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Bayesian and frequentist analysis of True and Error models

Michael H. Birnbaum∗

Abstract

Birnbaum and Quispe-Torreblanca (2018) presented a frequentist analysis of a family of six True and Error (TE) models

for the analysis of two choice problems presented twice to each participant. Lee (2018) performed a Bayesian analysis of the

same models, and found very similar parameter estimates and conclusions for the same data. He also discussed some potential

differences between Bayesian and frequentist analyses and interpretations for model comparisons. This paper responds to

certain points of possible controversy regarding model selection that attempt to take into account the concept of flexibility or

complexity of a model. Reasons to question the use of Bayes factors to decide among models differing in fit and complexity

are presented. The partially nested inter-relations among the six TE models are represented in a Venn diagram. Another view

of model complexity is presented in terms of possible sets of data that could fit a model rather than in terms of possible sets of

parameters that do or do not fit a given set of data. It is argued that less complex theories are not necessarily more likely to be

true, and when the space of all possible theories is not well-defined, one should be cautious in interpreting calculated posterior

probabilities that appear to prove a theory to be true.
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1 Introduction

Birnbaum and Quispe-Torreblanca (2018) presented soft-

ware for analysis of True and Error (TE) models (Birnbaum,

2008, 2012, 2013). If we allow that human responses con-

tain random errors according to these models, it ,follows

that standard statistical tests might easily lead to systemati-

cally wrong conclusions. The following is a classic method

to compare rival theories: One theory implies that two sit-

uations are behaviorally equivalent (in the sense that the

probability of a behavioral response is the same), and the

other theory implies that the two situations should produce

different responses. If we can reject the hypothesis that the

probabilities of response are the same in the two situations,

we could reject one theory in favor of the other. A problem

with this statistical approach to theory testing can occur if

random errors might produce systematic differences in re-

sponse probabilities. The TEMAP2.R software is intended

to provide an alternative, more appropriate method for sta-

tistical analysis of two conditions, allowing for a realistic

theory of error in responding.
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1.1 Example: Allais Paradox

Birnbaum and Quispe-Torreblanca used a variant of the clas-

sic Allais paradox to illustrate the error theory and their pro-

gram. In an Allais paradox, there are two choice problems

that should be equivalent, according to Expected Utility (EU)

theory. For example, EU theory implies that S = ($48, 0.2;

$4, 0.8) is preferred to R = ($96, 0.1; $4, 0.9) if and only if

S′= ($96, 0.8; $48, 0.2) is preferred to R′ = ($96, 0.9; $4,

0.1). Other theories, such as Birnbaum’s (2008) models, can

imply that people would choose R over S and S′ over R′.

This pattern of preferenes is denoted the RS′ pattern, and

is considered “paradoxical” because it violates EU theory.

The opposite pattern, SR′ is also “paradoxical”. A major

question is, are observed violations “real” or are they due to

random error?

1.2 Test of Correlated Proportions

In the past, the standard statistical test in this situation was

the test of correlated proportions. If a number of partici-

pants were asked to respond to both questions, or if a single

participant was asked on many occasions to respond to both

questions, one would compare the frequencies of the SR′

response pattern and the opposite pattern, RS′, and if these

were significantly different, one would reject the hypothesis

that the probability of response was the same in both con-

ditions. Thousands of research articles used this statistical

test. However, we must admit that this statistical test does not

really rule out EU, once we realize that random errors might
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Figure 1: True and Error Models for two choice problems.

In TE4, all four error terms are free; TE2, assumes e = f and

e′ = f ′; TE1 assumes e = f = e′ = f ′

produce inequality of these two types of reversals (Birnbaum

& Quispe-Torreblanca, 2018).

Birnbaum and Quispe-Torreblanca (2018) noted that the

test of correlated proportions in such studies make an unrea-

sonable assumption about errors. If the two choice problems

have different rates of error, then it can easily happen that

EU theory can hold and the two frequencies of reversal can

be unequal; it can also happen that the two frequencies can

be equal and yet EU does not hold. Furthermore, according

to the TE4 model in Figure 1, the probability of choosing

S over R can significantly exceed 1/2 and the probability

of choosing S′ over R′ can be significantly less than 1/2

and EU might still hold. These theoretical implications call

into question the theoretical conclusions of many previous

publications, including some of my own.

1.3 True and Error Models

Figure 1 diagrams the possible errors in two choice problems.

