))l4, expressed as (4.2) with I(j, k)= —
Jtk+ Ay —1, the coefficient function c_y; (ay) of ¢ with the index 0 <
ko < d; such that I(—%, ko) € L is i

25s+5+4+2d, -25s+54+2d,
Ly ~3,0 ’ 4 ’ 4
OGN A b2 A3 kot A2 |
2 ’ 2 ’ 2

X = —4mmé?,

up to constants, and the other coefficients are given from c,%!ko(a,) inductively.
(2 Ifmi =D, (me 12 523\Z, ni > —Ay+13) then T, (z;) = I, (1) = {0}.
3 If mi=D, (me %223\2, n < —A +%), then dimJ,.(t;) =1 and
T (1) = (0}
@ If m=D) (mesZo\Z, m <Ai+3), then dimJT,.(1;)=2 and
dimJ} () = 1. The coefficient function cf%’kl)(a,.) of ¢ €T, ()4, with
ko =mn +%—A2 is

Ay +4+d; — ko

Ly 2,0 2 I / 2

e Gy, X CApt2 A3 =x 7 Weux), x' =—4mmé.
2 ’ 2

up to constants, where k = —%(1 +2(d; — ko)), u = — %. The other coefficients are
given from C—%,ko(ar) inductively.

O Ifm = D:l (n € %Z >3\Z, n; > A\ +%), then dim 7, »(1;) = 1 and T, ,(1;) =
{0}.

THEOREM 7.8. Let n and t; be as in Theorem 7.7. Moreover, let (p, F,) =
Oy > Wiy ® Upy) be of type m > 0. Then;

) Ifm=P (=%l seV=1R)orCi(t=%1,0<s <)), thendim T, (1;) = 1
ifr—i—% =A; (mod?2), =0 ifr—i—% =A1+1 (mod 2)and T, (z;) = {0}.

Q) If mi=D, (meiZ=i\Z, m+>—-A+3), then dimJ,.(1;)=3 and
dimJ; (v)) = 1. For ¢ € T, (t:)l4, expressed as (4.2) with I(j, k) = —j + k+
Ay — 1, the coefficient function cj i,(a;) of @ with the indices joeJ and
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0 < ko < d), such that I(jo, ko) = —ny is

=2A 4+ 542y —2A+T+2j
3o 4 ’ 4
2T A 4+2 —Ao+3 ko+ A 42 )
2 ’ 2 ’ 2

up to constants, and the other coefficients are given from cj, i,(a,) inductively.

3) If m= 'D;l (n; € %223\2, n< —»~A ~|—%), then dimJ,.(t;) =1 and
T5.132) = {0).

@ If m =Dy (m €32 53\2), then Jya(v;) = T} o(v;) = {0},

7.3. THE CASEOF m =0

In this subsection, let (p, F)) = (p,, 0» Wa, ® Uo) be of type 0. Then, as before, we can
write ¢ € J,1(t;)4, as (6.8).
First we consider the case of n; # 1g,.

LEMMA 7.9. In the above setting, the system of the diferential equations in Prop-
osition 7.1 is equivalent to the following system.

(k+ Deor(a,) = (z1 =k — Ay — Deopsa(a,), for —1<k<d, -2, (7.10)

{5;—5—(A1+2)}co,k(ar):0, for0<k<d, —1, (7.11)

(22 = Adcosla) =0, for0<k<d,—1, (7.12)
d

(z1 —Al){fd—é—(/\l +2)}Co,d,-,(ar) =0, (7.13)

[(Z? — A+ (A — Az){if—f — (A1 + 2)}]60.(l,;(ar) =0. (7.14)

