
J. Fluid Mech. (2023), vol. 961, A12, doi:10.1017/jfm.2023.242

Analogy between streamers in sinking spheroids,
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In a dilute suspension where sinking spheroids or motile gyrotactic micro-organisms
are modelled as orientable and negatively buoyant particles, we have found analytical
solutions to their steady distributions under any arbitrary continuous vertical shear flow.
The two-way coupling between their distribution and the vertical flow is nonlinear,
enabling the uniform base state to bifurcate into a structure reminiscent of the streamers
in settling spheroid suspensions and gyrotactic plumes. This bifurcation depends on a
single parameter that is proportional to the average number of particles on a horizontal
cross-section. In a three-dimensional axisymmetric system, the plume structure blows up
when the parameter is above a threshold. We discuss how this singularity is analogous to
the chemotactic collapse of a Keller–Segel model, and the significance that this analogy
entails.
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1. Introduction

It is well-known that suspensions of sinking or motile particles can form patterns
spontaneously due to instabilities in the uniform base state. For example, in a dilute
suspension of identical sinking prolate spheroids or rods, the seminal paper by Koch
& Shaqfeh (1989) demonstrated the instability that gives rise to the streamer structure.
The mechanism is as follows. A perturbation in the spatial distribution of the negatively
buoyant particles creates a shear flow that attracts more particles towards regions of higher
particle concentration, thereby creating a positive-feedback self-focusing mechanism and
resulting in the streamer structures. Under the assumption of a Stokes flow, Koch &
Shaqfeh (1989) showed that the zero wavenumbers are the most unstable, implying that
there would be only a single streamer spanning the width of the container, but the
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experiments of Metzger, Butler & Guazzelli (2007a,b) have shown otherwise. Later,
Dahlkild’s linear analysis (2011) showed that a finite Stokes number could regularise
wavenumber, and Zhang, Dahlkild & Lundell (2013) further extended the analysis
nonlinearly and studied the effect of hydrodynamic diffusion. There were also other
attempts to explain the discrepancy (e.g. Saintillan, Shaqfeh & Darve 2006), but the
wavelength selection of streamers remained an open question (Guazzelli & Hinch 2011).

In the meantime, monodisperse motile particle suspensions were also analysed in
a similar way. Pedley, Hill & Kessler (1988) first demonstrated how gyrotaxis of
bottom-heavy motile particles could destabilise a uniform suspension into bioconvective
patterns. Gyrotaxis describes the tendency for bottom-heavy motile particles to swim
sideways under shear due to the competing torque from the local vorticity and gravity.
Although not recognised at the time, the mechanism of the gyrotactic instability is
physically the same as the aforementioned instability and results in a similar plume
structure. Like Dahlkild (2011), Pedley et al. (1988) included the effect of finite
unsteadiness due to fluid inertia. However, the finite wavelength corresponding to the most
unstable mode remained larger than the experimental observation. Instead, Pedley et al.
(1988) highlighted that the steady bioconvective patterns have a wavelength smaller than
the initial disturbance. This phenomenon was also observed in the experiments of sinking
rods (Metzger, Guazzelli & Butler 2005; Metzger et al. 2007b).

Despite the apparent similarity, gyrotactic plumes and streamers in settling
spheroids/rods were treated historically as two separate topics. This work will report
an interesting analogy between the two phenomena by comparing them under the same
framework, treating the buoyant and orientable particles as a continuum phase under
the dilute assumption. We will show that the gyrotactic plumes and streamers are not
only physically similar but mathematically equivalent, driven by the same nonlinear
particle-flow coupling that is analogous to another well-studied phenomenon known
as chemotactic collapse. This comparative study will provide a unifying framework to
compare the three phenomena, enabling an exchange of knowledge between the topics and
bringing new light to open questions on the wavelength selection of streamer structures.