If a person truly prefers R in the first choice problem, she or

he might erroneously respond S with probability e. If the

person truly prefers S in the first choice problem, he or she

might respond R with probability f . In Choice Problem 2,

the corresponding errors occur with probabilities e′ and f ′,

respectively. The model in Figure 1 is denoted TE4 because

there are 4 different error rates. A special case of this model,

TE2, assumes e = f and e′ = f ′, and a further special case,

TE1, assumes that e = e′ = f = f ′.

In the “true” part of TE theory, it is allowed that a person

might have any of four true preference patterns: SS′, SR′,

RS′, or RR′, which have probabilities of pSS′ , pSR′ , pRS′ ,

and pRR′ , respectively.

EU theory is a special case of TE in which pSR′ = pRS′

= 0. That is, according to EU, a person never has either of

these preference patterns as a “true” set of preferences, but

that might respond this way only as a result of one or more

errors.

Combining the assumptions about the errors with those

about the possible true states, there are six models, TE4,

TE2, and TE1, with respective special cases of EU4, EU2,

and EU1, which are created by adding the assumption pSR′

= pRS′ = 0.

It might seem that if we allow such an error theory as in

Figure 1, then it would be impossible to test EU. Because the

four probabilities of true response patterns sum to 1 (pSS′ +

pSR′ + pRS′ + pRR′ = 1), they contain 3 degrees of freedom.

In TE4 there are four error terms as well (e, f , e′, and f ′),

meaning that TE4 has 8 parameters to estimate (with 3 +

4 = 7 df). If a study yields data consisting of only four

frequencies of the 4 possible response patterns, then the data

have only 3 df. Thus, such old-fashioned studies do not

allow us to unambiguously test EU, because there remain

many possible interpretations of the same data.

1.4 The Need for Replications

However, with a better experimental design, it becomes pos-

sible to test not only EU, but also to test the TE models of

which EU models are special cases. In particular, to test

these models, one needs to replicate each choice problem at

least twice for each participant in each experimental session.

Replications provide the degrees of freedom required to test

the models and test EU. With two choice problems and two

replications, there are 16 possible response patterns, with 15

df. Fitting TE4 to the data (consuming 7 df for parameters)

leaves 8 df to test the model.

Table 1 shows the frequencies, or counts of the number

of times that each of the 16 response patterns was observed

in a test of a variant of the Allais paradox (Birnbaum, et al.,

2017). (Each choice problem was replicated twice to each

participant, embedded in randomized and counterbalanced

sequences among many other choice problems in the same

session.) For example, 4 of the participants had the RS′ on

the first replicate and the RR′ pattern on the second replicate,

and 43 participants had the RS′ pattern on both replicates,

denoted RS′RS′.

It is assumed that different participants may have differ-

ent true preference patterns, but they may make different

responses on the two replications due to random errors. The

errors are assumed to be mutually independent and have

probabilities less than 1/2.

1.5 Index of Fit

Birnbaum and Quispe-Torreblanca (2018) presented a pro-

gram, TEMAP2.R, that can be used to perform frequentist
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Table 1: Frequencies of each Response Pattern

Responses on Replicate 2

Replicate 1 RR′ RS′ SR′ SS′

RR′ 4 8 2 0

RS′ 4 43 2 8

SR′ 1 0 2 4

SS′ 1 10 0 18

Data from Birnbaum, Schmidt, & Schneider (2017),

testing a variant of the Allais paradox.

statistical tests to fit and test the six models, applied to an

appropriate experiment. It is freely available in the online

supplement to that paper. The program takes as input the

frequency table, as in Table 1. The program estimates pa-

rameters to minimize either the standard χ2 index of fit or

the G index (sometimes called G2), which is equivalent to a

maximum likelihood solution,

G = 2

∑∑
Oi j ln (Oi j/Ei j), (1)

where the summation is over the 16 cells, Oi j is the observed

frequency (count) in Row i and Column j, Ei j is the cor-

responding “expected”, or “predicted” frequency in the cell

according to the particular TE model.

The “expected” or “predicted” frequency might better be

called a “fitted” frequency because its value is based on the

“best-fit” parameter values estimated from the data. It is

equal to the number of blocks of data, n, multiplied by the

model’s best-fit, calculated probability of showing a given

preference pattern.

The G index is similar to χ2 and is also asymptotically

Chi-Square distributed. Because EU is a special case of

TE in which 2 fewer df are consumed, the difference in fit

between the TE model and its corresponding EU special case

is asymptotically Chi-Square distributed with 2 df.

