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Water wave propagation through arrays of closely
spaced surface-piercing vertical barriers
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This paper presents and compares two different approaches to solving the problem of wave
propagation across a large finite periodic array of surface-piercing vertical barriers. Both
approaches are formulated in terms of a pair of integral equations, one exact and based
on a spacing δ > 0 between adjacent barriers and the other approximate and based on
a continuum model formally developed by using homogenisation methods for small δ.
It is shown that the approximate method is simpler to evaluate than the exact method
which requires eigenvalues and eigenmodes related to propagation in an equivalent infinite
periodic array of barriers. In both methods, the numerical effort required to solve problems
is independent of the size of the array. The comparison between the two methods allows us
to draw important conclusions about the validity of homogenisation models of plate array
metamaterial devices. The practical interest in this problem stems from the result that
for an array of barriers there exists a critical value of radian frequency, ωc, dependent
on δ, below which waves propagate through the array and above which it results in
wave decay. When δ → 0, the critical frequency is given by ωc = √

g/d, where d is
the plate submergence and g is the acceleration due to gravity, which relates to the
resonance in narrow channels and is an example of local resonance, studied extensively
in metamaterials. The results have implications for proposed schemes to harness energy
from ocean waves and other problems related to rainbow trapping and rainbow reflection.

Key words: wave scattering

1. Introduction

Problems involving the reflection and transmission of waves by thin vertical
surface-piercing barriers under classical linearised theory have been the subject of research
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over many decades. For a fluid of infinite depth, Ursell (1947) obtained an explicit solution
for monochromatic waves normally incident upon a single barrier. When the fluid has a
constant finite depth, Porter & Evans (1995) showed how to obtain accurate numerical
solutions which provide upper and lower bounds on reflected and transmitted amplitudes
by formulating complementary integral equations. They also produced numerical results
for a pair of identical surface-piercing barriers, reproducing and extending results of
Evans & Morris (1972), Newman (1974) and McIver (1985). Notably, Newman (1974)
had shown, using matched asymptotic methods, that a pair of closely spaced barriers can
totally transmit or reflect incoming wave energy at angular frequencies in the vicinity of a
critical value of ωc = √

g/d related to the vertical fluid resonance in the narrow column
between the two vertical plates, where d is the depth of submergence of the plates and g is
the acceleration due to gravity. Evans (1978) later used this idea to model the operation of
a narrow oscillating water column wave energy device. Non-identical barriers and arrays
of more than two barriers have been considered by a number of authors including Evans
& Porter (1997) and Roy, De & Mandal (2019).

More recently, Wilks, Montiel & Wakes (2022) have considered larger arrays of closely
spaced barriers whose submergence increases gradually in the direction of the incident
wave, i.e. so-called ‘graded array’. The graded array is a specific type of metamaterial that
refers to a material designed to have specific properties not found in naturally occurring
materials and typically consists of repeating sub-wavelength structures. The graded array
in Wilks et al. (2022) is designed to be resonant at multiple frequencies associated with the
variable fluid column lengths across the array such that high reflection is sustained across
a broad range of frequencies, known as rainbow reflection. Similar ideas based on local
internal resonance provided by the displacement of the surface have been implemented in
water waves using C-ring cylinders in channels, rather than vertical barriers, by Dupont
et al. (2017), Bennetts, Peter & Craster (2018), Archer et al. (2020), etc. Large arrays of
floating buoys which resonate on the surface of the fluid with elements that either possess
constant properties or vary in space have been considered for wave energy harvesting
applications by, for example, Garnaud & Mei (2009) and Porter (2021), as well as by Wilks
et al. (2022). Arrays of resonators have been used to produce similar rainbow reflection
on acoustic wave transmission in waveguides in the form of cavities attached to sidewalls
(e.g. Tang 2012; Jiménez et al. 2017; Jan & Porter 2018) and on surface wave propagation
in elasticity (e.g. Colquitt et al. 2017) in the form of mechanical oscillators attached to the
surface of an elastic half-space.

In this paper, we return to consider large periodic arrays of surface-piercing vertical
barriers which are equally spaced and submerged to the same constant depth, being
simpler than the graded array problem. Part of the motivation for looking at this
problem is to characterise the effects of resonance on models which are based on
low-frequency homogenisation of plate array structures. This approximation replaces the
discrete structure of the array by a continuous effective medium under an assumed contrast
in scales between the wavelength and the spacing between plates. This approximation
allows problems of a large array of closely spaced plates to be solved more easily and
has been used to consider the interaction of waves with metamaterial structures (e.g. Jan
& Porter 2018; Liu et al. 2018; Zheng, Porter & Greaves 2020). Away from resonant
conditions, results from homogenisation of plate array structures compare favourably
with those derived from the application of direct numerical methods for discrete arrays
(e.g. Zheng et al. (2020) and Porter, Zheng & Liang (2022), where comparison is made
with boundary integral methods). However, low-frequency homogenisation fails when
undamped fluid motion in narrow channels is resonant, occurring at the critical frequency
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Wave propagation through arrays of barriers

ωc indicated above. This is an example of the well-known phenomenon of local resonance
in metamaterials (e.g. Ma & Sheng 2016).

By assuming a periodic array with barriers having an equal depth of submergence, d,
we allow ourselves the opportunity of making an analytic comparison between a direct
solution of the discrete array of N + 1 plates separated by a non-zero distance δ and
homogenisation methods based on δ/d � 1 in order to understand issues relating to
resonance. In particular, periodicity allows us to exploit Bloch–Floquet methods which
are associated with the corresponding infinite periodic arrays. When considering the
scattering by a finite number of identical elements arranged periodically in an array, a naive
approach is to apply direct multiple scattering methods, which leads to a large coupled
system (examples are given in Linton & McIver (2001)). For quasi-one-dimensional
scattering systems, such as the one we consider here, transfer and scattering matrices are
often used to reduce the computational effort, in which wave information is propagated left
and right (see Porter & Porter 2003; Wilks et al. 2022). For the transfer matrix method,
reflection and transmission across the array are expressed as products of matrices which
encode the scattering characteristics of a single element by converting incoming modes
consisting of both propagating and a truncated set of evanescent waves into outgoing
modes. This becomes impractical when considering closely spaced arrays since the size
of the matrix must increase to capture a greater number of mode interactions as the
value of δ/d is decreased. Results showed that for an infinite periodic array there exist
ranges of frequencies for which wave propagation through the structure is prohibited. For
the constrained mass system in Wilks et al. (2022), they argued that they must replace
scattering matrices in favour of a formulation involving a system of integral equations
which link certain functions at the nth barrier to corresponding functions at the (n ± 1)th
barriers since the wave scattering problem and the equations of motion are needed to be
solved simultaneously.

The frequency ranges indicated above for which wave propagation through the periodic
structures is absolutely forbidden are well known as stop bands and the corresponding
structure is called the band-gap structure. It is shown that the existence of stop
bands is possible for one-dimensional periodically varying topography (e.g. Porter &
Porter 2003; An & Ye 2004). Further, Chen et al. (2004) and Yang et al. (2006)
investigated the band-gap structures of liquid surface waves propagating through an infinite
two-dimensional periodic topography of circle and square hollows, respectively. McIver
(2000) and Linton (2011) also established the existence of a band-gap structure associated
with water waves propagating over infinite periodic arrays of submerged vertical and
horizontal cylinders. If an incident wave is subjected to a finite section of this infinite
array at a certain frequency within such a stop band, most of energy is expected to be
reflected.

In this paper we take a new approach to determining the scattering by periodic arrays
of finite extent and develop concepts introduced in the work of Porter & Porter (2003)
who highlighted connections between finite- and infinite-array problems. Specifically,
they showed that the transfer matrices referred to above could be expressed in terms of
generalised eigenvalues and eigenfunctions of the corresponding periodic Bloch–Floquet
problem representing both propagating and decaying modes. After specifying the infinite
periodic array problem in § 2 we introduce a novel orthogonality relation satisfied by
the Bloch eigenfunctions, which is key to developing a solution in the interior of the
array. Then we present two different forms of solution for the Bloch–Floquet problem
by expanding the velocity potential with different orthogonal functions, each of which
has its own advantages in numerical calculation. Information is now able to propagate
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from the left to the right of the array of N + 1 barriers via a simple product of Bloch
wavenumbers/eigenvalues; this is described in § 4 of the paper.

In § 3 we formally develop the homogenisation approximation for a continuum model,
which relies on a separation of horizontal length scales based on the wavelength and the
array separation, δ. It turns out this assumption is violated as the resonance of fluid in the
narrow channels is approached since solutions are predicted with a propagating wavelength
which tends to zero. The wave scattering problem of this continuum model is solved in § 5.
Numerical results are produced to show the comparison between the exact description of
the finite array and the approximation based on homogenisation in order to demonstrate
how the Bloch–Floquet solution produces accurate and efficient results and to demonstrate
when homogenisation is a reliable approach to take. The work is summarised in § 6.

It is worth pointing out that as the spacing between plates tends to zero, viscous effects
become important in the physical setting. Since our primary interest is to understand
the resonance occurring in metamaterial structures and to evaluate the validity of
homogenisation, the effect of viscosity is not taken into account in the present paper. For a
consideration of the viscous effects the reader is referred to Mei, Stiassnie & Yue (2005),
whose idea has been implemented to consider the energy dissipation in the metamaterial
(see Zheng et al. 2020).

