SOME FIXED AND COMMON FIXED POINT THEOREMS IN METRIC SPACES

BY
V. M. SEHGAL

Let (X, d) be a metric space and $T_{i}(i=1,2)$ be self mappings of X. The purpose of this paper is to investigate the fixed and common fixed points of T_{i}, when the pair $T_{i}(i=1,2)$ satisfies a condition of the following type:

$$
\begin{equation*}
d\left(T_{1} x, T_{2} y\right) \leq \Psi\left(d\left(x, T_{1} x\right), d\left(y, T_{2} y\right) . d(x, y)\right) \quad x, y \in X \tag{1}
\end{equation*}
$$

where Ψ is some real valued function defined on a subset of $R \times R \times R$ ($R=$ reals). Special cases of (1) have been discussed by Rakotch [5] and more recently by Boyd and Wong [1], Fukushime [2], Kannan [3], Maki [4], Reich [6, 7], Sehgal [8], Singh [9], Srivastava and Gupta [10] and others. The results presented here generalize some of the results of these authors.
Throughout this paper, (X, d) is a complete metric space, Q is the closure of the set $\{d(x, y): x, y \in X\}$ and $P=Q \times Q \times Q$. A function $\Psi: P \rightarrow R^{+}$(non-negative reals) is right continuous iff $\left(a_{n 1}, a_{n 2}, a_{n 3}\right),\left(a_{1}, a_{2}, a_{3}\right) \in P$ and $a_{n k} \downarrow a_{k}, k=1,2,3$ ($\downarrow=$ decreasing), then $\Psi\left(a_{n 1}, a_{n 2}, a_{n 3}\right) \rightarrow \Psi\left(a_{1}, a_{2}, a_{3}\right)$. The function Ψ will be called symmetric iff $\Psi(a, b, c)=\Psi(b, a, c)$ for all $(a, b, c) \in P$.

Further, the mappings $T_{i}(i=1,2)$ satisfy a $\left(I_{1}, I_{2}, \Psi, k\right)$ functional inequality iff for each $i\left(i=1,2\right.$), there is a mapping $I_{i}: T_{i} \times X \rightarrow I^{+}$(positive integers) such that if $n(x)=I_{1}\left(T_{1}, x\right)$ and $m(x)=I_{2}\left(T_{2}, x\right)$, then

$$
\begin{equation*}
d\left(T_{1}^{n(x)} x, T_{2}^{m(y)} y\right) \leq k \Psi\left(d\left(x, T_{1}^{n(x)} x\right), d\left(y, T_{2}^{m(y)} y\right), d(x, y)\right) \tag{2}
\end{equation*}
$$

for all $x, y \in X$, where k is some real constant, and $\Psi: P \rightarrow R^{+}$is a symmetric right continuous function. If (2) holds for $k=1$, then (I_{1}, I_{2}, Ψ) will denote ($I_{1}, I_{2}, \Psi, 1$).

Theorem 1. Let the mappings $T_{i}: X \rightarrow X(i=1,2)$, satisfy a $\left(I_{1}, I_{2}, \Psi, k\right)$ functional inequality for some $k<1$. If $(i) \Psi(a, b, a) \leq \max \{a, b\},(a, b, a) \in P$, then there exists a $\xi \in X$ such that

$$
\begin{equation*}
T_{1}^{n(\xi)}=T_{2}^{m(\xi)} \xi=\xi \tag{3}
\end{equation*}
$$

If (ii) $\Psi(0,0, a) \leq a$ for each $a \in Q$, then ξ is unique satisfying (3).
Proof. Let $x_{0} \in X$ and define $x_{1}=T_{1}^{n\left(x_{0}\right)} x_{0}, x_{2}=T_{2}^{m\left(x_{1}\right)} x_{1}$, and inductively

$$
x_{2 n}=T_{2}^{m\left(x_{2 n-1}\right)} x_{2 n-1}, \quad x_{2 n+1}=T_{1}^{n\left(x_{2 n}\right)} x_{2 n}
$$