2. Formulation

2.1. The Fokker–Planck (Smoluchowski) equations
It has been well-established that the trajectory ẋ∗ of an orientable particle (‘particle’
hereafter) suspended in the presence of ambient flow u∗ can be written as

ẋ∗ = u∗ + v∗
s ( p), (2.1)

where v∗
s ( p) is the slip velocity of the particle that depends on its orientation. In

this work, we will consider two kinds of particles: sinking prolate spheroids (as an
approximation for rods), and spherical gyrotactic swimmers (as a model for gyrotactic
motile micro-organisms such as the bottom-heavy micro-algae Chlamydomonas). For a
sinking spheroid with density ρ∗ + Δρ∗, equatorial radius a∗ and polar length ARa∗
suspended in a fluid of density ρ∗ and viscosity μ∗, the slip velocity can be written as

v∗
s ( p) = v∗

⊥eg + (v∗
‖ − v∗

⊥)(eg · p)p. (2.2)

Here,

v∗
‖ = 2

9
Δρ∗ g∗(a∗)2 AR

μ∗ X(AR) and v∗
⊥ = 2

9
Δρ∗ g∗(a∗)2 AR

μ∗ Y(AR) (2.3a,b)
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Analogy between sinking streamers and gyrotactic plumes
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Figure 1. (a) Diagram showing the definition of the direction p of a spheroid and the Euler angles
representation of p as defined in (2.7). (b) A typical planar vertical flow profile u(x) in § 4.1. (c) A typical
axisymmetric vertical flow profile u(r) in § 4.2. Note that gravity is in the −z direction.

are the sinking speeds when the particle’s orientation p, defined by the axis of revolution of
the spheroid, is parallel and perpendicular to gravity g∗eg. Here, both X(AR) and Y(AR) are
functions of the aspect ratio AR, the detailed formula of which can be found in Appendix A
(cf. Kim & Karrila 1991). Meanwhile, for a spherical gyrotactic swimmer, the slip velocity
is

v∗
s ( p) = v∗

⊥eg + v∗
c p. (2.4)

In this work, the superscript ∗ indicates dimensional variables or parameters.
Since the velocity ẋ∗ depends on the orientation p, the particle’s angular velocity must

also be resolved simultaneously. For a spheroid, the angular velocity is governed by the
Jeffery orbit (Bretherton 1962)

ṗ∗ = 1
2Ω∗ × p + α0p · E∗ · (I − pp), (2.5)

where E∗ = 1
2(∇∗u∗ + (∇∗u∗)T), and Ω∗ = ∇∗ × u∗ are the local rate-of-strain and

vorticity, and α0 = (AR2 − 1)/(AR2 + 1) is the Bretherton constant. Meanwhile, the
orientational trajectory of a spherical gyrotactic particle is

ṗ∗ = 1
2B∗ [−eg + (eg · p)p] + 1

2
Ω∗ × p, (2.6)

where B∗ is the gyrotactic time scale. The orientation p can also be written in terms of the
Euler angles θ, φ relative to the spatial coordinates x = (x, y, z)T as shown in figure 1(a),
such that

p = ( px, py, pz)
T = (sin θ cosφ, sin θ sinφ, cos θ)T. (2.7)

Here, θ is the angle between p and the z direction, which is opposite to gravity eg.
In a dilute and monodispersed suspension, the conservation of particles in physical and

orientational space is governed by the Fokker–Planck (Smoluchowski) equation (Doi &
Edwards 1988; Saintillan & Shelley 2015):

∂Ψ

∂t∗
+ ∇∗

x · (ẋ∗Ψ )+ ∇p · (ṗ∗Ψ ) = d∗
r ∇2

pΨ, (2.8)

where Ψ (x∗, p, t∗) is the probability density function of a particle located at x∗ with
orientation p at time t∗. Here, d∗

r is the rotational diffusivity, which we assume to
be non-zero, homogeneous and isotropic, and represents the noise experienced by the
particles. It models the long-range hydrodynamic disturbance from other particles or the
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particle’s inherent thermodynamical or biological noise. Short-range interactions between
particles are neglected under the dilute assumption.