2. The periodic barrier problem

Consider an infinite periodic array of thin barriers with equal spacing δ, which extend
vertically downwards to a depth d below the free surface of a fluid with constant depth
h. Two-dimensional Cartesian coordinates are defined with the origin O in the mean
free surface and z directed vertically upwards, such that barriers occupy {x = xn = nδ
(n ∈ Z), −d < z < 0}.

Under the assumption of an incompressible and inviscid fluid and irrotational flow, the
fluid motion of a single frequency ω can be described by Re{φ(x, z) exp(−iωt)} (in which
t is time), where the spatial velocity potential φ(x, z) satisfies

∇2φ = 0, in the fluid. (2.1)
On the free surface, the combined linearised kinematic and dynamic boundary conditions
result in

Kφ − φz = 0, on z = 0, (2.2)
where K = ω2/g. No-flow conditions apply on fixed rigid boundaries meaning

φx = 0, on x = nδ± (n ∈ Z) for − d < z < 0, (2.3)
where the positive and negative signs denote two sides of the plate, and

φz = 0, on z = −h. (2.4)
Besides, the analysis of the flow close to the edge of the barrier reveals that the fluid
velocity should possess inverse square root behaviour. Finally, since the geometry is
periodic we may invoke the Bloch–Floquet theory which allows us to consider just one
periodic element of the array (here we choose D = {0 < x < δ, −h < z < 0}) provided
we introduce quasi-periodic boundary conditions on those fluid interfaces which connect
one cell to the next. For our choice of D, we require

φ(δ, z) = eiβδφ(0, z)

φx(δ, z) = eiβδφx(0, z)

}
for − h < z < −d, (2.5)

where β is the Bloch wavenumber needed to be determined.
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Wave propagation through arrays of barriers

Momentarily it helps to imagine that λ replaces eiβδ in (2.5). Since the problem is
unchanged by the mapping x → δ − x, if λ is an eigenvalue then λ−1 is another eigenvalue.
Also, if φ is a solution corresponding to λ then φ̄, the complex conjugate of φ, is also a
solution with eigenvalue λ̄. This implies that eigenvalues λ must lie either on the real
axis in reciprocal pairs or on the unit circle in complex conjugate pairs. Returning to β,
this implies that β is a real number or can be expressed as nπ/δ + iγn (where n ∈ Z and
γ ∈ R) and that for every β it is paired with −β.

When β is real, it represents a wavenumber which encodes the phase shift of the fluid
motion as waves propagate across one cell of the infinite periodic array. We note that we
need only consider real values of β ∈ (0,π/δ] since β ′ = β + 2πm/δ for m ∈ Z leaves
the problem unchanged and β ′ = 2π/δ − β results in the same problem with x mapped to
δ − x. That is to say, it reverses the wave direction, but not the solution. When β becomes a
complex number, for similar reasons we only need to consider the case of β being nπ/δ +
iγn (n = 0, 1 and γn ∈ R

+). These values represent a solution with local wave decay from
one cell to the next (i.e. evanescent waves) although the extension to the infinite periodic
array is unphysical.

It can be shown that there is only one real value of β which exists below one certain
frequency and one complex value of β = π/δ + iγ1 that exists above the certain frequency,
which means they will not appear at the same frequency. Meanwhile, there exist a number
of pure imaginary values of β = iγ (k)0 (k = 1, 2, . . .) over the whole frequency range.
Thus, we can label different values of β as β = ±β(k) (k = 0, 1, 2, . . .), where k = 0 is
reserved for an eigenvalue either on the positive real axis or in the complex plane and
k = 1, 2, . . . are used for the pure imaginary values which are ordered with increasing
magnitude along the imaginary axes.

The boundary-value problem described above is homogeneous (that is, free of forcing)
and we can think of β as playing the part of the eigenvalue and φ /= 0 the corresponding
eigenfunction. Thus, each eigenvalue ±β(k) will be associated with a corresponding
eigenfunction which is labelled as φ = φ(±k)(x, z) such that

φ(−k)(x, z) = φ(+k)(δ − x, z), (2.6)

resulting in φ(−0)(x, z) being different from φ(+0)(x, z). In particular, this implies that

φ(−k)(0, z) = exp(iβ(k)δ)φ(+k)(0, z) (2.7)

and

φ(−k)
x (0, z) = − exp(iβ(k)δ)φ(+k)

x (0, z), (2.8)

which will be used extensively later.

2.1. An orthogonality relation
Before we set about solving the eigenproblem, we introduce a useful orthogonality
relation. Consider two eigenfunctions φ(+k)(x, z) and φ(±j)(x, z) satisfying all of the
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conditions of the problem described above. Then from Green’s identity we have

0 =
∫∫

D

[
φ(+k)∇2φ(+j) − φ(+j)∇2φ(+k)

]
dx dz

=
∫

S

[
φ(+k) ∂φ

(+j)

∂n
− φ(+j) ∂φ

(+k)

∂n

]
ds

=
[
exp(i(β(k) + β( j))δ)− 1

] ∫ −d

−h

[
φ(+k) ∂φ

(+j)

∂x
− φ(+j) ∂φ

(+k)

∂x

]
x=0

dz (2.9)

and

0 =
∫∫

D

[
φ(+k)∇2φ(−j) − φ(−j)∇2φ(+k)

]
dx dz

=
∫

S

[
φ(+k) ∂φ

(−j)

∂n
− φ(−j) ∂φ

(+k)

∂n

]
ds

=
[
exp(i(β(k) − β( j))δ)− 1

] ∫ −d

−h

[
φ(+k) ∂φ

(−j)

∂x
− φ(−j) ∂φ

(+k)

∂x

]
x=0

dz, (2.10)

after using the conditions on the boundary, S, of D having elemental arclength ds and
outward normal derivative ∂/∂n. The factor in front of the integral in (2.10) is zero if
β(k) = β( j), while the factor in front of the integral in (2.9) cannot be zero except for β(k) =
β( j) = π/δ, where k = j = 0. Assuming for now that the eigenvalues β(k) are distinct and
β(0) /=π/δ, it follows the following orthogonality relation:∫ −d

−h

[
φ(+k)(0, z)

∂φ(+j)

∂x
(0, z)− φ(+j)(0, z)

∂φ(+k)

∂x
(0, z)

]
dz = 0, (2.11a)

∫ −d

−h

[
φ(+k)(0, z)

∂φ(−j)

∂x
(0, z)− φ(−j)(0, z)

∂φ(+k)

∂x
(0, z)

]
dz = E(+k)δkj, (2.11b)

where E(+k) is a scaling factor defined by

E(+k) =
∫ −d

−h

[
φ(+k)(0, z)

∂φ(−k)

∂x
(0, z)− φ(−k)(0, z)

∂φ(+k)

∂x
(0, z)

]
dz

= −2
∫ −d

−h
φ(−k)(0, z)

∂φ(+k)

∂x
(0, z) dz = −E(−k), (2.12)

after using (2.7) and (2.8).
The special case β(0) = π/δ relates to standing waves in the cell and (2.6) no longer

defines an independent second function since φ(0)(x, z) = φ(+0)(x, z) = φ(−0)(x, z).
Instead, we define φ(0)(x, z) satisfying (2.5) by imposing supplementary constraints:

φ(0)(0, z) = φ(0)(δ, z) = 0 (2.13)

or
φ(0)x (0, z) = φ(0)x (δ, z) = 0, (2.14)

for −h < z < −d. It follows that φ(0)x (δ/2, z) = 0 or φ(0)(δ/2, z) = 0 and the solutions
here relate to sloshing modes in closed rectangular domains of width δ either with or
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Wave propagation through arrays of barriers

without a vertical baffle along the centreline. For the latter case, it can be deduced that
it happens at K = (nπ/δ) tanh(nπh/δ) for n = 1, 2, . . . (see Mei et al. 2005). Sloshing
modes of similar character, but of more complex geometry, were shown to emerge in Porter
& Porter (2003). Besides, it should be noted that the orthogonality relation (2.11) no longer
applies for β(0) = π/δ.

2.2. Solution of two independent forms
There are many different approaches one could adopt to develop solutions to the single-cell
problem which partly depend upon how the fundamental cell is defined. Since our choice
of the fundamental cell, D, is rectangular with conditions on the boundary of D it makes
sense to use separation of variables. In the following, we describe two different forms of
solution for the Bloch–Floquet problem given above.

In the first form, the cell is divided into two subdomains which are above and below
the level z = −d, and the solution is expanded by eigenfunctions in x. In −d < z < 0, we
write the general solution satisfying (2.1), (2.2) and (2.3) as

φ(x, z) = a1,0(1 + Kz)+
∞∑

n=1

a1,n cos(nπx/δ)ζn(z), (2.15)

where

ζn(z) = cosh(nπz/δ)+ (Kδ/nπ) sinh(nπz/δ)
cosh(nπd/δ)

, n ≥ 1 (2.16)

and a1,n for n = 0, 1, . . . are coefficients to be determined. In −h < z < −d, the general
solution of (2.1) satisfying (2.4) and (2.5) is

φ(x, z) =
∞∑

n=−∞
b1,n

coshβn(h + z)
coshβn(h − d)

exp(iβnx), (2.17)

where
βn = β + 2nπ/δ (2.18)

and b1,n for n ∈ Z are also undetermined coefficients.
The pressure and vertical component of velocity must coincide across the common fluid

interface z = −d for 0 < x < δ. We first define

w(x) = φz(x,−d), 0 < x < δ, (2.19)

which represents the vertical velocity across z = −d. From (2.15) and the orthogonality of
the cosine functions over 0 < x < δ, continuity of velocity allows us to write

a1,n =

⎧⎪⎪⎨
⎪⎪⎩

1
Kδ

∫ δ

0
w(x) dx, n = 0,

2
nπ[Kδ − nπ tanh(nπd/δ)]

∫ δ
0 w(x) cos(nπx/δ) dx, n ≥ 1.