TEMAP2.R can be applied with relatively small samples,

because it employs Monte Carlo simulation to construct the

sampling distribution of the fit statistic, and it uses bootstrap-

ping to estimate confidence intervals on the fitted parameters.

Birnbaum and Quispe-Torreblanca (2018) used the data in

Table 1 to illustrate their program, method, and the models.

Table 2 shows the computed indices of fit, G, for the six

models, fit to the data in Table 1. All of the TE models fit

acceptably and all of the EU models can be rejected. The

differences in fit between each TE model and its EU special

case are in the last row of the table. Each of these differences

is Chi-Square distributed with 2 df. TEMAP2.R can simulate

the distribution of this test statistic via Monte Carlo in the

case of small samples. All are significant, meaning that by

frequentist statistical standards, one can reject EU under the

assumption of any of these TE models.

Table 2: Indices of fit, G, of TE models to empirical data

testing a variant of the Allais paradox.

Models TE4 TE2 TE1

TE full 13.2 13.2 13.9

EU 48.1 62.9 163.4

Difference 35.0 49.7 149.5

All solutions fit to 16 frequencies in Table 1. TE4, TE2,

and TE1 models have 8, 10, and 11 df, respectively;

corresponding EU models have 2 df more; critical value

of χ2(df ) for df = 2, 8, and 10 for α = 0.05 level of

significance = 5.99, 15.51, and 18.31, respectively.

One can also compare the differences among the TE mod-

els; the difference in fit between the TE4 and TE2 should be

Chi-Square distributed with 2 df, and the difference between

TE2 and TE1 should be distributed with 1 df. But the dif-

ferences in this case among TE models are not significant

and far too small to argue (on the basis of these data) for one

version of TE over another. Comparing the EU models to

each other, one might use the differences in fit to argue that

the EU models can be significantly improved by allowing

more error terms, but such an argument would be dubious

because none of the EU models provides an acceptable fit.

The TEMAP2.R program calculates the fitted (“pre-

dicted”) values corresponding to Table 1. See for example,

Birnbaum and Quispe-Torreblanca (2018, Tables 4 and 5).

These predictions showed that each of the TE models gave

an excellent approximation to the values in Table 1, whereas

all of the EU models systematically failed to reproduce the

large frequency (43) for the response pattern, RS′RS′.

2 Bayesian Analysis of TE models

Lee (2018) showed how to apply Bayesian analysis to the TE

models to estimate parameters, evaluate models, and com-

pare them. Lee did not question the advantages of the TE

models over the previous statistical approach to this issue,

but argued that Bayesian methods have advantages over fre-

quentist methods for the analysis of such models. Among the

advantages (and also presenting potential issues of debate)

is that the Bayesian approach incorporates prior probability

distributions over the parameters and uses the new data in

accord with Bayes Theorem to revise our beliefs to gener-

ate posterior probability distributions of the parameters and

posterior probabilities of belief in the models.

For the data in Table 1, the posterior distributions of

parameters yielded central values fairly close to the best-

fit parameter values obtained by Birnbaum and Quispe-

Torreblanca (2018). Figures 2 and 3 of Lee (2018) provide

two very informative and excellent depictions of the results
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Table 3: Posterior Probabilities of 6 models (Lee, 2018).

Models TE4 TE2 TE1

TE full 0.3512 0.1391 0.5097

EU 0.0000 0.0000 0.0000

All solutions based on 16 frequencies in Table 1 and

priors of 1/6 for each of the models.

of the Bayesian analysis. On the basis of these results, Lee

(2018) reached essentially the same major conclusions for

the data as found from frequentist methods in Birnbaum and

Quispe-Torreblanca (2018); namely, that the EU models do

not provide an acceptable representations of the data, and

that the TE models can.1

Although I agree with most of the arguments and con-

clusions in Lee (2018), I have reservations concerning the

material in Lee’s (2018, Section 2.5) discussion of model

comparisons. I do not find the details of his analysis com-

paring the six models in this section to be convincing.