Proof. Combining Equations (7.1) with (7.2) to cancel out the differential terms,
we obtain (7.10). Equations (7.11) and (7.13) are obtained immediately from (7.1)
and (7.10). By Equations (7.1), (7.3) and (7.10), we have

|:(z% — A%) + (k + 1){5(%: — (A1 + 2)”60'1((%) =0, for0<k<d, -2,
d
|:(z% — Ag) + (k- 1){§d—é — (A1 + 2)”00,;((41,) =0, for2<k<d,.
Therefore we have (7.12) and (7.14) from these identities together with (7.11). ]
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For a non-zero element ¢ € J,(1;) let ko be the minimum index such that
cox(ay) #0. If kg = d,;, Equation (7.10) for k = d, — 2 shows z; = A; and, hence,
T = DX]-H’ for /(0,d;) = A1+ 1> 0. Since A; # A,, Equation (7.14) shows that
co.q,(ay) is c- EM*2 with some constant ¢. If ky < d;, Equation (7.12) for k = ky
shows z; = —A, because A, < 0. Then we have m; = DfA2+l. We remark that an
index k with cor(a,) #0 satisfies the inequality A < ko+ A <1(0,k) = k+
Ay < d; + Ay. Since cor(a,) = 0 if 1(0, k) is not in L, m; must be DfAZH. The fact
[0, k) € L means the inequality —2A, + 1 < ko, in particular, 3 < ky. From
Equation (7.10) for k = kg — 2, we have kg = —2A, + 1. Then coy,(a,) is c¢- ghi+2
with some constant ¢ from (7.11). Moreover the other functions cg(a,) with
k > ko, k = ko(mod 2) are determined by the formula (7.10) inductively. Of course,
we have ¢ x(a,) = 0 if k is even.

Next let n; = 1g,. Then p =p,, o is the trivial representation lg, of R;. For
@ € Jpx(t)l4, expressed as (6.9), the system of differential equations in Proposition
7.1 becomes

d d
{idf +(—d; — 2)}6’0,),1(6%) = {idf - 2}00,/11(61") =0.

Since d; # 0, we have ¢ ;,(a,) = 0 and, hence, J, (t;) = {0}.
Now we can state the following theorem.

THEOREM 7.10. Let n and t5 be as in Theorem 7.5, and let (p,F,) =
(Pr,.00 Wy @ Uo) be an irreducible unitary representation of Ry of type 0. Then
the space J,(1;) is not zero iff my = DXIH or DJ_’MH, and for such m; we have
dim J, »(t;) = dim Tpa(t) =1 When n; = DXIH, ¢ € Jpr(ti)ly, can be written
as co.a,(ar)(wa, 11 @ u) ® vy, ) by the coefficient function co,q,(ay) = ¢ - EMH2 ith some
constant c¢. When my = Di_/\z-&-l’ the coefficients coi(ay) of @ € Jpx(1)l4, are zero
except for k = ko= —2A, + 1 and k = k(mod 2). The coefficient function cg k,(a,)
is EM*2 up to constants and the other coefficients are given by the formula (7.10)
for zy = —A, inductively.

The ‘symmetric’ argument shows the following result.

THEOREM 7.11. Let n and t; be as in Theorem 7.6, and let (p, F,) = (py, o»
Wr, ® Uy) be an irreducible unitary representation of Ry of type 0. Then the space
T p.(ts) is not zero iff D_,, .y or Dy ., and for such m; we have dim 7, »(1;) =
dimJ, (v;) =1. When m =D_, ., ¢ €Tpa(t)ly, can be written as
co.0(a)(Wa,—1 ® u) ® v}) by the coefficient function coo(a,) = ¢ - EMF2 with some con-
stant ¢. When ny = Dy 4, the coefficients cox(ay) of ¢ € T (i) 4, are zero except
Jor k<ko=—A1— Ay and k =ko(mod 2). The coefficient function coy,(a,) is
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EM*2 up 1o constants and the other coefficients are given by the formula

(d; —k + Vo r(ar) = (A1 + Ax + k = 2)co k—2(ay)

inductively.