(2.20)

Also, from (2.17) we have, using orthogonality of the functions eiβnx over 0 < x < δ,

b1,n = 1
βnδ tanhβn(h − d)

∫ δ

0
w(x) exp(−iβnx) dx, n ∈ Z. (2.21)
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We now match pressure at z = −d and substitute (2.19) and (2.20) for a1,n and b1,n to give
the scalar homogeneous integral equation∫ δ

0
w(x′)L(x, x′) dx′ = 0, 0 < x < δ, (2.22)

where

L(x, x′) = Kd − 1
Kδ

+ 2
∞∑

n=1

Dn cos(nπx/δ) cos(nπx′/δ)+
∞∑

n=−∞

exp(iβn(x − x′))
βnδ tanhβn(h − d)

(2.23)

and

Dn =
(

1
nπ

)
(Kδ/nπ) tanh(nπd/δ)− 1
(Kδ/nπ)− tanh(nπd/δ)

∼ 1
nπ
, (2.24)

as n → ∞ (or as δ/d → 0).
The second form is to use eigenfunctions in the depth coordinate to expand the solution

which is a natural approach to solving water wave problems (Linton & McIver 2001). This
leads to the solution being posed in terms of integral equations over finite intervals of
x = 0: either for the unknown φx(0, z) between −h < z < −d or for the unknown
φ(δ−, z)− eiβδφ(0+, z) between −d < z < 0. Given the relation derived in § 2.1, the first
of these two options is particularly attractive. Thus, the velocity potential is first written as

φ(x, z) =
∞∑

n=0

(
a2,n eknx + b2,n exp(−knx)

)
ψn(z). (2.25)

Here kn are the roots of the dispersion equation

ω2/g = −kn tan knh, (2.26)

where kn (n ≥ 1) is real and positive while k0 = −ik and k is the real positive wavenumber,
and

ψn(z) = N−1/2
n

cos kn(z + h)
cos knh

, (2.27)

with

Nn = 1
2 cos2 knh

(
1 + sin 2knh

2knh

)
, (2.28)

which satisfy the orthogonality relation

1
h

∫ 0

−h
ψn(z)ψm(z) dz = δmn. (2.29)

We now define
u(z) = φx(0, z), −h < z < −d, (2.30)

which represents the horizontal velocity across x = 0. From the velocity periodic condition
in (2.5) and the orthogonality relation in (2.29), we have

a2,n = eiβδ − exp(−knδ)

2knh sinh knδ

∫ −d

−h
u(z)ψn(z) dz (2.31)
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Wave propagation through arrays of barriers

and

b2,n = eiβδ − eknδ

2knh sinh knδ

∫ −d

−h
u(z)ψn(z) dz. (2.32)

Applying the pressure periodic condition in (2.5) with (2.31) and (2.32) results in
another scalar homogeneous integral equation:

∫ −d

−h
u(z′)K(z, z′) dz′ = 0, −h < z < −d, (2.33)

where

K(z, z′) =
∞∑

n=0

cosβδ − cosh knδ

knh sinh knδ
ψn(z)ψn(z′). (2.34)

2.3. Numerical approximation
The numerical approximation of the integral equations is based on methods described in
Porter & Evans (1995) in which it is recognised that the end points, (0,−d) and (δ,−d),
of the intervals involved in the integral equations coincide with the sharp edges of the
barriers and the fluid velocity behaves as the inverse square root of distance to the edge.
Thus, for the first form given in the previous section we choose

w(x) ≈
M1∑

m=0

α1,mwm(x), (2.35)

where

wm(x) = Tm(2x/δ − 1)

π
√
(δ/2)2 − (x − δ/2)2

, (2.36)

in which Tm(·) is a Chebyshev polynomial and M1 is the designated truncation parameter.
In what follows we use the results that follow from, for example, Erdélyi et al. (1954):

∫ δ

0
wm(x) cos(nπx/δ) dx = cos[(m + n)π/2]Jm(nπ/2) (2.37)

and

∫ δ

0
wm(x) exp(−iβnx) dx = exp(−iβnδ/2) exp(−imπ/2)Jm(βnδ/2), (2.38)

where Jm(·) are the mth-order Bessel functions of the first kind. Substituting the
approximation (2.35) into (2.22), multiplying through by wn(x) and integrating over
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0 < x < δ result in the following system of equations for the expansion coefficients α1,n:

M1∑
n=0

α1,nLmn = 0, m = 0, 1, . . . ,M1, (2.39)

where

Lmn = Kd − 1
Kδ

δm0δn0 + 2
∞∑

r=1

Dr cos
[

1
2
(m + r)π

]

× cos
[

1
2
(n + r)π

]
Jm

(
1
2

rπ
)

Jn

(
1
2

rπ
)

+ exp(−i(m − n)π/2)
∞∑

r=−∞

Jm

(
1
2
βrδ

)
Jn

(
1
2
βrδ

)
βrδ tanhβr(h − d)

. (2.40)

Similarly, for the second form we expand the unknown horizontal velocity u(z) as

u(z) ≈
M2∑

m=0

α2,mum(z) (2.41)

in a series of M2 + 1 prescribed functions:

um(z) = 2(−1)mT2m[(h + z)/(h − d)]

π
√
(h − d)2 − (h + z)2

, (2.42)

which satisfy the condition (2.4) on the sea bed. Substituting the approximation (2.41)
into (2.33), multiplying through by un(z) and integrating over −h < z < −d lead to the
following system of equations for the expansion coefficients α2,n:

M2∑
n=0

α2,nKmn = 0, m = 0, 1, . . . ,M2, (2.43)

where

Kmn =
∞∑

r=0

(cosβδ − cosh krδ)

krh sinh krδ
FmrFnr, (2.44)

in which we have defined

Fmr =
∫ −d

−h
um(z)ψr(z) dz = N−1/2

r J2m[kr(h − d)]. (2.45)

Numerically we fix Kd and look for real values of β ∈ (0,π/δ], γ1 > 0 with β = π/δ +
iγ and γ (k)0 > 0 with β = iγ (k)0 for which the system of (2.39) or (2.43) has non-trivial
solutions. When β is real the matrix formed by Lmn is Hermitian and when β is complex
the matrix is real, while the matrix formed by Kmn is a real matrix no matter whether β is
real or complex. These result in that the determinants of the two matrices are always real,
so zero eigenvalue of the corresponding matrix can be found numerically using standard
root-finding methods. In particular, when β becomes a pure imaginary number, from the
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Wave propagation through arrays of barriers

last term in (2.40) we can see that when γ0(h − d) passes across kπ each element in
Lmn will tend to positive or negative infinity. Thus, it can be deduced that the overall
behaviour of Lmn is similar to that of the function cot γ0(h − d) and γ (k)0 (h − d) ∈ ((k −
1)π, kπ) though the same conclusion is not easily drawn from Kmn. Furthermore, all of the
series in Lmn and Kmn are convergent as of O(1/r2). In order to accelerate the numerical
computation, an effective treatment is performed for these series (see Appendix A for
details).

As is shown later, either of the two methods of solution presented above can be used to
find accurate values of eigenvalues, β. However, accurately determining the eigenfunctions
φ(x, z) is more problematic. Even though both methods use functions which accurately
capture the inverse square root singularity at the lower edges of the barriers as part of the
solution method, the expressions for φ are formed by separation solutions which do not
explicitly include these singularities. Consequently, the expansion coefficients associated
with the separation solutions are slowly convergent for both methods (like O(1/n3/2)).
In order to produce plots of the eigenfunctions so that they may be compared with the
results of homogenisation (in § 3.1) we nevertheless find that the first method works well.
This is because when δ/d is small, which is the primary interest of the present study,
only one or two terms are required in the expansion of the unknown velocity across the
level z = −d to obtain very accurate solutions whilst these separation solutions are well
suited to close spacing with the first term in the expansion above and below z = −d being
dominant. This is not true, however, for the second method since evanescent modes play
an important role when δ/d is small. Thus it is hard to plot eigenfunctions across the whole
domain accurately by using the second method for small δ/d.

Also later, when we consider scattering by finite arrays using a discrete barrier method
we are required to compute integrals over the intervals −h < z < −d beneath the barriers
involving the eigenfunctions and their derivative with respect to x. Although separation
solutions for determining φ from the first method can do this accurately, the series in
which derivatives are taken term-by-term are no longer convergent, with terms decreasing
like O(1/n1/2). For this reason, the second method is useful since the solution method
provides highly accurate representations for the derivative which explicitly include the
singularity at z = −d as shown in (2.30) and (2.41).