In classical statistical tests, one computes the probability

of the data given the null hypothesis, p(Data|H0), and if

this probability is less than α, the level of significance, one

rejects H0. Table 2 illustrates this frequentist approach for

the six models. By these methods, we reject the EU models

and we can retain the TE models. In Bayesian analysis, one

uses Bayes Theorem to update a prior subjective probability

of the hypothesis, given the data, to form a posterior sub-

jective probability, p(H0 |Data). Lee (2018) set the prior

probabilities of each of the six models to 1/6, and calculated

the posterior probabilities for the six models given the data;

Lee (2018, Figure 4) found that TE4, TE2, and TE1 to be

0.35, 0.14, and 0.51, with the three EU models having zero

posterior probability. These are summarized in Table 3.

Taking ratios of posterior probabilities, Lee (2018) re-

ported a Bayes factor of 3.66 for TE1 over TE2. Although

Lee (2018) was careful not to make too much of this partic-

ular result, he discussed this type of analysis as a potentially

useful standard for model selection. Had the numbers been

more extreme, presumably, one might have argued that TE1

is much more likely true than TE2. Lee (2018) states, “Bayes

factors measure the evidence the data provide for each model

in a way that automatically combines goodness-of-fit with a

complete and principled measure of the statistical complex-

ity of the models.”

1Lee (2018, Figures 6 and 7) compared the Bayesian posterior proba-

bility distributions of the parameters for each of the six models against the

bootstrapped distributions for the parameters obtained from TEMAP2.R.

Although these were similar for TE2 and TE1 models (which appear to

be reasonable descriptions of the data), they differed for the models that

should be rejected (the EU models). The biggest differences were observed

in EU4: TEMAP2.R yielded estimates of error rates of 0 or 0.5 — “degen-

erate” solutions which are another indication that the EU model should be

rejected.

Such arguments for the Bayes factor for model compar-

isons among these models strike me as incomplete, and I

will set forth in the next section some concerns about Lee’s

(2018) approach for comparing these six models. Before

I state my concerns, however, I should note that I am not

defending nor advocating popular alternative approaches to

this same topic, for example, in terms of criteria for good-

ness of a model that combine fit and number of estimated

parameters, such as AIC or BIC. I do not think that either fre-

quentist or Bayesian approach has yet found a way to reduce

scientific reasoning to a single computation. Most of my

remarks apply to either Bayesian or frequentist approaches

to the issue of model selection.

3 Nesting Relations Among Models

Supposedly, posterior probabilities and Bayes factors, as

computed in Lee (2018) indicate that TE1 is more proba-

ble than TE2. However, TE1 is a special case of TE2: if TE1

is true, then TE2 is true. By standard probability and set

theory, a subset must be less probable or equally probable to

any set that includes it. So, I find the result in Lee (2018) that

TE1 is more probable than TE2, i.e., that a subset is more

probable than a set that includes it, to be problematic. The

assignment of prior probabilities of 1/6 to each of the six

models implicitly treats the models as if they are mutually

exclusive and exhaustive; instead, they are interrelated.

Figure 2 shows the relationships among the models for

possible sets of data. Solid lines enclose the TE models;

TE1 is a subset of TE2 which is a subset of TE4. The dashed

lines represent the EU models; EU1 is a special case of EU2,

which is a special case of EU4. In addition, each EU model

is a special case of its TE model: EU4 is a special case of

TE4, EU2 is a special case of TE2, and EU1 is a special case

of TE1. Thus, if EU1 fits the data, than so too do all of the TE

models, and if TE4 does not fit the data, than none of the six

models can fit the data. There are 10 regions in the diagram.

It is possible that data might be compatible with TE2 and

not EU4 or that data might be compatible with EU4 and not

TE2. The numbers in parentheses in Figure 2 indicate the

number of df in the free parameters to be estimated for each

model.

A Bayesian might wish to assign prior probabilities to the

10 regions in Figure 2, including the hypothesis that none of

the models is appropriate, and then ask how the data revise

those priors to form a posterior distribution over these 10

hypotheses about the situation. I am not sure I know how I

would assign prior beliefs over these hypotheses. But I think

about complexity of the models in other ways beyond those

incorporated in the Bayes factor.
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EU 1(2)

EU 2(3)

EU 4(5)

TE 1(4)

TE 2(5)

TE 4(7)

(All models rejected)

Figure 2: Relationships among the 6 True and Error Models

under consideration, with respect to possible patterns of data.

Each EU model is a special case of a TE model. There are

10 regions that are mutually exclusive and exhaustive, from

EU1 (all TE models acceptable) to all TE models rejected.

Numbers in parentheses are the number of free parameters.