The number density of particles n(x∗, t∗) (normalised by the average number of particles
per unit volume N∗) can be recovered from Ψ (x∗, p, t∗) by

n(x∗, t∗) =
∫

Sp

Ψ (x∗, p, t∗) d2p, (2.9)

while the normalised orientational distribution can be defined as

f (x∗, p, t∗) = Ψ (x∗, p, t∗)/n(x∗, t∗), where
∫

Sp

f (x, p, t∗) d2p = 1. (2.10)

Here, Sp represents the spherical surface domain spanned by the orientational p, i.e. the
p-space.

2.2. The Navier–Stokes equations
Meanwhile, the fluid flow u∗ is governed by the Navier–Stokes equation

ρ∗
(
∂u∗

∂t∗
+ u∗ · ∇∗

xu∗
)

= −∇∗
xp∗ + μ∗ ∇2∗

x u∗ + γ ∗neg, (2.11)

where p∗ is the fluid pressure, and γ ∗n = Δρ∗ g∗(4π/3)(a∗)3 AR N∗n is the buoyancy
force that suspended particles exert on the fluid. By writing down (2.11) as the equation
governing the conservation of momentum in the suspension, we have assumed implicitly
that the inertia of the suspended particles is negligible compared to the fluid flow u∗.
However, the buoyancy force from the bulk of the suspended phase is significant, as shown
in the last term of (2.11), while the higher-order stress contributions from the particles are
assumed relatively negligible compared to buoyancy. Together, (2.8) and (2.11) complete
the set of continuum equations governing the flow in the suspension and the evolution of
the particle distribution.

2.3. Non-dimensionalisation
To non-dimensionalise the equation, we introduce a suitable length scale H∗ and use the
typical particle’s slip velocity V∗

s to non-dimensionalise the equations. To facilitate the
analysis later, we define the typical slip velocity as V∗

s = v∗
‖ − v∗

⊥ for sinking spheroids,
and V∗

s = v∗
c for gyrotactic swimmers. Hence the non-dimensionalisation gives rise to the

dimensionless parameters

Re = ρ∗H∗V∗
s

μ∗ , Ri = γ ∗H∗

V∗
s

2ρ∗ = 4π

3
Δρ∗

ρ∗
g∗(a∗)3 AR

V∗
s

2 N∗H∗,

λ = H∗

2B∗V∗
s

and dr = H∗d∗
r

V∗
s
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12a–d)

Here, Re is the Reynolds number representing the fluid viscosity, Ri is the Richardson
number representing the buoyancy force from the particles (which is proportional to the
number density N∗), and λ is the gyrotactic bias parameter.
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Analogy between sinking streamers and gyrotactic plumes

2.4. Applying the parallel assumption
We consider a vertical section of width 2H∗ of an otherwise infinite suspension with no
boundary, where a streamer (gyrotactic plume) may arise due to the instability of Koch &
Shaqfeh (1989) and Pedley & Kessler (1990). As shown in figure 1(b), we assume that the
flow is always vertical (along the direction of gravity) and that there is homogeneity in the
spanwise (y) and streamwise (z) directions, while periodicity is assumed in the horizontal
x direction. In other words, we assume u = u(x, t) ẑ, where the flow u(x, t) varies only in
the periodic domain x ∈ [−1, 1] and in time t. Since x is periodic, we further constrain
u(x, t) and normalise n(x, t) such that

∂u
∂x

= 0 at x = ±1,
∫ 1

−1
u(x, t) dx = 0 and

∫ 1

−1
n(x, t) dx = 2. (2.13a–c)

The Neumann condition implies that there is no driving pressure in z. Hence (2.11)
becomes

∂u
∂t

= 1
Re

∂2u
∂x2 − Ri (n(x, t)− 1). (2.14)

Meanwhile, the non-dimensionalised (2.8) is reduced to

∂Ψ

∂t
+ ∂

∂x
(KΨ )+ Lpx(x, t) Ψ = 0, (2.15a)

where the operation in p-space

Lpx(x, t) Ψ = Lpx(S(x, t)) Ψ = S(x)LSΨ + LHΨ (2.15b)

can be split into a spatially inhomogeneous operation S(x)LSΨ that scales with the local
shear rate S(x, t) = ∂xu(x, t), and the spatially homogeneous operation LHΨ . Equations
(2.15) are written in such a way that applying (2.15) to a type of particle is now a matter
of substituting the slip velocity K in x and the p-space operators LS and LH with the
corresponding particle properties. For the sinking spheroid suspension,