2.4. Small δ/d and βδ
We now assume that ε = δ/d � 1 and βδ � 1, that is to say, βd � 1/ε. Based on the
solution in the first form presented in the previous section, the dominant entry in (2.40) is

L00 ≈ Kd − 1
Kδ

+ 1
βδ tanhβ(h − d)

, (2.46)

after using Jm(βδ/2) ≈ δm0 and assuming that Kδ/|Kd − 1| has the same order as βδ, i.e.
Kδ/|Kd − 1| � 1. Thus, the leading-order approximation to values of β for small δ/d is
determined from solving L00 = 0, or

β tanhβ(h − d) = K
1 − Kd

, (2.47)

provided |1 − Kd|/Kd � ε which implies that |1 − Kd| � ε. As for the velocity potential,
if we normalise αn by setting α0 = Kδ/(1 − Kd), after using (2.47) the velocity potential
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can be written as

φ(x, z) ≈
{
(1 + Kz)/(1 − Kd), −d < z < 0,
eiβx coshβ(h + z)/ coshβ(h − d), −h < z < −d. (2.48)

From (2.48), we can see that when δ/d � 1 and βδ � 1, the expressions only including
the first term (n = 0) in (2.15) and (2.17) are good at simulating the flat oscillation in
the cell. Besides, (2.47) is similar to the dispersion equation (2.26) with n = 0. It can be
proved that here β only can be real or pure imaginary but could not be a complex number
and the real value exists only when Kd < 1.

3. A continuum model

In this section, we develop an approximation to wave propagation through the infinite
periodic array by directly applying asymptotic methods to the underlying boundary-value
problem. The principal assumption is that ε = δ/d � 1 (close spacing between adjacent
barriers), which is the same as in § 2.4. In −d < z < 0, we make a multiple scales
approximation, i.e. x → dx̂ + δX, where x̂ is the macroscale variable and X operates on
the scale of a single cell. We also scale z → dẑ and write

φ(x, z) ≈ φ(0)(x̂,X, ẑ)+ εφ(1)(x̂,X, ẑ)+ ε2φ(2)(x̂,X, ẑ)+ · · · . (3.1)

In 0 < X < 1 and −1 < ẑ < 0, from (2.1) we have[
∂2

∂X2 + 2ε
∂

∂ x̂∂X
+ ε2

(
∂2

∂ x̂2 + ∂2

∂ ẑ2

)](
φ(0) + εφ(1) + ε2φ(2) + · · ·

)
= 0, (3.2)

with (
∂

∂X
+ ε

∂

∂ x̂

)(
φ(0) + εφ(1) + ε2φ(2) + · · ·

)
= 0, on X = 0, 1 (3.3)

and (
∂

∂ ẑ
− Kd

) (
φ(0) + εφ(1) + ε2φ(2) + · · ·

)
= 0, on ẑ = 0. (3.4)

Using (3.2) with (3.3) for the zero order gives

φ(0)(x̂,X, ẑ) ≡ φ(0)(x̂, ẑ), (3.5)

which is independent of X. At the first order, (3.2) is

∂2φ(1)

∂X2 = −2
∂2φ(0)

∂ x̂∂X
= 0, (3.6)

where (3.5) has been applied. Integrating (3.6) over 0 < X < 1 and using the boundary
conditions implied by (3.3) for φ(1) on X = 0, 1 give

φ(1) = −∂φ
(0)

∂ x̂
X + f (x̂, ẑ), (3.7)

where f (x̂, ẑ) is a function independent of microscale variable X. Further, if we consider
the second-order term in (3.2) and (3.3), we can obtain

∂2

∂X2φ
(2) + 2

∂2

∂ x̂∂X
φ(1) +

(
∂2

∂ x̂2 + ∂2

∂ ẑ2

)
φ(0) = 0, (3.8)
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Wave propagation through arrays of barriers

with
∂φ(2)

∂X
+ ∂φ(1)

∂ x̂
= 0, on X = 0, 1. (3.9)

Again, integrating (3.8) over 0 < X < 1 and applying (3.5), (3.7) and (3.9) result in

∂2φ(0)

∂ ẑ2 = 0 (3.10)

as the leading-order governing equation, with (3.4) applying at zeroth order. The general
solution, satisfying (3.10), is φ(0) = X(x̂)(1 + Kdẑ) for an arbitrary function X(x̂). Since
we are concerned with wave propagation, we write

φ(0)(x̂, ẑ) = A exp(iμdx̂)(1 + Kdẑ), (3.11)

where μ is a coefficient to be determined and the assumption is that μd � 1/ε otherwise
the horizontal variation is not on the macroscale.

In −h < z < −d, since the fluid is not bounded by barriers, we can drop the microscale,
resulting in that we rescale with x → dx̂ and z → dẑ. After expanding the velocity
potential with respect to ε, we can find that φ(0)(x̂, ẑ) still satisfies Laplace’s equation:(

∂2

∂ x̂2 + ∂2

∂ ẑ2

)
φ(0) = 0. (3.12)

After applying the separation of variables, the solution of (3.12) satisfying the zeroth-order
condition on the sea bed is

φ(0)(x, z) = B exp(iμ′dx̂) coshμ′d(ẑ + h/d), (3.13)

where μ′ is also an undetermined coefficient.
Applying the continuity of pressure and vertical component of velocity for (3.11) and

(3.13) on the common fluid interface ẑ = −1 results in

μ = μ′, (3.14)

B coshμ(h − d) = A(1 − Kd) (3.15)

and
Bμ sinhμ(h − d) = AK. (3.16)

That is, μ satisfies
μ tanhμ(h − d) = K/(1 − Kd), (3.17)

and the corresponding mode, written in terms of the original coordinates, is

φ(x, z) = eiμx
{
(1 + Kz)/(1 − Kd), −d < z < 0,
coshμ(h + z)/ coshμ(h − d), −h < z < −d. (3.18)

When Kd → 1 we can see from (3.17) that μd → ∞ and thus the assumption made in
(3.11) that μd � 1/ε is violated.

In this section we have implemented a ‘low-frequency homogenisation’ and it can be
expected to be valid if |1 − Kd| � ε which is also aligned with the assumption made in
§ 2.4. The result (3.17) and (3.18) shows that the homogenisation of the boundary-value
problem coincides with the small-δ/d limit (2.47) and (2.48) of the discrete barrier array
problem with the association that β → μ as δ/d → 0. Also, it can be proved that there
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δ/d = 0.05 δ/d = 0.5

Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0

0 0.015009 0.075510 π + 1.4309i 0.15097 0.75208 π + 1.4309i
2 0.014955 0.073792 π + 2.1145i 0.14596 0.64601 π + 2.1145i

M1 4 0.014955 0.073782 π + 2.1643i 0.14594 0.64534 π + 2.1643i
6 0.014955 0.073781 π + 2.1683i 0.14594 0.64527 π + 2.1683i
8 0.014955 0.073781 π + 2.1690i 0.14594 0.64526 π + 2.1690i

0 0.018245 — — 0.15574 — —
2 0.015035 0.079583 — 0.14597 0.64793 π + 3.9638i
4 0.014962 0.074119 — 0.14594 0.64528 π + 2.2017i

M2 6 0.014956 0.073820 — 0.14594 0.64528 π + 2.1702i
8 0.014955 0.073790 π + 4.1211i 0.14594 0.64528 π + 2.1698i
10 0.014955 0.073786 π + 2.6190i 0.14594 0.64528 π + 2.1698i
12 0.014955 0.073786 π + 2.3200i 0.14594 0.64528 π + 2.1698i

Table 1. The convergence of first non-dimensional Bloch wavenumber β(0)δ against the truncation parameter,
Mk, for the two schemes given in § 2.2 with d/h = 0.2. A dash (—) indicates cannot determine a value of β
that makes the determinant zero.

exists one real value of μ0 and a number of pure imaginary values of μn = iμ̂n (where
n = 1, 2, . . . and μ̂n ∈ ((n − 1)π, nπ)) satisfying (3.17).

It should be possible to perform a ‘high-frequency homogenisation’ (see Craster,
Kaplunov & Pichugin 2010) by expanding about the state βδ = π where a local standing
mode exists and gives rise to the critical value of Kc below which wave propagation exists
and above which wave propagation is prohibited.

3.1. Results
First, we determine the accuracy of the numerical scheme of § 2 by varying the truncation
parameter, Mk (k = 1, 2), to assess the convergence of the two schemes given in § 2.2.
Fundamental cells with the same submergence d/h = 0.2 but different spacings are
considered in tables 1 and 2 which catalogue the numerical estimates of the first β(0) and
second β(1) Bloch wavenumbers by solving each scheme. For the first Bloch wavenumber,
when K exceeds a value of Kc corresponding to the critical frequency ωc (where Kcd < 1),
there no longer exists a real-valued Bloch wavenumber. Instead, following the system
introduced in § 2, β(0) records a complex Bloch wavenumber and represents decay rather
than wave propagation through the array. For the real value of β(0), when Mk = 6
the non-dimensional wavenumber β(0)δ is determined to have nearly five-decimal-place
accuracy except for the second scheme at relatively high frequencies. When the frequency
exceeds the critical frequency, the larger truncation parameters are required for obtaining
the first Bloch wavenumber with the same precision. As for the second Bloch wavenumber,
the convergent results can be reached with very few terms. Generally, the first scheme tends
to converge faster for small δ/d and the second scheme does better when δ/d takes larger
values, the reason for which has been outlined earlier.