4 Bayes Factors and Complexity

In the Bayes factor, the prior probability distribution, along

with the model and the data, combine to inform us how

well a model fits, supposedly corrected for how “complex”

a model is supposed to be. To compute the Bayes factor

for two models, one multiplies the prior times the fit curve

and integrates to find the average fit for each model and then

computes the ratio. But the prior probability distribution is

up to the statistician, making this situation rife for “prior-

hacking”, in which a person might influence the conclusions

by selecting post hoc a prior distribution to make a favored

model or conclusion seem more probable than the disfavored

one. With uniform priors, increasing the range of a parameter

to include regions of poor fit will tend to “punish” the model

with the widened range of parameters.

Computation of the Bayes factor is illustrated in Figure

3 for a hypothetical situation. The abscissa is a simplified

representation of a multidimensional parameter space (in-

cluding parameters for both models) over which the “fit” of

the models to the data can be calculated. Note that Model

1 has a better maximum likelihood than the maximum for

Model 2. In the figure, the Bayes factor would favor Model

1 if Prior C were applied to Model 1 and Prior B applied

to Model 2, but the Bayes factor favors Model 2 if Prior A

(which looks “fair” enough) were applied to both models.
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Figure 3: Calculating Bayes factor from priors and likelihood

of the data given the model and parameters. Although Model

1 has a better maximum likelihood than Model 2, the Bayes

factor favors Model 2 if Priors A or B is used, but favors Model

1 if Prior C is used.

The argument for the conclusion “supporting” Model 2 in

this case would be that because Model 1 is computed to be

“more flexible” (because it fits poorly in plausible regions of

parameter space under Prior A), Model 1 is less likely to be

true, even though it can fit better than Model 2.

Some people find the argument “for” Model 2 over Model

1 based on complexity to be unconvincing, and they are

troubled that different investigators who started with differ-

ent priors would reach different conclusions regarding the

models from the same data via the Bayes factor. A Bayesian

might respond that they should reach different conclusions

because their computations reflected different personal be-

liefs, and Bayes theorem is a method for revising one’s per-

sonal beliefs.

A frequentist might respond that journals should not pub-

lish personal opinions but only empirical findings. A hacker

advocating one model or the other might seek the prior that

supports the desired conclusion. If the situation of Figure 3

occurs in a given application, it might be best to report it,

rather than simply choose one of the priors and publish the

Bayes factors as evidence “for” Model 1 or Model 2.

A Bayesian can argue that any complete model should

include not only the structure that leads to the curves for

Models 1 and 2 in Figure 3, but also the priors (Lee, 2018).

Thus, the definition of “model” should include the prior
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Table 4: Percentage of random permutations of data that fit each of the models; “yes” and “no” indicate that the model fit or

not to a certain standard.

Fit Pattern TE4 TE2 TE1 EU4 EU2 EU1 G < 20 G < 50

000000 no no no no no no 99.6514 90.7000

100000 yes no no no no no 0.2057 3.5671

100100 yes no no yes no no 0.0443 1.7471

110000 yes yes no no no no 0.0471 0.6771

110100 yes yes no yes no no 0.0100 0.1943

110110 yes yes no yes yes no 0.0057 0.2757

111000 yes yes yes no no no 0.0343 1.7029

111100 yes yes yes yes no no 0.0000 0.3814

111110 yes yes yes yes yes no 0.0000 0.2157

111111 yes yes yes yes yes yes 0.0014 0.5386

Based on 70,000 random permutations of data in Table 1.

distribution as part of the model, and so, it is argued, the

Bayes factor does indeed evaluate the relative merits of these

combined models that include priors. Lee (2018, Section

4.3) acknowledges controversies between frequentists and

Bayesians regarding the role of priors in Bayesian inference,

arguing that priors are explicit statements of the assumptions

of a complete and combined model.

I find this combined approach to model comparisons to

be more compelling in cases where there is strong consen-

sus regarding the parameters, established in multiple exper-

iments and contexts. For example, suppose the parameter in

Figure 3 represented the measured speed of light in a well-

established paradigm. In that case, if prior B represented

previous estimates of the speed of light, the argument that

Model 2 is better than Model 1 seems strong, since Model

1 requires an odd value for a well-established parameter in

order to approximate the data. However, if the parameter rep-

resented an individual difference parameter for a previously

untested human participant in a previously untested experi-

mental context, I would be dubious of conclusions reached

from assumptions regarding previously unknown parame-

ters. I think Lee and I would agree that in such cases, it

would be worthwhile to analyze the robustness or depen-

dence of the conclusions regarding the structural models

with respect to the prior assumptions on the parameters.