K = − cos θ sin θ cosφ, (2.16a)

LSΨ = 1
2

(
cot θ sinφ

∂Ψ

∂φ
− cosφ

∂Ψ

∂θ

)

+ ξ

6

(
−3 cosφ sin 2θ Ψ − cot θ sinφ

∂Ψ

∂φ
+ cos 2θ cosφ

∂Ψ

∂θ

)
(2.16b)

with ξ = 3α0, and

LHΨ = −dr ∇2
pΨ = dr

(
− csc θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
− csc2 θ

∂2Ψ

∂φ2

)
, (2.16c)

while for gyrotactic swimmer suspension,

K = sin θ cosφ, (2.17a)

LSΨ = 1
2

(
cot θ sinφ

∂Ψ

∂φ
− cosφ

∂Ψ

∂θ

)
(2.17b)
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and

LHΨ = λ∇p · ([−eg + (eg · p)p]Ψ
)− dr ∇2

pΨ

= dr

(
2ξ
(

−2 cos θ Ψ − sin θ
∂Ψ

∂θ

)
− csc θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
− csc2 θ

∂2Ψ

∂φ2

)
,

(2.17c)

where ξ = λ/2dr. Here, ξ is defined for each type of particle to facilitate later analyses.

3. Analytical steady solutions to the Fokker–Planck equations

In this section, we focus on solving the steady solution of (2.15) by assuming that the flow
has converged to a steady solution u(x). For any given arbitrary and continuous vertical
flow profile u(x), and thereby any arbitrary shear profile S(x), the steady solution to (2.15)
is unique and stable as (2.15) is linear and diffusive in the p-space. Furthermore, separation
of variables is possible for the given operators in (2.16) and (2.17). This is because the
homogeneous solution g( p) to the p-space operator LH , i.e. LH g( p) = 0, also satisfies
LS g( p) = ξK g( p). For example, in sinking spheroid suspensions, the steady separable
solution has a uniform orientational distribution, i.e. uniform in the p-space, or

Ψ (x, p,∞) = n(x) g( p) = n(x)/4π. (3.1)

Meanwhile, the steady separable solution to the gyrotactic swimmer suspension can be
written as

Ψ (x, p,∞) = n(x) g( p) = n(x)
2ξ

4π sinh 2ξ
exp (2ξ cos θ). (3.2)

However, it should be noted that this separation of variables is not always possible in
the more general context of Fokker–Planck equations governing orientable particles. For
instance, this technique cannot be applied to non-spherical gyrotactic swimmers. The
critical condition that made the technique possible is when the solution to LH g( p) = 0
satisfies LS g( p) = ξK g( p), which both spherical gyrotactic swimmers and sinking
spheroids happen to fulfil.

Now, substituting either (4.1a–c) or (3.2) into (2.15) gives the same relationship between
n(x) and u(x), that is,

ξ S(x) n(x) = ξ u′(x) n(x) = −n′(x). (3.3)

In other words, sinking spheroids and gyrotactic swimmer suspension share the same
steady particle distribution in x for a given velocity profile u(x). This is the main reason
behind the analogy between gyrotactic plumes and streamers. Also, it follows immediately
that

n(x) = C exp (−ξu(x)), (3.4)

where C can be found by the normalisation condition (2.13a–c).
As mentioned above, for a given velocity profile u(x), the Fokker–Planck equation (2.15)

on its own is a linear equation. However, nonlinearity arises when n(x) is coupled with u(x)
in (2.14)–(2.15). This nonlinearity can lead to bifurcations, as we demonstrate in the next
section.
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Analogy between sinking streamers and gyrotactic plumes
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Figure 2. (a) Bifurcation diagram on the Ri–u(0) plane after rescaling. A solid line represents a stable steady
solution, while a dashed line represents an unstable steady solution. The dotted line gives the theoretical
prediction from (4.2). Steady solutions of (b) u(x) and (c) n(x) along the continuation as marked by the circles
(i)–(iv) in (a), with Re = n0 = ξ = 1. Note that the solutions from the upper branch in (a) are equivalent to the
lower branch solutions (b,c) with a half-period shift in x.