Next, we compare Bloch wavenumber β(k) obtained by (2.39) or (2.43) with numerical
roots μk in the homogenisation method obtained by (3.17). Figure 1(a) shows the variation
of the first value (k = 0) against the non-dimensional wavenumber Kd for submergence
d/h = 0.2. As mentioned in § 2, real β are determined in the range of β ∈ (0,π/δ] and
for the other ranges the problem is unchanged. Thus, in figure 1(a) the curves describing
real Bloch wavenumbers terminate at β = π/δ and the value of Kcd corresponding to
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Wave propagation through arrays of barriers

δ/d = 0.05 δ/d = 0.5

Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0

0 0.034974i 0.023387i 0.019611i 0.34854i 0.23080i 0.19394i
1 0.034878i 0.023380i 0.019611i 0.33926i 0.23021i 0.19394i

M1 2 0.034883i 0.023411i 0.019634i 0.34040i 0.23336i 0.19630i
3 0.034883i 0.023411i 0.019634i 0.34040i 0.23335i 0.19630i
4 0.034884i 0.023411i 0.019635i 0.34041i 0.23341i 0.19635i

0 — — 0.037744i — — 0.32364i
1 — 0.024607i 0.019887i 0.39190i 0.24020i 0.19820i

M2 2 0.034939i 0.023424i 0.019635i 0.34055i 0.23342i 0.19636i
3 0.034932i 0.023416i 0.019635i 0.34042i 0.23342i 0.19636i
4 0.034899i 0.023413i 0.019635i 0.34042i 0.23342i 0.19635i

Table 2. The convergence of second non-dimensional Bloch wavenumber β(1)δ against the truncation
parameter, Mk, for the two schemes given in § 2.2 with d/h = 0.2. A dash (—) indicates cannot determine
a value of β that makes the determinant zero.
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Figure 1. The variation of the roots μk from homogenisation and the Bloch–Floquet wavenumbers β(k)

against the non-dimensional wavenumber Kd for a submergence d/h = 0.2: (a) the first value (k = 0);
(b) the imaginary part of the first five pure imaginary values.

the critical frequencies in the figure shown are, respectively, 0.9891, 0.9477 and 0.9006.
Above these critical frequencies, a complex value of β = π/δ + iγ1 emerges from the
real axis, the imaginary part of which is also shown in figure 1(a). Thus, it can be
inferred that when the frequency exceeds the critical frequency, the real Bloch–Floquet
wavenumber will move off the real axis and go along the semi-infinite line β = π/δ + iγ1
for γ1 = [0,∞). Besides, we can see that for small spacing, the complex solution increases
extremely fast with frequency. Since the propagating mode no longer exists, we also
can conclude that the first stop band during which wave propagation is prohibited is the
interval Kd ∈ (Kcd, (πd/δ) tanh(πh/δ)). The end points of this interval both correspond
to βδ = π and standing waves occurring in the cell; the lower value corresponds to the
case which is equivalent to a vertical baffle placed along the centreline of the cell, i.e. the
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Figure 2. The fields of the real part of the velocity potential in the cell with the submergence d/h = 0.2 at
Kd = 0.8: (a) δ/d = 0.50; (b) δ/d = 0.25; (c) δ/d = 0.05; (d) homogenisation.

solution of (2.13), while the upper value corresponds the case in which barriers extend
through the depth, i.e. the solution of (2.14). The real root, μ0, of the dispersion equation
(3.17) tends to infinity as Kd → 1. The stop band under the homogenisation approximation
is Kd ∈ (1,∞), i.e. the critical frequency ωc = √

g/d coinciding with Newman (1974) and
representing resonance in narrow channels. Figure 1(b) plots the variation of the first five
pure imaginary values. Generally, as the dimensionless spacing, δ/d, decreases β tends to
μ as we have anticipated.

In figure 2, the velocity potential fields have been plotted in the range 0 < x/h < 0.3
for a barrier submergence d/h = 0.2 at a non-dimensional wavenumber Kd = 0.8. In
figure 2(a–c), the results correspond to β(0) and the barrier spacings are reduced from
δ/d = 0.5, to 0.25 and then to 0.05 so that we see 3, 6 and 30 cells respectively. It can
be seen that oscillation within each channel is dominated by vertical fluid motion and as
the channels decrease in width, the results tend towards the potential field obtained under
homogenisation, shown in figure 2(d). Only the real part of the velocity potential is shown,
but there is a similar agreement for the imaginary part.

In figure 3, we plot the fields of the velocity potential at Kd = 0.9891 where β(0)δ = π
for the case of δ/d = 0.05 (the smallest spacing used in the previous plot). This is the case
in which standing waves occur in the cell and the imaginary part of the velocity potential
vanishes according to the Bloch–Floquet theory. The potentials are not normalised giving
rise to large values in the plots. Unlike in figure 2, there is no longer good agreement
between the Bloch–Floquet approach shown in figure 3(a) and homogenisation (the real
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Figure 3. Velocity potential field plots across 0 < x < 0.03 with the submergence d/h = 0.2 at Kd = 0.9891:
(a) δ/d = 0.05 and β(0)δ = π; (b) homogenisation (real part); (c) homogenisation (imaginary part).

and imaginary parts of which are shown in figures 3b and 3c). This illustrates how
homogenisation breaks down as an approximation to closely spaced discrete arrays as
standing wave resonance is approached.

4. Scattering of incident waves by a finite periodic array of barriers

In this section, we consider the problem of N + 1 identical barriers each submerged to
the same depth d and located at xn = nδ for n = 0, 1, . . . ,N as shown in figure 4, which
is a finite section of the assumed infinite array given in § 2. Thus, the general solution in
(n − 1)δ < x < nδ can be expressed as a combination of the eigenfunctions φ(±k) of the
periodic Bloch–Floquet problem associated with β = ±β(k):

φn(x, z) =
∞∑

k=0

[
c(k)n φ(+k)(x − (n − 1)δ, z)+ d(k)n φ(−k)(x − (n − 1)δ, z)

]
, (4.1)

for n = 1, 2, . . . ,N. This representation of the solution was established in Porter & Porter
(2003). It should be noted that since the local wave with a slow decay should be given
priority for considering the oscillation in the barrier array, in this section a new labelling
rule for β(k) is applied that k = 0 is prepared for the real eigenvalue if exists otherwise the
complex eigenvalues of β = nπ/δ + iγn (n = 0, 1) are ordered with their imaginary parts
increasing, which is different from the labelling rule in § 2.

Continuity of pressure and velocity across the fluid interface under the barrier along
x = nδ requires

φn+1(nδ, z) = φn(nδ, z) and
∂φn+1

∂x
(nδ, z) = ∂φn

∂x
(nδ, z), (4.2a,b)

for −h < z < −d and n = 1, 2, . . . ,N − 1. Using the orthogonality relation (2.11) derived
earlier in § 2.1, we find that

c( j)
n+1E(+j) =

∫ d

−h

[
φn+1(nδ, z)

∂φ(−j)

∂x
(0, z)− φ(−j)(0, z)

∂φn+1

∂x
(nδ, z)

]
dz (4.3)
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1
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δ

z = −h
x = 0 x = N δ

Figure 4. An illustration of scattering by a finite periodic array of N + 1 identical surface-piercing barriers.

and

d( j)
n+1E(−j) =

∫ d

−h

[
φn+1(nδ, z)

∂φ(+j)

∂x
(0, z)− φ(+j)(0, z)

∂φn+1

∂x
(nδ, z)

]
dz. (4.4)

Using the matching conditions (4.2a,b) and the definition (4.3) gives

c( j)
n+1E(+j) =

∫ d

−h

[
φn(nδ, z)

∂φ(−j)

∂x
(0, z)− φ(−j)(0, z)

∂φn

∂x
(nδ, z)

]
x=0

dz

= c( j)
n E(+j) exp(+iβ( j)δ), (4.5)

after using the phase relations (2.5) for the jth eigenfunction to transfer information from
x = δ to x = 0 and the orthogonality relation (2.11) again. We do the same for d( j)

n allowing
us to deduce that

c( j)
n+1 = exp(+iβ( j)δ)c( j)

n and d( j)
n+1 = exp(−iβ( j)δ)d( j)

n . (4.6a,b)

That is, there is no coupling between eigenmodes as waves propagate through the periodic
array having the consequence that

c( j)
N = exp(iβ( j)(N − 1)δ)c( j)

1 and d( j)
N = exp(−iβ( j)(N − 1)δ)d( j)

1 . (4.7a,b)

In other words, if the solution in 0 < x < δ is expressed as

φ1(x, z) =
∞∑

k=0

[
c(k)1 φ(+k)(x, z)+ d(k)1 φ(−k)(x, z)

]
, (4.8)

then the general solution across the whole barrier array domain 0 < x < Nδ is represented
in terms of just one set of expansion coefficients, c(k)1 and d(k)1 . In particular, the solution
in (N − 1)δ < x < Nδ is

φN(x, z) =
∞∑

k=0

[c(k)1 exp(iβ(k)(N − 1)δ)φ(+k)(x − (N − 1)δ, z)

+ d(k)1 exp(−iβ(k)(N − 1)δ)φ(−k)(x − (N − 1)δ, z)]. (4.9)

The scattering problem involves waves incident from and reflected into the domain {x <
0, −h < z < 0} in which the general solution is represented by the standard expansion
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Wave propagation through arrays of barriers

(e.g. Linton & McIver 2001)

φ0(x, z) = (eikx + RN exp(−ikx))ψ0(z)+
∞∑

n=1

an eknxψn(z), (4.10)

where RN is the reflection coefficient, an (and, later, bn) are expansion coefficients and
ψn(z) is the vertical eigenfunction which has been given in (2.27). It helps to write (4.10)
as

φ0(x, z) = 2 cos kxψ0(z)+
∞∑

n=0

an eknxψn(z), (4.11)

where RN = 1 + a0. In x > Nδ, waves are transmitted and the general solution is
represented by