8. The Case of p = Ind ﬁf}ﬂr

Let (p, Fp) = (Indﬁg 1., F,) be an irreducible unitary representation which is not of
type m. Then, for the intertwining space 7, ,, we have

I, =Hom(y, x)(m, C*Ind§, (Ind}’n,))

=Hom, x)(m, C*Ind§; (Ind}/n,).)
CHomgg, x)(n, C*Indf (C*Indy'n,))
~Homy,. x)(, C°°Ind§f,0nr) =7,

where (@), is the smooth representation associated with a representation ® on the
subspace of all smooth vectors for ®. We consider the space Z, , instead of Z, ;.

Let r# 0. Then #, is a non-degenerate character of the maximal unipotent
subgroup Ny of G and, hence, the space Z, , becomes the space of ordinary algebraic
Whittaker models for 7. Denote the subspace of Z, , with moderate growth (cf. [14;
(8.1)]) by Z; . The following multiplicity theorem was proved by Shalika [15],
Kostant [9], Wallach [17], and Oda [13].

THEOREM 8.1. Let r # 0.

(1)  For a holomorphic or an anti-holomorphic deiscrete series representation w, we have
Trn=1;,=1{0}

(2) Foralarge discrete series representation m, we have dimZ, ; = 4and dimZ; < 1.
Moreover, dimZ; = 1iff nis of type Il and r > 0 or m is of type Ill and r < 0.

For r =0, the character y, is a degenerate one for which we cannot apply the
multiplicity theorem of Shalika and Kostant.

THEOREM 8.2.

(1)  Fora holomorphic or an anti-holomorphic deiscrete series representation w, we have
Ton =15, =1{0}.

(2) Foralarge discrete series representation m, we have dimZy , = 4and dimZ, = 2.

Proof. In analogy to the paper of Oda [13], this theorem can be shown by solving

systems of differential equations that characterizes the space Z . These systems

are induced from the Cauchy-Riemann theorem (for (1)) and Yamashita [19;
Theorem 2.4] (for (2)). O
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Appendix: Meijer’s G-Functions

In this appendix we recall some basic facts of the G-functions of Meijer briefly. Our
main references are the original papers of Meijer [11; I, II], and also we refer to
the famous table in [3].

A.l. DEFINITION AND BASIC PROPERTIES
Suppose that m, n, p and ¢ are integers such that
0<m<gqg, 0<n<p<gq, l<gq. (A.1)
Moreover, suppose that a variable x satisfies the inequalities
x#£0, |x]<1 ifp=¢q; x#0 if p<gq. (A.2)
DEFINITION A.1. Let (m, n, p, q) be as (A.1). The Meijer’s G-function G}''(x) with
the parameters a; and b; (1 <i<p, 1 <j <q) is the function
Gm,n( ) - G a, ..., 4
ra =g\ My b,
1 [T T =D TA —ai + 1)
2nv/—1J1 H;Izm+1 (1 —b;+1) H?=n+l I'(a; —1)

x'dt,

where the contour L is a loop starting and ending at 400 and encircling all poles of
I'(b; — 1) (1 <j<m) once in the negative direction, but none of the poles of
I'd—a;+ 1) (1 <i<n). Here an empty product is interpreted as 1, and the par-
ameters satisfy

ai—bj #1,2,3,... (1<i<n, 1<j<m), (A.3)

that is, no pole of I'(h; — 1) (1 <j < m) coincides with any pole of I'(1 —a; +¢)
(1<i<n).

The integral in Definition A.1 converges for x in (A.2) from the asymptotic
expansion of the gamma function. If

pt+qg<2m+n) and |argx| < <m+n —#)n,

we may exchange the contour L for another one which runs from —ioco to +ico so that
all poles of I'(h; — t) (1 <j < m) are to the right, and all the poles of I'(1 — a; + 7)
(1 <i<n) to the left.

Clearly GZf’q”(x) is a symmetric function of ay, .. .a,, of a,11, ... a,, of by, ... by, and
of bm+1, .. .bq.