4. Bifurcation towards the plume/streamer structure

4.1. Bifurcation in the two-dimensional case
Armed with the explicit form of n(x) at the steady state, we can solve numerically for the
steady solution to the coupled equations (2.14)–(2.15) governing the parallelised system.
Recall that below a certain critical Richardson number Ri = Ric, the uniform solution

n0(x) = 1, Ψ0 = g( p) n0, u0(x) = 0 (4.1a–c)

is a stable and steady solution to the system. However, at Ri > Ric, Koch & Shaqfeh (1989)
and Pedley & Kessler (1990) showed that the uniform basic state is prone to instability that
gives rise to the streamer/plume structure. Therefore, we expect a potential bifurcation at
the neutral stability point Ri = Ric.

To demonstrate the bifurcation, we have performed numerical continuation of the steady
solution at increasing Ri using the numerical method described in Fung, Bearon & Hwang
(2020). Figures 2(b,c) show some of the solutions along the lower branch, where a plume
structure is clearly observed. Figure 2(a) shows that after rescaling Ri and u(0), the
bifurcation collapses onto a single diagram. (Due to translational invariance in x, the upper
branch is equivalent to the lower branch with a half-period shift in x. Therefore, u(±1)
in figure 2(b) is equivalent to u(0) in the upper branch of figure 2a.) Weakly nonlinear
analysis in Appendix B shows that the bifurcating line on the rescaled u(0)–Ri plane can
be approximated by

Re ξn0(Ri − Ric) = π2

12
(ξ u(0))2 , with Re ξn0 Ric = π2. (4.2)

In other words, there is a supercritical pitchfork bifurcation at Ri = Ric = π2/Re ξn0. Note
that the results in figure 2 would be equivalent to the numerical results of Zhang et al.
(2013) if they prescribed no translational diffusion and a constant rotational diffusivity.

There are several important implications from the result. First, the bifurcation that leads
to the streamer structure depends on only a single parameter Re ξn0 Ric. We will delay the
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discussion on this parameter to § 5. Second, we observe that the magnitude of u(0) of the
two possible solutions increases with Ri after bifurcation but remains finite. It implies that
in a two-dimensional system with infinite depth, the streamer will eventually converge to
a steady structure with finite velocity and concentration at the centre. However, as we will
demonstrate below, this is not the case in a three-dimensional axisymmetric system.

4.2. Blow-up in the three-dimensional axisymmetric case
In this section, we extend the above analysis to the axisymmetric case, where we assume
homogeneity in the azimuthal ψ and vertical z directions. Figure 1(c) shows a typical
axisymmetric vertical flow u(r). Here, we will adopt the cylindrical coordinates xR =
(r, ψ, z)T and a new set of Euler angles θ̃ and φ̃ as

pR = ( pr, pψ, pz)
T = (sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃ )T. (4.3)

Although the rotating φ̃(ψ) coordinate introduces a centrifugal force in the p-space, the
resulting Fokker–Planck equation is the same as (2.15) with x 	→ r (see Appendix C).
Hence, following the same procedures as in § 3, we have

ξ u′(r) n(r) = −n′(r), (4.4)

leading to the steady solution

n(r) = C exp (−ξu(r)), where
∫ 1

0
n(r) r dr = 1/2. (4.5)

Coupling it with the steady flow equation under the axisymmetric and parallel assumption,