φN+1(x, z) =
∞∑

n=0

bn exp(−kn(x − Nδ))ψn(z), (4.12)

with transmission coefficient TN = b0 exp(−ikNδ).
With (4.8) holding in the region adjoining x = 0 and (4.9) holding in the region

adjoining x = Nδ, the remaining conditions that need to be enforced in order to determine
the values of an, bn for n = 0, 1, . . . and c(k)1 , d(k)1 for k = 0, 1, . . . are

∂φ0

∂x
(0, z) = 0 and

∂φN+1

∂x
(Nδ, z) = 0, (4.13a,b)

for −d < z < 0, and

φ0(0, z) = φ1(0, z) and φN(Nδ, z) = φN+1(Nδ, z), (4.14a,b)

∂φ0

∂x
(0, z) = ∂φ1

∂x
(0, z) ≡ U(z) and

∂φN

∂x
(Nδ, z) = ∂φN+1

∂x
(Nδ, z) ≡ V(z), (4.15a,b)

for −h < z < −d. Applying the condition (4.15a,b) to (4.11) and (4.12) and the
orthogonality of the vertical eigenfunctions (2.29) results in

φ0(x, z) = 2 cos kxψ0(z)+
∞∑

n=0

ψn(z) eknx

knh

∫ −d

−h
U(z′)ψn(z′) dz′ (4.16)

in x < 0 and

φN+1(x, z) = −
∞∑

n=0

ψn(z) exp(−kn(x − Nδ))
knh

∫ −d

−h
V(z′)ψn(z′) dz′ (4.17)

in x > Nδ. It also follows that

RN = 1 + i
kh

∫ −d

−h
U(z)ψ0(z) dz and TN = − i exp(−ikNδ)

kh

∫ −d

−h
V(z)ψ0(z) dz.

(4.18a,b)

The matching across x = 0 and x = Nδ requires some work since the representation of the
solution in x < 0 and x > Nδ in terms of eigenfunctions in z is fundamentally different
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from the representation of the solution in 0 < x < Nδ which is based on Bloch–Floquet
eigenmodes. We start by using (4.3) and (4.4) with n = 0 to give

c( j)
1 E(+j) =

∫ −d

−h

[
φ1(0, z)

∂φ(−j)

∂x
(0, z)− φ(−j)(0, z)

∂φ1

∂x
(0, z)

]
dz

=
∫ −d

−h

[
φ0(0, z)

∂φ(−j)

∂x
(0, z)− φ(−j)(0, z)U(z)

]
dz (4.19)

and

d( j)
1 E(−j) =

∫ −d

−h

[
φ1(0, z)

∂φ(+j)

∂x
(0, z)− φ(+j)(0, z)

∂φ1

∂x
(0, z)

]
dz

=
∫ −d

−h

[
φ0(0, z)

∂φ(+j)

∂x
(0, z)− φ(+j)(0, z)U(z)

]
dz, (4.20)

where the matching conditions (4.14a,b) and (4.15a,b) have been applied. On account of
the relations (2.7) and (2.8) and using (4.16), we can rewrite (4.19) and (4.20) as

c( j)
1 exp(−iβ( j)δ)E(+j) = −2Hj0 −

∞∑
n=0

Hjn

knh

∫ −d

−h
U(z′)ψn(z′) dz′

−
∫ −d

−h
φ(+j)(0, z)U(z) dz (4.21)

and

d( j)
1 E(−j) = 2Hj0 +

∞∑
n=0

Hjn

knh

∫ −d

−h
U(z′)ψn(z′) dz′ −

∫ −d

−h
φ(+j)(0, z)U(z) dz, (4.22)

where

Hjn =
∫ −d

−h

∂φ(+j)

∂x
(0, z)ψn(z) dz. (4.23)

Using (4.5) with n = N and following the same procedure give

c( j)
1 exp(iβ( j)(N − 1)δ)E(+j) =

∞∑
n=0

Hjn

knh

∫ −d

−h
V(z′)ψn(z′) dz′ −

∫ −d

−h
φ(+j)(0, z)V(z) dz

(4.24)

and

d( j)
1 exp(−iβ( j)Nδ)E(−j) = −

∞∑
n=0

Hjn

knh

∫ −d

−h
V(z′)ψn(z′) dz′ −

∫ −d

−h
φ(+j)(0, z)V(z) dz.

(4.25)

The algebraic manipulations above allow us to express the coefficients c( j)
1 and d( j)

1 , and
hence the solutions φ1 and φN in 0 < x < δ and (N − 1)δ < x < Nδ (respectively) are
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Wave propagation through arrays of barriers

in terms of the unknown functions U(z) and V(z). This replicates what we had already
achieved in (4.16) and (4.17) for φ0 and φN+1 in x < 0 and x > Nδ.

Eliminating c( j)
1 in (4.21) and (4.24) eventually results in

∫ −d

−h
U(z)K(1)j (z) dz +

∫ −d

−h
V(z)K(2)j (z) dz = −2 exp(iβ( j)Nδ)Hj0, (4.26)

where

K(1)j (z) = exp(iβ( j)Nδ)

[ ∞∑
n=0

Hjn

knh
ψn(z)+ φ(+j)(0, z)

]
(4.27)

and

K(2)j (z) =
∞∑

n=0

Hjn

knh
ψn(z)− φ(+j)(0, z). (4.28)

Also eliminating d( j)
1 in (4.22) and (4.25) gives

∫ −d

−h
U(z)K(2)j (z) dz +

∫ −d

−h
V(z)K(1)j (z) dz = −2Hj0. (4.29)

We note that if we write

Us(z) = U(z)+ V(z) and Ua(z) = U(z)− V(z), (4.30a,b)

then (4.26) and (4.29) decouple into a pair of scalar integral equations:

∫ −d

−h
Us,a(z)Ks,a

j (z) dz = −2Hj0, (4.31)

where

Ks
j (z) = 1

exp(iβ( j)Nδ)+ 1

[
K(1)j (z)+ K(2)j (z)

]

=
∞∑

n=0

Hjn

knh
ψn(z)+ i tan

(
β( j)Nδ/2

)
φ(+j)(0, z) (4.32)

and

Ka
j (z) = 1

exp(iβ( j)Nδ)− 1

[
K(1)j (z)− K(2)j (z)

]

=
∞∑

n=0

Hjn

knh
ψn(z)− i cot

(
β( j)Nδ/2

)
φ(+j)(0, z). (4.33)

The use of superscripts s and a indicates that the two integral equations can be thought of
as representing the components of the scattering by the barrier array which are symmetric
and antisymmetric about the mid-plane, x = Nδ/2, of geometric symmetry.
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4.1. Numerical approximation
The pair of integral equations (4.31) is approximated numerically using the identical
method in § 2.3. Thus the two functions Us(z) and Ua(z) have the same form as (2.41):

Us,a(z) ≈
M∑

n=0

αs,a
n un(z), (4.34)

where un(z) are defined in (2.42).
After substituting (4.34) into (4.31) we can obtain the following systems of equations:

M∑
n=0

αs,a
n Ks,a

mn = −2Hm0, (4.35)

for m = 0, 1, . . . ,M, where

Ks
mn =

∞∑
r=0

HmrFnr

krh
+ i tan

(
β(m)Nδ/2

)
Gmn (4.36)

and

Ka
mn =

∞∑
r=0

HmrFnr

krh
− i cot

(
β(m)Nδ/2

)
Gmn, (4.37)

in which Fmr have already been defined in (2.45) and

Gmn =
∫ −d

−h
un(z)φ(+m)(0, z) dz. (4.38)

The system of equations (4.35) has been truncated with the parameter M which need not be
the same as Mk in § 2.3. From (4.34) we can see that M denotes the number of the vertical
eigenfunctions used to approximate the horizontal velocity on the interface; on the other
hand, from (4.36), (4.37) and (4.38) we can see that M also represents the number of the
evanescent modes applied to simulate the oscillation in the barrier array.

In the Bloch–Floquet problem, two solutions of φ(+m)(0, z) in different forms are
presented in § 2 such that the eigenfunctions can be approximated by either (2.17) or (2.25)
resulting in that Gmn can be written as

Gmn =
∞∑

l=−∞

(−1)nb(m)1,l

coshβ(m)l (h − d)
I2m

[
β
(m)
l (h − d)

]
(4.39)

or

Gmn =
∞∑

l=0

(
a(m)2,l + b(m)2,l

)
Fnl. (4.40)

The series in Gmn decays like O(1/l2) as l tends to infinity, which can be treated with
the same procedure shown in Appendix A. However, for Hmr in (4.23) we find that
either solution will produce a slowly convergent series decreasing like O(1/l3/2) if the
expressions of φ(+m)(0, z) are applied directly. In order to calculate Hmr efficiently, we

960 A20-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.207


Wave propagation through arrays of barriers

use the approximation in (2.30) which is based on the second form in § 2. Then, Hmr can
be written as

Hmr =
M2∑
k=0

α
(m)
2,k Fkr (4.41)

after using (2.41), where α(m)2,k are eigenvectors corresponding to the eigenvalue β(m). Now
a slowly convergent infinite series is replaced with a truncated series such that the series
in (4.36) and (4.37) decaying like O(1/r2) also can be computed efficiently if the method
in Appendix A is used.

Once αs,a
n have been determined from (4.35), we can recover the reflection and

transmission coefficients from the use of (4.30a,b) in (4.18a,b) with (4.34) and (2.45)
to give

RN = 1 + i
2kh

M∑
n=0

(αs
n + αa

n)Fm0 and TN = − i exp(−ikNδ)
2kh

M∑
n=0

(αs
n − αa

n)Fm0.