But my concerns extend beyond model selection based on

the Bayes factor, where a prior distribution of parameters is

assumed, but also to other indices that attempt to combine fit

with complexity that do not involve a prior, such as the AIC

and BIC, and even to comparisons of overall fit, as measured

for example by a correlation coefficients between fitted and

obtained values (Birnbaum, 1973, 1974).

In the next section, I discuss another way to think about

flexibility of a model, in terms of possible sets of data and

possible models instead of in terms of possible sets of pa-

rameters and predictions in a limited set of models.

5 Another Perspective on Complexity

If we imagine a universe of sets of data, how many of them

would fall into each of the 10 regions in Figure 2? To address

such a question, we need to specify two definitions: First,

what is the domain of sets of data? Second, how do we

determine that a set of data falls in a region? I will choose

two particular operational definitions so that I can illustrate

the concepts, but the reader may wish to entertain other

definitions.

Define the universe of sets of data as all permutations

of the data in Table 1. By permutations, I mean, keep the

values in Table 1 and simply rearrange them in the matrix.

Next, define “a model fits at level t” if and only if G < t

when we choose best-fit parameters in the model for the data

to minimize G. (In practice, we can use TEMAP2.R to do

these computations.)

Recall that the index of fit, G in Equation 1, depends on two

things: The set of observed values, Oi j and the calculated

“predictions” or “fitted” values, Ei j . Because the Oi j are

permutations of the same values, the index of fit depends on

the model’s flexibility in fitting, and not on the values of the

numbers, which are fixed in the analysis of this domain.

Sets of simulated data were created by randomly permut-

ing the data in Table 1. Using TEMAP2.R, these simulated

data were then fit to all six models. Table 4 shows the per-

centages of cases (out of 70,000 simulations) that fit each of

the six models, for t = 20 and 50. (”yes” means a model fit

with G < t). For reference, TE2 and EU4 have 10 df, and

the probability that Chi-Square (10 df) exceeds 20 is 0.03.
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The row in Table 4 labeled 000000, with “no” in all

columns, refers to the case in which all of the TE models

do not fit. With t = 20 and 50, 99.65% and 90.70% of the

samples failed to fit any TE model. The row labeled 111111

and all “yes” is EU1; all six models fit to the criterion. Row

100000 represents TE4 fitting and none of its special cases.

Only 0.2% and 3.6% of the cases fit TE4 and fit none of the

other models with G < 20, and G < 50, respectively. Adding

up over all ways for TE4 to fit, only 0.35% fit any of the TE

models with G < 20, but recall that for the actual data, all

three TE models had G < 14. Finally, note that two of the re-

gions of interest, 111000 (all TE and not EU), and the region

100100 (EU4 and not TE2) have roughly equal frequencies

of fitting the random permutations.2

Now, suppose we draw in additional theories to Figure

2. These theories may have regions of overlap with the TE

models, and they may also overlap the region outside TE4,

where datasets reject all TE models. How many theories are

there that might be constructed to represent a 4 by 4 table,

as in Table 1? I cannot imagine how to count them, nor how

to draw all their intersections with the TE models, so I am

unable to assign prior probabilities in any meaningful way.

In the game, Mastermind, we know how many theories

there are and we know that they are mutually exclusive and

exhaustive, so we have an idea how to assign prior proba-

bilities.3 In many cases, however, the space of all possible

theories and their mutual intersections is difficult to specify,

making proper Bayesian analysis difficult.

Now, suppose we can specify a rival theory, R, to TE4

that partially overlaps the region of TE4 and also occupies

space outside it, and suppose there is also a region inside

TE4 that falls outside the region of this new theory. Suppose

that theory R can achieve a fit with G < 20 to 10% of all

permutations of the data, compared to 0.36% for TE4. One

might say TE4 is less flexible of a model than R because it

can fit a much smaller set of possible outcomes. Perhaps

we should grant TE4 a gold star in its favor for being less

flexible and still fitting the data, compared to theory R.

However, should we really argue that because TE4 is less

flexible that it is also more likely to be true? Are we claiming

that a new set of data would be more likely to fall inside the

region of TE4 than inside the region of R? Are we claiming

that new data are more likely to fall in the region of TE4

that excludes R than in the region of R that excludes TE4?