0 = 1
Re

1
r
∂

∂r
(r u′(r))− Ri (n(r)− 1), (4.6a)

where

u′(r) = 0 at r = 0, 1 and
∫ 1

0
u(r) r dr = 0, (4.6b)

again, we seek the steady solutions and the bifurcation numerically. Note that the boundary
condition at r = 1 represents a stress-free (Neumann) boundary for the flow, as we are
isolating an axisymmetric plume in an infinite medium that is no longer periodic. Also,
as a result of the boundary condition, (4.6a) has no driving pressure gradient. Because of
the lack of translational symmetry, the bifurcation is no longer a pitchfork. Instead, it is a
transcritical bifurcation, as shown in figure 3. Linear and weakly nonlinear analysis (see
Appendix D) show that the bifurcation points are at

Re ξn0 Ric = κ2, with J1(κ) = 0, (4.7)

where Jn(r) is the nth Bessel function of first kind (cf. Fung & Hwang 2020). Notably,
the continuation from the bifurcation point in the negative u(0) direction tends towards
a vertical line Re ξn0 Ri = 8 (figure 3a). This continuation forms an unstable manifold.
Direct dynamical simulation of the axisymmetric equivalent of (2.14)–(2.15) shows
that if the system is perturbed from the uniform state to beyond this manifold at
8 < Re ξn0 Ri < κ2, or perturbed in the negative u(0) direction when Re ξn0 Ri > κ2, then
the number density and velocity may blow up in finite time.
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Amplitude u(0)

Ri Re ξn0 = 8

Figure 3. (a) Bifurcation diagram on the Ri–u(0) plane after rescaling. Steady solutions of (b) u(r) and
(c) n(r) along the continuation as marked by the circles (i)–(ix) in (a), with Re = n0 = ξ = 1. Here, a solid
line represents a stable steady solution, while a dashed line represents an unstable steady solution.

5. Discussion and concluding remark

5.1. The singularity and its connection to chemotactic collapse
To the best knowledge of the author, this is the first demonstration of the nonlinear
singularity in a suspension of sinking spheroids. The discovery of this singularity might
provide new insights into the wavelength selection of streamer structure, as we will
discuss later. As for gyrotactic suspensions, the singularity was somewhat obscured by
the development of the transport model for gyrotactic swimmers. The first analysis of
gyrotactic focusing by Kessler (1986) showed the singularity, but his primitive model of
gyrotaxis was soon superseded by the popular Fokker–Planck model (Pedley & Kessler
1990), which suppressed the singularity. Although our recent revisit of the problem with
the more accurate generalised Taylor dispersion model has rediscovered this singularity
(Fung et al. 2020), this work further supersedes our previous work by solving directly
the Fokker–Planck equation, giving us confidence that the singularity is not an artefact of
any transport model that approximates the equation. Coincidentally, our result in (4.4) has
recovered the same singular solution as Kessler (1986), although our solution is derived
more rigorously.

Kessler (1986) hinted at the similarity between his primitive model and Keller–Segel
models for autochemotaxis. In its most simplified form (Childress & Percus 1981), a
Keller–Segel-type model consists of two continuum equations governing the conservation
of a chemical attractant b and chemotactic motile cells a:

∂tb = ∇2
x b + γ a, (5.1)

τ ∂ta + ∇x · [χ(∇xb)a − μ∇xa] = 0. (5.2)

The cells are producers of the attractant (γ a) in (5.1), but they also diffuse (μ∇2
x a)

and drift against the chemical gradient (χ(∇xb)a) at a different time scaleτ in (5.2).
Mechanistically, this is similar to how gyrotactic swimmers or sinking spheroids exert
gravitational forces to accelerate the flow in the plume while being attracted to the
plume due to shear (gradient in the flow velocity). Here, we will also demonstrate their
mathematical equivalence. With n 	→ a and u 	→ b, it is not difficult to see that the flow
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equation (2.14) is equivalent to (5.1), but the Fokker–Planck equation is more complex
than (5.2). Nonetheless, the analytical solution allows us to write down (3.3) and (4.4),
which is the steady solution equivalent to (5.2) with no-flux boundary conditions in x.
Therefore, the coupled Fokker–Planck and Navier–Stokes equations under the parallel and
steady assumption are also a Keller–Segel-typedmodel.