(4.42a,b)

Combined with the description in § 2.3, it can be seen that the two different forms
of eigenfunction φ(±m)(x, z) have their own advantages. The first form is better for
approximating solutions to the Bloch–Floquet problem, especially for closely spaced
barriers and the explicit limit of vanishing spacing can be taken. On the other hand,
with the help of the second form, the slowly convergent series appearing in the scattering
problem for a finite periodic array can be treated efficiently. In addition, from (4.36) and
(4.37) we also can see that the present method has the same advantages as the recursive
transfer matrix method (e.g. Porter & Porter 2003) in that the dimension of the equation
system is independent of the size of the array.

Furthermore, it should be noted that the reflection and transmission coefficients
(4.42a,b) cannot be applied for the case of the critical frequency (i.e. β(0) = π/δ) since
the eigenfunctions φ(±0) no longer satisfy the orthogonality relation (2.11) which has been
widely used in the above derivation.

5. Scattering using the continuum model

Consider that the region 0 < x < Nδ is governed by the continuum model described in
§ 3, so that the potential in this region may be written as

φh(x, z) =
∞∑

n=0

(cn exp(iμnx)+ dn exp(iμn(Nδ − x))) Zn(z), (5.1)

where

Zn(z) = ε−1/2
n

{
(1 + Kz)/(1 − Kd), −d < z < 0,
coshμn(h + z)/ coshμn(h − d), −h < z < −d, (5.2)

and μn are the roots of (3.17). Also, in this section a new labelling rule is used for μn that
the real value takes precedence over increasing pure imaginary values and if there does
not exist the real value the smallest value on the imaginary axis takes μ(0). In (5.2), εn are
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normalisation factors given by

εn = 1

2 cosh2 μn(h − d)

[
1 + sinh 2μn(h − d)

2μn(h − d)

]
, (5.3)

so that
1

h − d

∫ −d

−h
Zn(z)Zm(z) dz = δmn. (5.4)

This orthogonality relation for the functions Zn(z) follows since μn are distinct and

(μ2
n − μ2

m)

∫ −d

−h
Zn(z)Zm(z)dz =

∫ −d

−h

[
Z′′

n (z)Zm(z)− Zn(z)Z′′
m(z)

]
dz

= [
Z′

n(z)Zm(z)− Zn(z)Z′
m(z)

]−d
−h = 0, (5.5)

where the dispersion relation (3.17) has been used.
The matching conditions shown in (4.13a,b), (4.14a,b) and (4.15a,b) still hold but φh

will replace φ1 and φN . Continuity of the horizontal velocity at x = 0 and x = Nδ results
in

cn − dn exp(iμnNδ) = 1
iμn(h − d)

∫ −d

−h
U(z)Zn(z) dz (5.6)

and

cn exp(iμnNδ)− dn = 1
iμn(h − d)

∫ −d

−h
V(z)Zn(z) dz. (5.7)

This gives

cn = 1
2μn(h − d) sinμnNδ

∫ −d

−h

[
U(z) exp(−iμnNδ)− V(z)

]
Zn(z) dz (5.8)

and

dn = 1
2μn(h − d) sinμnNδ

∫ −d

−h

[
U(z)− V(z) exp(−iμnNδ)

]
Zn(z) dz. (5.9)

Matching (5.1) to (4.16) across x = 0 gives∫ −d

−h
U(z′)L(1)(z, z′) dz′ +

∫ −d

−h
V(z′)L(2)(z, z′) dz′ = −2ψ0(z) (5.10)

and to (4.17) across x = Nδ gives∫ −d

−h
U(z′)L(2)(z, z′) dz′ +

∫ −d

−h
V(z′)L(1)(z, z′) dz′ = 0, (5.11)

where

L(1)(z, z′) =
∞∑

n=0

[
ψn(z)ψn(z′)

knh
− Zn(z)Zn(z′)
μn(h − d) tan(μnNδ)

]
(5.12)

and

L(2)(z, z′) =
∞∑

n=0

Zn(z)Zn(z′)
μn(h − d) sin(μnNδ)

. (5.13)
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Wave propagation through arrays of barriers

For (5.10) and (5.11), we also can decouple the pair of integral equations into their
symmetric and antisymmetric components like (4.30a,b) which satisfy∫ −d

−h
Us,a(z′)L(s,a)(z, z′) dz′ = −2ψ0(z), (5.14)

where

L(s)(z, z′) = L(1)(z, z′)+ L(2)(z, z′)

=
∞∑

n=0

[
ψn(z)ψn(z′)

knh
+ tan(μnNδ/2)

μn(h − d)
Zn(z)Zn(z′)

]
(5.15)

and

L(a)(z, z′) = L(1)(z, z′)− L(2)(z, z′)

=
∞∑

n=0

[
ψn(z)ψn(z′)

knh
− cot(μnNδ/2)

μn(h − d)
Zn(z)Zn(z′)

]
. (5.16)

These are the equations that would be derived had the original problem been decomposed
into the sum of problems symmetric and antisymmetric about the mid-plane x = Nδ/2.

5.1. Numerical approximation
The approximation (4.34) will be used again. We substitute (4.34) into (5.12), multiply
through by um(z) and integrate over −h < z < −d, a process which characterises the
Galerkin method and results in the following systems of equations:

M∑
n=0

αs,a
n Ls,a

mn = −2Fm0, (5.17)

for m = 0, 1, . . . ,M, where

Ls
mn =

∞∑
r=0

FmrFnr

krh
+

∞∑
r=0

tan(μrNδ/2)
μr(h − d)

PmrPnr (5.18)

and

La
mn =

∞∑
r=0

FmrFnr

krh
−

∞∑
r=0

cot(μrNδ/2)
μr(h − d)

PmrPnr, (5.19)

in which

Pmr =
∫ −d

−h
um(z)Zr(z) dz = ε−1/2

m (−1)mI2m[μr(h − d)]. (5.20)

All of the series in (5.18) and (5.19) have the order of O(1/r2) when r → ∞, so the
treatment shown in Appendix A can be applied to accelerate the series convergence.
After the systems of equations are solved numerically, the reflection and transmission
coefficients can be determined also by (4.42a,b).

It can be seen that the derivation for the reflection and transmission coefficients between
the discrete model and the continuum model is different. For the discrete model, the
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δ/d = 0.05 δ/d = 0.5 Homogenisation

M Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6

0 0.20255 0.43354 0.99999 0.18198 0.57391 0.99998 0.22246 0.59119
4 0.19816 0.62013 1.00000 0.17969 0.64652 1.00000 0.19975 0.58320
8 0.19802 0.61743 1.00000 0.17969 0.64648 1.00000 0.19980 0.58450
12 0.19801 0.61711 1.00000 0.17969 0.64647 1.00000 0.19980 0.58467
16 0.19800 0.61694 1.00000 0.17969 0.64647 1.00000 0.19980 0.58471

Table 3. The convergence of the modulus of reflection coefficient |RN | computed using the discrete model
and the continuum model against the truncation parameter, M, in the case of d/h = 0.2 and Nδ = h.

number of the truncated evanescent mode M is equal to the dimension of the equation
system (see (4.35)). As shown later, M = 12 is usually sufficient to obtain convergent
results. For the continuum model, the evanescent mode is included in the series shown
in (5.18) and (5.19). We generally need to consider roughly 1000 terms to guarantee
the accuracy of the series calculation. Actually, for the continuum model, we also can
develop a system of equations similar to (4.35). However, we find that this would present
a troublesome series when close to the critical frequency.

5.2. Results
We first examine the convergence of the scheme for the discrete model and the continuum
model. In both settings, the barriers are submerged to a depth d/h = 0.2 and the
total distribution length of the barriers is Nδ = h. Table 3 shows how the modulus
of the reflection coefficient, |RN |, converges with the truncation parameter, M. At low
frequencies, results can be seen to converge quickly requiring only a small system of
equations, but when the frequency approaches the critical frequency results tend to
converge slowly with M since the amplitude of the fluid oscillation in the barrier array
structure becomes increasingly severe. When the frequency is in the stop band, the wave
motion decays through the array and there is practically no transmission. As mentioned
at the end of § 4.1, the second method in § 2, which tends to converge fastest when
δ/d is larger, is used in this scattering problem for determining the slowly convergent
series. Thus, for the discrete model, the convergent results for distribution with large
spacing can be obtained by a small truncation parameter used. In general, M = 12 is
sufficient to produce results with the accuracy of roughly four significant figures although
computations are more demanding when close to the critical frequency.

Next, some cases have been chosen to allow the comparison between the discrete
model based on an expansion in terms of Bloch–Floquet eigenfunctions and existing
results. A pair of barriers (N = 1) with the submergence d/h = 0.2 is first examined
for which Porter & Evans (1995) previously provided accurate computations using the
Galerkin approximation method. As shown in figure 5, the results of the discrete model
compare favourably with these existing results, accurately replicating total reflection and
transmission. Notice that the heavily suppressed transmission beyond Kd ≈ 1 can now be
understood as being associated with the stop band for the periodic barrier array despite
there only being two barriers and one cell in the present example.