I would prefer to decide such questions empirically rather

2These figures suffice to illustrate the idea, but one should run a greater

number of simulations to provide more precise estimates.

3In a standard version of Mastermind, there are four positions each

of which holds one of six colors. The goal of the game is to conduct

experiments in order to discover the sequence of colors in the four positions.

Because there are four positions holding one of six colors there are 6
4
=

1296 possible theories. The game can be played at the following URL:

http://www.archimedes-lab.org/mastermind.html

In the usual game, feedback to experiments is perfectly valid (data contain

no error), but Vomlel (2004) analyzes an interesting variation in which the

feedback is probabilistic.

than by calculations. Empirical evidence that refutes one

theory and not the other is more convincing to me than a

computation leading one to such conclusions.

Returning again to Lee (2018, Section 2.5), the posterior

probabilities say that the union of TE models has a probabil-

ity of 1 and the EU models have probability 0. I worry about

how people with only a course or two in Bayesian statistics

would interpret these numbers. Would they conclude that we

have proven the TE models to be true? And if true, should

not TE fit acceptably in a replication, guaranteed? And if

true, should not TE apply in new studies with other stimuli?

Of course, such implications are not warranted, but illus-

trate excess meanings of statements that a theory is “true”.

Lee (2018) assumed that one of the six models must be true

when he distributed the prior probabilities, and the spec-

tacular failure of EU led to computed certainty for the TE

models. I suspect that some people would benefit from edu-

cation that cautions how to interpret a posterior probability

of 1 assigned to an empirical theory.

6 Fallacies of Reasoning and Statistics

When students first learn about frequentist hypothesis test-

ing, they are taught that if the probability of the data given

the null hypothesis is less than alpha, then one rejects the

null hypothesis, but risks a Type I error. It seems natural

then that if we “do not reject”, then we should “accept” the

null hypothesis, because “accept” is the opposite of “reject”.

It is difficult to teach that failure to disprove is not evidence

of truth. But people want to draw conclusions from a study,

rather than remain undecided. Failure to disprove sounds

like proof, but it is not. I teach students to use the words

“reject” and “retain”, where “retain” means we simply keep

hypotheses around until we have the evidence to reject them.

Hypothesis testing, students eventually learn, cannot prove

the truth of the null hypothesis. But Bayesians are willing

to compute the probability of the null hypothesis. This is

a strong attraction for people who want to know more than

what can be rejected, more than what is false; they want to

know what we can accept; they want to know what is true.

Consider this theory and its implication, C:

P1: Bread is made of cyanide

P2: All things made of cyanide are good to eat

P3: Fourteen angels love me

C: Bread is good to eat

Our scientist then provides an operational definition of

the conclusion, C, that bread is “good to eat” and proceeds

to show that the premises of his theory (P1, P2, and P3)

“are true” by eating bread. The more times he eats bread

and survives, the more “evidence for” his theory he has

accumulated, and the more he is convinced that his theory is
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true. After many trials, he claims he has proven that bread

is made of cyanide, that all things made of cyanide are good

to eat, and that 14 angels love him.

A skeptic steps in and argues the theory is not proven.

Ockham’s razor dictates that premises not used in a deduction

should be removed from the argument. Because P3 was

not used to deduce C, that bread is good to eat, it can be

removed from the system without altering the prediction that

was tested. So, by simplicity, P3 can be removed from the

system without loss. But does removing P3 make this theory

more probable?

It is valid to deduce from the premises that conclusion

C follows. So, if the theory is true, then bread is good to

eat. However A implies B is not the same as B implies A.

A implies B means that if B is false, then A is false. So,

if bread is not good to eat, we could reject the theory; but

when the conclusion is true we do not know if the premises

are true.

The basic ideas that one can “prove” a theory by collecting

evidence consistent with it, or make a theory more probable

by making it simpler are logical fallacies and should be

recognized as such, even when they appear to be justified by

what purports to be a Bayesian calculation. The basic human

desire to know what is true is seductive: a specious Bayesian

argument may seem appealing to those who are mystified by

numerical calculations.

How is it, then, that Bayesian calculations can compute

answers that seem to defy this logic, such as assigning a

probability to H0, if the system is logical? By assumption.