Then,

$$
d\left(x_{2 n}, x_{2 n+1}\right) \leq k \Psi\left(d\left(x_{2 n-1}, x_{2 n}\right),\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right)
$$

Since $k<1$, it follows by (i) that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq k d\left(x_{2 n-1} \cdot x_{2 n}\right) . \tag{4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
d\left(x_{2 n-1}, x_{2 n}\right) \leq k d\left(x_{2 n-2}, x_{2 n-1}\right) \tag{5}
\end{equation*}
$$

Thus, $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a non-increasing sequence of reals and it is obvious from (4) and (5) that $d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right) \rightarrow 0$ as $n \rightarrow \infty$. It follows therefore, that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Let $x_{n} \rightarrow \xi$. To show $T_{1}^{n(\xi)} \xi=T_{2}^{m(\xi)} \xi=\xi$, choose a subsequence $\left\{x_{2 n(i)}\right\}$ of the sequence $\left\{x_{2 n}\right\}$ such that $d\left(x_{2 n(i)}, \xi\right) \downarrow 0$. Then

$$
d\left(x_{2 n(i)+1}, T_{2}^{m(\xi)} \xi\right) \leq k \Psi\left(d\left(x_{2 n(i)}, x_{2 n(i)+1}\right), d\left(\xi, T_{2}^{m(\xi)} \xi\right), d\left(x_{2 n(i)}, \xi\right)\right)
$$

Therefore, as $i \rightarrow \infty$, we obtain

$$
d\left(\xi, T_{2}^{m(\xi)} \xi\right) \leq k \Psi\left(0, d\left(\xi, T_{2}^{m(\xi)} \xi\right), 0\right) \leq k d\left(\xi, T_{2}^{m(\xi)} \xi\right)
$$

that is $T_{2}^{m(\xi)} \xi=\xi$. Choosing a subsequence $\left\{x_{2 n(k)+1}\right\}$ of the sequence $\left\{x_{2 n+1}\right\}$ such that $d\left(x_{2 n(k)+1}, \xi\right) \downarrow 0$, we obtain similarly $T_{1}^{n(\xi)} \xi=\xi$.
Now, suppose Ψ satisfies (ii) and there is a $u \in X$ such that $T_{2}^{m(u)} u=T_{1}^{n(u)} u=u$. Then

$$
d(\xi, u)=d\left(T_{1}^{n(\xi)} \xi, T_{2}^{m(u)} u\right) \leq k \Psi(0,0, d(\xi, u)) \leq k d(\xi, u) .
$$

Thus ξ is unique element satisfying (3).
If $I_{i}(i=1,2)$ are the mappings introduced earlier, then we have
Corollary 1. Let the mappings $T_{i}: X \rightarrow X(i=1,2)$ satisfy either of the following conditions

$$
\begin{equation*}
d\left(T_{1}^{n(x)} x, T_{2}^{m(y)} y\right) \leq k \max \left\{d\left(x, T_{1}^{n(x)} x\right), d\left(y, T_{2}^{m(y)} y\right), d(x, y)\right\} \quad \text { for some } k<1, \tag{6}
\end{equation*}
$$

$$
\begin{align*}
d\left(T_{1}^{n(x)} x, T_{2}^{m(y)} y\right) & \leq \alpha d\left(x, T_{1}^{n(x)} x\right)+\beta d\left(y, T_{2}^{m(y)} y\right)+\gamma d(x, y) \tag{7}\\
& \text { for some non negative reals } \alpha, \beta, \gamma \text { satisfying } \alpha+\beta+\gamma<1 .
\end{align*}
$$

Then there exists a unique $\xi \in X$ such that $T_{1}^{n(\xi)} \xi=T_{2}^{m(\xi)} \xi=\xi$.
Proof. If (6) holds, set $\Psi(a, b, c)=\max \{a, b, c\}$ in Theorem 1. In case of (7), let $k=\alpha+\beta+\gamma$. Then (7) implies (6) and the desired result follows from previous part.

