Canad. Math. Bull. Vol. 17 (2), 1974.

SOME FIXED AND COMMON FIXED POINT THEOREMS IN METRIC SPACES

BY V. M. SEHGAL

Let (X, d) be a metric space and T_i (i=1, 2) be self mappings of X. The purpose of this paper is to investigate the fixed and common fixed points of T_i , when the pair T_i (i=1, 2) satisfies a condition of the following type:

(1)
$$d(T_1x, T_2y) \leq \Psi(d(x, T_1x), d(y, T_2y), d(x, y)) \qquad x, y \in X,$$

where Ψ is some real valued function defined on a subset of $R \times R \times R$ (R=reals). Special cases of (1) have been discussed by Rakotch [5] and more recently by Boyd and Wong [1], Fukushime [2], Kannan [3], Maki [4], Reich [6, 7], Sehgal [8], Singh [9], Srivastava and Gupta [10] and others. The results presented here generalize some of the results of these authors.

Throughout this paper, (X, d) is a complete metric space, Q is the closure of the set $\{d(x, y): x, y \in X\}$ and $P = Q \times Q \times Q$. A function $\Psi: P \to R^+$ (non-negative reals) is right continuous iff (a_{n1}, a_{n2}, a_{n3}) , $(a_1, a_2, a_3) \in P$ and $a_{nk} \downarrow a_k$, k=1, 2, 3 ($\downarrow =$ decreasing), then $\Psi(a_{n1}, a_{n2}, a_{n3}) \to \Psi(a_1, a_2, a_3)$. The function Ψ will be called symmetric iff $\Psi(a, b, c) = \Psi(b, a, c)$ for all $(a, b, c) \in P$.

Further, the mappings T_i (i=1, 2) satisfy a (I_1, I_2, Ψ, k) functional inequality iff for each i (i=1, 2), there is a mapping $I_i: T_i \times X \to I^+$ (positive integers) such that if $n(x)=I_1(T_1, x)$ and $m(x)=I_2(T_2, x)$, then

(2)
$$d(T_1^{n(x)}x, T_2^{m(y)}y) \le k\Psi(d(x, T_1^{n(x)}x), d(y, T_2^{m(y)}y), d(x, y)),$$

for all $x, y \in X$, where k is some real constant, and $\Psi: P \to R^+$ is a symmetric right continuous function. If (2) holds for k=1, then (I_1, I_2, Ψ) will denote $(I_1, I_2, \Psi, 1)$.

THEOREM 1. Let the mappings $T_i: X \to X$ (i=1, 2), satisfy a (I_1, I_2, Ψ, k) functional inequality for some k < 1. If (i) $\Psi(a, b, a) \le \max\{a, b\}$, $(a, b, a) \in P$, then there exists a $\xi \in X$ such that

(3)
$$T_1^{n(\xi)} = T_2^{m(\xi)} \xi = \xi.$$

If (ii) $\Psi(0, 0, a) \leq a$ for each $a \in Q$, then ξ is unique satisfying (3).

Proof. Let $x_0 \in X$ and define $x_1 = T_1^{n(x_0)} x_0$, $x_2 = T_2^{m(x_1)} x_1$, and inductively

$$x_{2n} = T_2^{m(x_{2n-1})} x_{2n-1}, \qquad x_{2n+1} = T_1^{n(x_{2n})} x_{2n}.$$

Then,

$$d(x_{2n}, x_{2n+1}) \le k \Psi(d(x_{2n-1}, x_{2n}), (x_{2n}, x_{2n+1}), d(x_{2n-1}, x_{2n})).$$
257

Since k < 1, it follows by (i) that

(4)
$$d(x_{2n}, x_{2n+1}) \le k d(x_{2n-1}, x_{2n})$$

Similarly, we have

(5)
$$d(x_{2n-1}, x_{2n}) \leq k d(x_{2n-2}, x_{2n-1}).$$

Thus, $\{d(x_n, x_{n+1})\}$ is a non-increasing sequence of reals and it is obvious from (4) and (5) that $d(x_n, x_{n+1}) \leq k^n d(x_0, x_1) \to 0$ as $n \to \infty$. It follows therefore, that $\{x_n\}$ is a Cauchy sequence in X. Let $x_n \to \xi$. To show $T_1^{n(\xi)}\xi = T_2^{m(\xi)}\xi = \xi$, choose a subsequence $\{x_{2n(i)}\}$ of the sequence $\{x_{2n}\}$ such that $d(x_{2n(i)}, \xi) \downarrow 0$. Then

 $d(x_{2n(i)+1}, T_2^{m(\xi)}\xi) \le k \Psi(d(x_{2n(i)}, x_{2n(i)+1}), d(\xi, T_2^{m(\xi)}\xi), d(x_{2n(i)}, \xi))$

Therefore, as $i \to \infty$, we obtain

 $d(\xi, T_2^{m(\xi)}\xi) \le k\Psi(0, d(\xi, T_2^{m(\xi)}\xi), 0) \le kd(\xi, T_2^{m(\xi)}\xi),$

that is $T_{\mathbf{z}}^{m(\xi)}\xi = \xi$. Choosing a subsequence $\{x_{2n(k)+1}\}$ of the sequence $\{x_{2n+1}\}$ such that $d(x_{2n(k)+1}, \xi) \downarrow 0$, we obtain similarly $T_{\mathbf{z}}^{n(\xi)}\xi = \xi$.