Assume that the parameters b; satisfy

bi—by#£0,£1, 42, .. A<j<m 1<h<m j#h). (A.4)
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Then the function G'/(x) has an expression by the generalized hypergeometric func-

. q
tion ,F,_i:
al, ..., ap
Gm,n
P4 (x bl,...,bq>
w T TG = b [T T+ by — @)
Jj#h i (A5)

T T DA+ by — b)) T Ty — by)

1+bh—a1,...,1+bh—ap
F,_ (=1 " x ),
Xpq1<1+bh—b1,.’f.,1+bh—bq -y x)

where ,F,_; is defined by

A, (T T +n)f5 T(B) x"
qu—l(ﬁl,...,ﬁqpl’x>_Z<n T(x;) gr(ﬁjin))'n!’

n=1 \i=1

for x in (A.2), and the asterisk means that the number 1 + b, — by, is to be omitted in

the sequence 1+ b, — b1, ..., 14+ b, — b,. In particular, we have the relation
e " b 1 b —
G (x b?c) =X T W (), k= % —a, w=" < (A.6)

with the Whittaker function W, , (cf.[3; p. 264]) from (A.5) and the transformation
theorem of Kummer; e™ Fi(a; b; x) = 1Fi(b — a; b; —x).
The following formulas are immediately deduced from the definition:

e ati,...,a _ ot ([ a, ..., a ; Sl o

P bi,....bgy,ar) PR\ by, by )] P gz 5 ¢
(A.7)

m,n Cl],...,ap _ pm—1ln al,...,ap_l S

Gra (x apabz,.uqu) _Gpl’ql<x by, ..., b, )’ m,p,q=1, n<p,
(A.8)

o m.n ai, yp \ _ ~mn a+o,...,a,+a

XG”“’<X by, ,bq>_G/”i<x b1+a,...,bq+a)' (A9)

A.2. DIFFERENTIAL EQUATIONS

Let (m, n, p, q) be as (A.1) and let us assume that the parameters ¢; and b; (1 <i < p,
1 <j <gq) satisfy (A.3). Now we consider the following homogeneous linear
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differential equation of ¢-th order;

Jj=1

)4 q
{(—1)”_’”_"x [[e-a+D-]]@- b,)}y =0. (A.10)
i=1

If p < g, the only singularities of (A.10) are x = 0 and oo, where x = 0 is a regular
singularity and x = oo is an irregular one. On the other hand, if p = ¢, then
x =0, 00 and (—1)’~""" are the only singularities of (A.10) and these are all regular.
Suppose further that the parameters b; satisfy (A.4). We find that the ¢ functions

als 'sap

(m4n—p—1)n/=1bj, ~1,p P+1—m—nyn/—1 .. <h<

satisfy the differential equation (A.10), where the asterisk means that the number b,
is to be omitted in the sequence b1, ..., b,. Obviously the ¢ functions (A.11) are
mutually linearly independent from the expression (A.5), and thus they form a fun-
damental system of solutions for the neighborhood of x = 0. If the parameters
b; do not satisfy (A.4), then some of (A.11) must be replaced by expressions involving
logarithmic terms.

Next we determine a fundamental system of solutions of (A.10) for the
neighborhood of x = oco. We treat only the case p < ¢ since the case p = ¢ does
not appear throughout this paper. Because x = oo is an irregular singularity, x must
be restricted to a sector for the neighborhood of x = oco. To every value of | arg x|, we
can take two integers A and o such that

— 2
largx+ (g —m —n—2/+ x| <%n, (A.12)
largx+(g—m—n—=2Y)n| < (q—p+e)n (A.13)

fory =0, o+1,...,04+g—p—1.Heree=1lifg=p+1,ande=1ifg=>p+2.
Let us assume that the parameters a; satisfy

aj—an#0,4£1,42,... 1<j<p, 1<h<p, j#h). (A.14)