When the number of barriers N + 1 is large, direct solution methods such as
those used by Porter & Evans (1995) are algebraically cumbersome and lead to
N + 1 coupled equations in terms of N + 1 unknown functions eventually implying
that numerical computations are of O(N3). To mitigate against this, previous authors
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0.8
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0.4
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0 0.2 0.4 0.6 0.8 1.0 1.2

(b)

(a)

Figure 5. Comparison of the modulus of the reflection coefficient |R1| for the discrete model with existing
results (Porter & Evans 1995) for the case of N = 1 and d/h = 0.2: (a) δ/d = 0.50; (b) δ/d = 0.05.

(e.g. Porter & Porter 2003) have used transfer matrices in which the scattering by N + 1
elements of the array is accounted for by the multiplication of N + 1 matrices whose
size depends on the number of evanescent wave interactions retained in the exchange
of information between adjacent elements in the array. Superficially the computational
effort is of O(N). In figure 6, we fix the number of barriers N = 10 and the submergence
d/h = 0.2 and compare the modulus of the reflection coefficient |R10| computed using the
present Bloch–Floquet discrete model (which does not scale with N) with those computed
using transfer matrices. The results agree well, apart from when very close to the critical
frequency where resonance occurs and when N is large. On account of the high-frequency
oscillations in |RN | close to the critical frequency, even small errors in either the transfer
matrix method or the present approach can lead to large changes in |RN | and it is not easy
to determine which is more accurate. In particular, as the spacing decreases an increasing
number of evanescent modes is required to maintain accurate computations resulting in
larger transfer matrices and, in turn, this leads to numerical instability caused by rounding
errors even though a treatment for avoiding these rounding errors devised by Porter &
Porter (2003) has been applied. Thus, for the case of δ/d = 0.05, the calculation by the
method of the transfer matrix fails and figure 6(c) only includes the results from the present
discrete model. During the review of this paper, one of the reviewers pointed out that
the method devised by Ko & Sambles (1988) may be used to overcome the numerical
instability issues caused by using transfer matrices.

As mentioned in the Introduction, one aim of the present study is to assess the validity
of the homogenisation method for wave interaction with plate array structures. We first
investigate the validity of the homogenisation method by varying the number of barriers
(or the total length of the barrier array). In figure 7, the case of δ/d = 0.05 and d/h = 0.2
is investigated with N = 1, N = 5 and N = 10 and results from the exact discrete model
are plotted against the results from the homogenisation approximation. We recall that
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Scattering matrix
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|R10|

|R10|
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Figure 6. Comparison of the modulus of the reflection coefficient |R10| for the discrete model with the
scattering matrix for the case of N = 10 and d/h = 0.2: (a) δ/d = 0.50; (b) δ/d = 0.25; (c) δ/d = 0.05.

homogenisation is not expected to work for Kd sufficiently close to a value of Kcd = 1
corresponding to the critical frequency and curves will oscillate infinitely quickly as
Kd = 1 is approached. On the other hand, the curves of |RN | computed under the discrete
model oscillate and the total transmission will happen N times before the critical frequency
is reached. Thus, we see in figure 7 overall good agreement between the exact and
approximate models apart from close to Kd = 1.

In figure 8 we present the modulus of the reflection coefficient |RN | for the discrete
model and the continuum model. The total length of the barrier array is fixed (i.e. Nδ = h),
but the spacing in different arrays varies. This plot allows us to see how scattering
computed from the discrete model converges to the results predicted from homogenisation.
Again the submergence is d/h = 0.2 (the depth of the fluid is relatively unimportant
for the effects we are observing). The spacing δ/d = 0.5 corresponds to N = 10 whilst
δ/d = 0.05 corresponds to N = 50. The two curves corresponding to these two cases
hit the horizontal axis (i.e. |RN | = 0) 10 and 50 times respectively (although this cannot
be captured by the resolution in the plots). We can see the agreement is good for low
frequencies and gets better as δ/d decreases, although the rapid oscillations in |RN |,
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Figure 7. The variation of the modulus of reflection coefficient |RN | for the discrete model and the continuum
model against the non-dimensional frequency Kd for the case of δ/d = 0.05 and d/h = 0.2: (a) N = 1;
(b) N = 5; (c) N = 10.

1.0

0.8

0.6
|RN|

Kd

0.4

0.2

0 0.2 0.4

Homogenisation

δ/d = 0.05

δ/d = 0.50

0.6 0.8 1.0 1.2

Figure 8. The variation of the modulus of reflection coefficient |RN | for the discrete model and the
continuum model against the non-dimensional wavenumber Kd for the case of Nδ = h and d/h = 0.2.
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Figure 9. The fields of the real part of the velocity potential for the continuum model with d/h = 0.2 and
Nδ = h: (a) Kd = 0.8; (b) Kd = 1.2.

which occur as the critical frequency is approached, mean that the models diverge for
Kd sufficiently close to one. The continuum model serves as a good approximation for the
spacing δ/d < 0.05 when Kd � 0.7 or δ/d < 0.5 when Kd � 0.4.

Finally, in figure 9 we plot the velocity potential field for two cases of scattering of
incident waves by a barrier array computed using the continuum model for d/h = 0.2
and Nδ = h at Kd = 0.8 and Kd = 1.2, that is, above and below the critical frequency
respectively. In the first case, we can see wave propagation through the barrier array
leading to transmission beyond the array. In the second case, we see rapid decay of
the wave field through the array and near perfect reflection of incident waves. We have
been unable to show a field plot from the direct numerical approach since the solution
to the scattering problem requires that we used the second method presented in § 2
to determine eigenfunctions. As explained at the end of § 2.3, this method is poor at
producing convergent representations for the field.

6. Conclusions

The main focus of this paper has been on describing and comparing two approaches
to solving the problem of two-dimensional wave propagation through periodic arrays of
surface-piercing barriers with a particular focus on the small spacing between adjacent
barriers. A continuum model is described which is derived formally for small barrier
spacing using homogenisation methods. This model is shown to be valid away from
resonance occurring at ω = √

g/d; the propagating wavelength is predicted to become
vanishingly small as resonance is approached, signalling a breakdown in the multiple-scale
assumption underpinning homogenisation. This conclusion sheds light on previously
unexplained ill-posed behaviour associated with the use of a continuum description for
wave interaction with resonance in plate arrays in problems encountered by, for example,
Jan & Porter (2018) and Zheng et al. (2020). A more complicated approach is based on
an exact description of the barrier array for non-zero spacing, δ. First, by considering
propagation in infinite periodic barrier arrays we have been able to show that there is a
critical frequency ωc which lies below

√
g/d and acts to divide wave propagation from

wave decay. At the critical frequency, standing waves exist between the barriers in the
array and carry no energy. As δ → 0, this model tends to the continuum model provided
frequencies are sufficiently far away from resonance. The approach shows that, for a
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non-zero spacing, there is a well-behaved transition from passing to stopping associated
with wavelengths on the scale of the separation δ.

The exact description in terms of non-zero δ for a finite number of N + 1 barriers is
also considered. Use is made of an orthogonality relation which applies to eigenmodes
derived from the infinite periodic array to express the solution through the entire finite
barrier array region in terms of the solution in just one period. The results show that the
limit of the discrete problem is the continuum problem provided resonance is avoided.

Although this problem has been developed for a simple geometry where extensive
use of separation of variables has been made to develop a semi-analytical approach to
the problem in terms of solutions to a pair of scalar integral equations, it is clear that
there will be other problems in water waves, linearised acoustics, etc. involving scattering
by finite periodic arrays which can be analysed by the same method. In particular, the
orthogonality condition satisfied by the eigenfunctions for the periodic Bloch problem is
key to connecting solutions from one edge of a periodic array to the other. Its construction
is in § 2.1 of the paper, which is not dependent on the geometry of the structure and can be
applied to fields governed by the Helmholtz equation, for example.

Following this work, it would be interesting to consider wave propagation through an
array of barriers in which the barrier length is a slowly varying function of space. For
example, the methods described by Porter (2020) could be used to transform the scattering
process into an ordinary differential equation in the continuum limit δ → 0 as a means of
qualitatively understanding the onset of resonance/rainbow reflection in graded arrays such
as those described by Wilks et al. (2022).
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Appendix A. Numerical treatment for the slowly convergent series in Lmn and Kmn

In § 2.3, the matrices formed by Lmn and Kmn are presented for determining the
Bloch–Floquet wavenumber β. It can be found that all of the series in Lmn and Kmn are
convergent as of O(1/r2). In order to speed up the series convergence, the last term in
(2.40) (taken as an example) can be written as

∞∑
r=−∞

lmn,r = lmn,0 +
[
1 + (−1)m+n]2

24π

+
∞∑

r=1

⎡
⎣lmn,r −

cos
[

1
2 (m − n)π

]
+ sin

[
βδ − 1

2 (m + n)π
]

2r2π3

⎤
⎦

+
−1∑

r=−∞

⎡
⎣lmn,r − (−1)m+n

cos
[

1
2 (m − n)π

]
− sin

[
βδ + 1

2 (m + n)π
]

2r2π3

⎤
⎦ ,
(A1)
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with

lmn,r =
Jm

(
1
2βrδ

)
Jn

(
1
2βrδ

)
βrδ tanhβr(h − d)

, (A2)

where the asymptotic form of Bessel function has been used, i.e. Jn(z) ∼
√

2/(πz)
cos(z − nπ/2 − π/4) when |z| → ∞ and | arg z| < π (see Abramowitz & Stegun 1972).
The infinite series in (A1) now decay like O(1/r4) such that results can be efficiently
computed to high accuracy (we aim for an error of less than 10−8). For other slowly
convergent series, we apply the same treatment.
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