In the special case when I_{1} and I_{2} are constant mappings, we have
Theorem 2. Let for some positive integers m and n, the mappings $T_{i}: X \rightarrow X$ $(i=1,2)$ satisfy for all $x, y \in X$,

$$
\begin{equation*}
d\left(T_{1}^{n} x, T_{2}^{m} y\right) \leq k \Psi\left(d\left(x, T_{1}^{n} x\right), d\left(y, T_{2}^{m} y\right), d(x, y)\right) \tag{8}
\end{equation*}
$$

where $k<1$ and the function $\Psi: P \rightarrow R^{+}$is symmetric and right continuous. If Ψ satisfies condition (i) and (ii) of Theorem 1 , then $T_{i}(i=1,2)$ have a unique common fixed point $\xi \in X$.

Proof. By Theorem 1, there is a unique $\xi \in X$ such that $T_{1}^{n} \xi=T_{2}^{m} \xi=$. It now follows from (8) that ξ is the unique fixed point of T_{1}^{n}, in fact if $T_{1}^{n} u=u$ for some $u \in X$, then

$$
d(u, \xi)=d\left(T_{1}^{n} u, T_{2}^{m} \xi\right) \leq k \Psi(0,0, d(u, \xi)) \leq k d(u, \xi),
$$

which implies $\xi=u$. Since $T_{1}^{n}\left(T_{1} \xi\right)=T_{1} \xi$, we have $T_{1} \xi=\xi$. Similarly, $T_{2} \xi=\xi$.
Corollary 2. Let for some positive integers m and n, the mappings $T_{i}: X \rightarrow X$ satisfy the condition

$$
\begin{equation*}
d\left(T_{1}^{n} x, T_{2}^{m} y\right) \leq k \max \left\{d\left(x, T_{1}^{n} x\right), d\left(y, T_{2}^{m} y\right), d(x, y)\right\} \tag{9}
\end{equation*}
$$

for $k<1$ and for all $x, y \in X$. Then $T_{i}(i=1,2)$ have a unique common fixed point in X.
Corollary 3. If for some positive integers m and n, the mappings $T i: X \rightarrow X$ $(i=1,2)$ satisfy the inequality

$$
\begin{equation*}
d\left(T_{1}^{n} x, T_{2}^{m} y\right) \leq \alpha d\left(x, T_{1}^{n} x\right)+\beta d\left(y, T_{2}^{m} y\right)+\gamma d(x, y) \tag{10}
\end{equation*}
$$

for some non-negative reals α, β, γ with $\alpha+\beta+\gamma<1$, then $T_{i}(i=1,2)$ have a unique common fixed point in X.

Remarks. (i) If we set $n=m$ and $T_{1}=T_{2}=T$ in (10), then we obtain a result of Reich [6]. (ii) if $\gamma=0$ in (10) then Corollary 3 yields a recent result of Srivastava and Gupta [10].

It may be noted that if $k=1$ in (2), the conclusion is no longer valid in Theorem 1. However, if Ψ satisfies a condition similar to Rakotch [5] or Boyd and Wong [1], we could obtain a fixed point theorem for mappings $T_{i}(i=1,2)$ satisfying a $\left(I_{1}, I_{2}, \Psi\right)$ functional inequality. Such results will be published in a subsequent paper.

References

1. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
2. H. Fukushima, On non-contractive mappings, Yokohama Math. J., 1 (1971), 29-34.
3. R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405-408.
4. H. Maki, Remark on fixed point of k-regular mappings (private communication).
5. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459-465.
6. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 1 (1971), 121-124.
7. S. Reich, Kannan's fixed point Theorem, Bollettino U.M.I., 4 (1971), 1-11.
8. V. M. Sehgal, On fixed and periodic fixed points for a class of mappings, J. London Math. Soc. (to appear).
9. S. P. Singh, On fixed points, Institut Mathématique, 25 (1971), 29-32.
10. P. Srivastava and V. K. Gupta, A note on common fixed points, Yokohama Math. Journal, vol. XIX, No. 2 (1971), 91-95.

University of Wyoming Laramie, Wyoming 82070
U.S.A.