We consider the p functions

q,1 (g—m—n—=2/+1)n/—=1| 41> A1, - ., ap <t <
GM(“ by, ....by ) Isisp, (A.15)
and ¢ — p functions
Gg:g(xe(q_m—n—zl//)ﬂ\/—_l Iajir ' ' : ) Zl;)’ (0)] S l// < w + q —p — 1, (A.16)

where the asterisk means that the number a, is to be omitted in the sequence
ai, ..., a,. The following lemma is proved by Barnes.
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LEMMA A.2.
(1) Under the condition (A.3) for i =t the function

q,1
Gp,q (x

ap, ay, .t ap

<t <
bi.....b, ) I<t<p,

has the asymptotic expansion

—1+a,

X

Gq’l(x at,al,.’f.,ap> N L T +b;—a)
P4 bi,.... by %1 Ir'ad+a—a)
i#t

o (VHbi—aed4b—a
o] l+a—a,.* 1+a,—a, x)’

as |x| > ooin |arg x| < %(q — p + 2)n, where the asterisk means that the number
14+ a; — a; is to be omitted in the sequence 1 +a; —a;, ..., 1+ a, —a,.
(2) The function Gg*g(x‘ P ZP> has the asymptotic expansion
X A .

g—p—1

ai,...,ap Ne(p_q)xﬁxg (27lf) 2 +M1 +M2+
bi.....b 5w

q—PpP xi» xir

q,0
Gp,q (x

as |x| — oo in |argx| < (¢ — p + ¢)n, where the parameter 3 is given by
1 p—q + 1 q 4
e G e W 3
q4—p < 2 j=1 i=1

and the coefficients M; do not depend on x but on the parameters a; and b;.

From Lemma A.2, the p functions (A.15) and ¢ — p functions (A.16) are mutually
linearly independent. Therefore these ¢ functions forms a fundamental system of
solutions of (A.10) for the neighborhood of x = co under the conditions (A.12),
(A.13) and (A.14).

In this paper, we need the above results for the cases of (p, ¢) = (2, 3) and (1, 2)
especially.
LEMMA A.J3. Suppose that aj—Db;#1,2,3,... (1<i<2, 1<j<3), a—

ay #0,+£1,42,..., —3n <argx <in and x#0. Then the linear differential
equation of 3-rd order

TP P L RRRY S (A.17)
X' T T o ()x g an(x) y = .
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with

OCQ(X)=3—b1 — by — by + x,
a1(x) = (1 = b1)(1 = bo)(1 = b3) + bibabs + (3 — a1 — ap)x,
(X)) = —b1bab3 + (1 — a))(1 — ax)x

has a fundamental system of three linearly independent solutions in the neighborhood

of x = oo given by
ap, a
G3,l (xem/—_l >’ G3,1 (xen«/—_l
3 by, by, b3 =

ay, a
Gg’g x .
’ by, by, bs
The asymptotic expansions of these three functions are given in Lemma A.2 for

».9) =(2,3).

ap, dj
d
b, ba, b3> an

LEMMA A.4. Suppose thatay — b; #1,2,3,... (1<j<2), —%n <argx < %n and
x # 0. Then the linear differential equation of 2-nd order

SN I I (A.18)
X T A g+ b gy = .

with
ﬁl(x)zl—bl — by +x, ﬁo(x):b1b2+(1—a1)x

has a fundamental system of two linearly independent solutions for the neighborhood

of x = oo given by
aj 2,0 ai
by, b2> and Gy, (x b b2>'

GiA (e
The asymptotic expansions of these two functions are given in Lemma A.2 for
(»,q) = (1,2). Here the function Gi%(x bflbz ) has the expression (A.6) by the
Whittaker function W, ,(x).
Remark. Even if some of the differences a; — b; take the positive integer values, the
unique solution of the differential equation (A.17) (resp. (A.18)) with exponential
asymptotics is given by the function G;:g(x) (resp. G%:g(x)) up to constant multiple.
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