In this light, the singularity (§ 4.2) can be interpreted as the equivalent of chemotactic
collapse, a prominent feature of the Keller–Segel model. It describes the autonomous
blow-up in a and b at a finite time, and is often used to describe aggregation in biological
populations, such as the aggregation of slime moulds. Childress & Percus (1981) showed
that chemotactic collapse is impossible in a one-dimensional system and requires a
threshold number of cells in a two-dimensional system. We have shown the same in §§ 4.1
and 4.2. Physically, it is simply because in high-dimensional systems, more particles/cells
are available to amplify the positive-feedback mechanism mentioned above.

5.2. The wavelength selection of plumes or streamers
The singularity played an important role in the wavelength selection of chemotactic
collapse. However, here it does not directly predict the wavelength of gyrotactic plumes or
streamers (represented by system width H∗), but only constrains it with a lower bound. The
analysis in § 4 has shown a minimum threshold Re ξn0 Ri > 8 for the uniform suspension
to blow up. Expanding it back into its dimensional form for sinking spheroids,

Re ξn0 Ri = a∗(H∗)2N∗ 18πα0(AR)
X(AR)− Y(AR)

= 27
2

(
H∗

a∗

)2

c
α0

AR (X − Y)
> 8, (5.3)

shows that it is independent of the viscosity μ∗, gravity g∗, particle density Δρ∗ and
rotational diffusivity d∗

r . Instead, it depends only on the aspect ratio AR and the average
number of particles on a horizontal cross-section of the plume (H∗)2N∗ or the volume
fraction c. In contrast, the same level of universality cannot be claimed for gyrotactic
swimmers, where

Re ξn0 Ri = 1
4B∗d∗

r

(
4π

3
(a∗)3N∗

)
(H∗)2 Δρ∗ g∗

v∗
cμ

∗ > 8. (5.4)

The higher level of universality in sinking spheroid suspension is because the motility
V∗

s = v∗
‖ − v∗

⊥ ∼ Δρ∗ g∗(a∗)2 AR/μ∗ cancels out γ ∗/(N∗a∗) = Δρ∗ g∗(4π/3)(a∗)2 AR
and μ∗, in contrast to the motility of swimmers. Regardless of the particles, the
physical implication of (5.3)–(5.4) is that there exists a minimum width (2H∗) to the
streamer/plume structure, which depends only on the background concentration N∗ for
the given particle and fluid properties. However, this minimum width is not necessarily
the wavelength of the observed pattern. For example, plugging the parametric values for
C. augustae (née C. nivalis; see Pedley & Kessler 1990) into (5.4) gives a minimum
plume width ≈1.3 mm at N∗ ≈ 106 cm−3, which might be of order similar to the observed
1–3 mm in bioconvection (Pedley et al. 1988). However, applying (5.3) to the experiment
of Metzger et al. (2007a) gives a minimum streamer width ≈4 rod lengths at 0.5 % volume
fraction, an order of magnitude smaller than the observed streamer width.

Nonetheless, the discovery of this singularity gives a new interpretation of the
wavelength selection in bioconvection and streamer structure of settling rods. Since local
perturbations can easily trigger a chemotactic collapse, multiple plumes can arise from an
initial uniform suspension, as long as there are more particles than the threshold N∗(H∗)2
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Analogy between sinking streamers and gyrotactic plumes

on the horizontal cross-section of each plume. As the plume blows up, the short-range
or multi-particle hydrodynamic interactions neglected by the dilute assumption will
likely play a significant role in regularising the singularity. Therefore, the destiny of the
streamers/plumes depends entirely upon the physics that regularises the singularity. For
example, it might be that the regularisation in the gyrotactic plume was able to stabilise the
structure, resulting in a steady bioconvective pattern (see Bees 2020). However, a different
regularisation in the settling rod suspension may have caused the evolving clusters in the
streamers and the break-up of streamers at a later stage (Metzger et al. 2007a). It is also
likely that the wavelength selection depends strongly on the hydrodynamic interaction that
regularises the singularity.