If we assume that either H0 or H1 is true, then if we disprove

H1, we conclude H0 is true. In some applications (such as

coins and cards or a set of mutually exclusive and exhaus-

tive theories), such Bayesian calculations indeed account for

all of the possible hypotheses, but in some scientific appli-

cations such as model testing for data as in Table 1, the

space of alternative hypotheses is not known, so one makes

assumptions, and dubious assumptions can lead to dubious

conclusions.4

I do not believe that a Bayesian would argue that the TE

models can be proven true by posterior probability calcula-

tions, but I worry that some others might misunderstand the

role and limitations of the assumptions that led to apparent

implications that the union of TE models has a calculated

posterior probability equal to 1. People might take the val-

ues of computed posterior probabilities as if they indicate a

theory has been proven true.

Frequentist statistics has been taught in psychology for a

century and certain of its misunderstandings and errors of

4Consider a classic, double-blind experiment with placebo and treatment

condition. Define µd as the mean difference between conditions, it has been

traditional to test H0: |µd | = 0 and H1: |µd | , 0. Instead, consider H0:

|µd | ≤ δ, and H1: |µd | > δ. This formulation could be evaluated by either

frequentist or Bayesian means. Frequentists might reject H1 in order to

retain H0; Bayesians might compute the posterior probabilities of H1 and

H0.

application have been identified in warnings to practition-

ers. For example, failure to disprove the null hypothesis

does not prove the null hypothesis; if a test is “significant”

it is not necessarily important or even “real”; significance

does not imply that it is likely to be replicated in an exact

replication. Reviewers are warned that scientists may run

multiple tests, may add studies until a desired result is ob-

served, may select findings, or “p-hack” by other means,

so reported p-values may not be what they seem. Some

people think that 0.7 is a “high” correlation, that correla-

tion is somehow related to causation, that “causal modeling”

does computational magic to allow causal inferences from

nonexperimental data, that correlation coefficients can be

compared between experiments, that correlation is an appro-

priate index of fit for model comparisons, or that coefficients

in multiple linear regression measure the relative importance

of variables. Such misconceptions, and others, are battled

by educators and editors.

Just as we have attempted to address these misconceptions

of frequentist statistics, with the increased popularity of the

Bayesian methods, it becomes important to clarify the lim-

itations of what Bayesian computations can and cannot do.

Lee (2018) recognizes the potential controversies regarding

priors and states, “Different prior assumptions about plausi-

ble response rates will lead to different inferences than the

ones we report. This is not surprising, and it is desirable.

The priors formalize theoretical assumptions and different

theories should, in general, yield different conclusions when

applied to the same data.”

Lloyd Humphreys (personal communication, April 15,

1975), stated that “all point null hypotheses (except ESP

in a properly designed study) and all models are false.” If

so, then frequentist hypothesis testing will inevitably reject

null hypotheses and models if given a large enough sam-

ple, and no amount of data could convince a Bayesian who

accepts such priors to put nonzero posterior probability on

H0 or a model. Thus, this reasonable starting assumption

means that neither classical hypothesis testing nor Bayesian

posterior probabilities can replace other aspects of scientific

reasoning that have not yet been reduced to formulas.

I admire both the frequentist and Bayesian statistical de-

velopments as intellectual achievements. But I do not think

that either approach is yet complete, nor found a way to

substitute calculation for design and execution of new ex-

periments that test critical implications of different theories.

Students need training to understand the limitations of ei-

ther statistical approach. Both approaches are vulnerable

to misunderstandings, self-deceptions, and reasoning falla-

cies, some of which are not as well known as others. Some

Bayesians are willing to use language that I find trouble-

some, talking of evidence “for” or in “support” of a theory.

I find such language acceptable when the set of all possible

theories is finite and delineated, as in cards, coins, Master-

mind, or scientific questions where the hypotheses can be
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divided into mutually exclusive and exhaustive partitions,

but not appropriate in an empirical science where the space

of alternative hypotheses is not defined.

In summary, I welcome Lee’s (2018) valuable contribu-

tions illustrating the Bayesian analysis of TE models in-

cluding the Bayesian solution for posterior distributions of

parameters, evaluations of the posterior predictions of EU

model in the context of those of the TE models, and the cor-

responding identification of loci of failure of the EU model

as a description of the data. However, I would urge cau-

tion regarding the apparent conclusions that TE1 is more

probable than TE2 (even had the Bayes factor been much

greater than the calculated value of 3.66), and that the union

of TE models have probability 1 of being true. Aside from

these concerns, it is worth stating again that the main scien-

tific conclusions from both methods of analysis are in close

agreement in this case.
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