Now, suppose Ψ satisfies (*ii*) and there is a $u \in X$ such that $T_2^{m(u)}u = T_1^{n(u)}u = u$. Then

$$d(\xi, u) = d(T_1^{n(\xi)}\xi, T_2^{m(u)}u) \le k\Psi(0, 0, d(\xi, u)) \le kd(\xi, u).$$

Thus ξ is unique element satisfying (3).

If I_i (i=1, 2) are the mappings introduced earlier, then we have

COROLLARY 1. Let the mappings $T_i: X \to X$ (i=1, 2) satisfy either of the following conditions

(6) $d(T_1^{n(x)}x, T_2^{m(y)}y) \le k \max\{d(x, T_1^{n(x)}x), d(y, T_2^{m(y)}y), d(x, y)\}$

for some k < 1,

(7) $d(T_1^{n(x)}x, T_2^{m(y)}y) \le \alpha d(x, T_1^{n(x)}x) + \beta d(y, T_2^{m(y)}y) + \gamma d(x, y),$

for some non negative reals α , β , γ satisfying $\alpha + \beta + \gamma < 1$.

Then there exists a unique $\xi \in X$ such that $T_1^{n(\xi)}\xi = T_2^{m(\xi)}\xi = \xi$.

Proof. If (6) holds, set $\Psi(a, b, c) = \max\{a, b, c\}$ in Theorem 1. In case of (7), let $k = \alpha + \beta + \gamma$. Then (7) implies (6) and the desired result follows from previous part.

In the special case when I_1 and I_2 are constant mappings, we have

THEOREM 2. Let for some positive integers m and n, the mappings $T_i: X \to X$ (i=1, 2) satisfy for all $x, y \in X$,

(8)
$$d(T_1^n x, T_2^m y) \le k \Psi(d(x, T_1^n x), d(y, T_2^m y), d(x, y))$$

where k < 1 and the function $\Psi: P \to R^+$ is symmetric and right continuous. If Ψ satisfies condition (i) and (ii) of Theorem 1, then T_i (i=1, 2) have a unique common fixed point $\xi \in X$.

Proof. By Theorem 1, there is a unique $\xi \in X$ such that $T_1^n \xi = T_2^m \xi =$. It now follows from (8) that ξ is the unique fixed point of T_1^n , in fact if $T_1^n u = u$ for some $u \in X$, then

$$d(u,\xi) = d(T_1^n u, T_2^m \xi) \le k \Psi(0, 0, d(u,\xi)) \le k d(u,\xi),$$

which implies $\xi = u$. Since $T_1^n(T_1\xi) = T_1\xi$, we have $T_1\xi = \xi$. Similarly, $T_2\xi = \xi$.

COROLLARY 2. Let for some positive integers m and n, the mappings $T_i: X \to X$ satisfy the condition

(9)
$$d(T_1^n x, T_2^m y) \le k \max\{d(x, T_1^n x), d(y, T_2^m y), d(x, y)\}$$

for k < 1 and for all $x, y \in X$. Then T_i (i=1, 2) have a unique common fixed point in X.

COROLLARY 3. If for some positive integers m and n, the mappings $Ti: X \to X$ (i=1, 2) satisfy the inequality

(10)
$$d(T_1^n x, T_2^m y) \le \alpha d(x, T_1^n x) + \beta d(y, T_2^m y) + \gamma d(x, y)$$

for some non-negative reals α , β , γ with $\alpha + \beta + \gamma < 1$, then T_i (i=1, 2) have a unique common fixed point in X.

REMARKS. (i) If we set n=m and $T_1=T_2=T$ in (10), then we obtain a result of Reich [6]. (ii) if $\gamma=0$ in (10) then Corollary 3 yields a recent result of Srivastava and Gupta [10].

It may be noted that if k=1 in (2), the conclusion is no longer valid in Theorem 1. However, if Ψ satisfies a condition similar to Rakotch [5] or Boyd and Wong [1], we could obtain a fixed point theorem for mappings T_i (i=1, 2) satisfying a (I_1, I_2, Ψ) functional inequality. Such results will be published in a subsequent paper.

References

1. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.

2. H. Fukushima, On non-contractive mappings, Yokohama Math. J., 1 (1971), 29-34.

3. R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405-408.

4. H. Maki, Remark on fixed point of k-regular mappings (private communication).

5. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459-465.

6. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 1 (1971), 121-124.

7. S. Reich, Kannan's fixed point Theorem, Bollettino U.M.I., 4 (1971), 1-11.

8. V. M. Sehgal, On fixed and periodic fixed points for a class of mappings, J. London Math. Soc. (to appear).

9. S. P. Singh, On fixed points, Institut Mathématique, 25 (1971), 29-32.

10. P. Srivastava and V. K. Gupta, A note on common fixed points, Yokohama Math. Journal, vol. XIX, No. 2 (1971), 91-95.

UNIVERSITY OF WYOMING LARAMIE, WYOMING 82070 U.S.A.

1974]