Much work may follow after this analogy between the three phenomena, as it connects
three separate fields under a single unifying framework and enables the transfer of
knowledge between them. For example, the regularisation technique in chemotactic
collapse (Lankeit & Winkler 2020) can be used to study plumes and streamers. Previous
experiments on bioconvection (Bees & Hill 1997) can now be compared with the
sedimentation of rods (Metzger et al. 2007a,b). Finite-depth effects on the bioconvection
wavelength (Hill, Pedley & Kessler 1989; Bees & Hill 1998) can be used to re-examine the
effect of the bottom wall in the sedimentation of rods (Saintillan et al. 2006). Although
this work did not directly predict the wavelength of the streamer, it provides a new
context in which short-range hydrodynamic interactions may play a role in maintaining
the plumes/streamers and keeping the system from blowing up. The role that short-range
interaction plays in this dynamic might be akin to how volume exclusion regularises
chemotactic collapse. Therefore, the analogy that this work has shown may provide a new
foundation for future work.
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Appendix A. Formula for the sedimentation speed of spheroids

By symmetry of the particle, the sinking speed of a spheroid is characterised by two
resistance functions, XA and YA. When the external force F∗ applied is parallel to the
axis of symmetry of the particle,

F∗ = 6πμ∗a∗ AR XAv∗
‖ . (A1)

When the external force F∗ applied is perpendicular to the axis of symmetry of the particle,

F∗ = 6πμ∗a∗ AR YAv∗
⊥. (A2)

Taken from Kim & Karrila (1991, table 3.4), the resistance functions XA and YA relating
the force due to translation along and perpendicular to the axis of symmetry of the particles
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are

XA = 8
3 e3[−2e + (1 + e2)L]−1 and YA = 16

3 e3[2e + (3e2 − 1)L]−1, (A3a,b)

where

e =
√

1 − 1
AR2 (A4)

is the eccentricity of the spheroid, and

L = ln
(

1 + e
1 − e

)
. (A5)

Therefore, balancing the resistive force with gravity results in X = (AR XA)−1 and Y =
(AR YA)−1. An alternative formula can also be found in Cabrera et al. (2022).

Appendix B. Linear and weakly nonlinear analysis in planar coordinates

Here, we demonstrate that the bifurcation in § 4 is a supercritical pitchfork bifurcation. We
define Ri = Ric + ε2 ΔRi and slow time T = ε2t, and expand u and Ψ as

u = 0 + εu1 + ε2u2 + ε3u3 + · · · , (B1)

Ψ = g( p) n0 + εΨ1 + ε2Ψ2 + ε3Ψ3 + · · · , (B2)

where we also define ni = ∫
Sp
Ψi d2p. Substituting the above into (2.14) and (2.15), and

collecting the terms at each order, we have at first order O(ε),

∂tu1 = Re−1 D2u1 − Ri n1, (B3a)

∂tΨ1 = −ξK g( p) n0 Du1 − K DΨ1 − LHΨ1, (B3b)

where D = ∂/∂x. At Ri = Ric, the neutral stability ∂tu1 = ∂tΨ1 = 0 leads to

D2u1 + Re Ri ξn0u1 = 0. (B4)

Solving the equation with the boundary condition gives the value of Ric and stability mode

u1 = A cos (πx) and Ψ1 = −A g( p) ξn0 cos(πx), (B5a,b)

where A = A(T) is the amplitude of the linear mode growing in the slow time scale T . The
next order is degenerate due to translational invariance, so the bifurcation is demonstrated
at O(ε3), where

∂Tu1 + ΔRic n1 = Re−1 D2u3 − Ri n3, (B6a)

∂TΨ1 + (Du1)LSΨ2 + (Du2)LSΨ1 = −ξKΨ0 Du3 − K DΨ3 − LHΨ3. (B6b)

By the Fredholm alternative and A′(T) = 0, we can show that

− ξn0 ΔRi A + π2ξ2

12 Re
A3 = 0 or ΔRi = π2ξ

12n0 Re
A2 = Ric

12
(ξA)2. (B7)

In other words, there is a supercritical pitchfork bifurcation at Ri = Ric.
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Analogy between sinking streamers and gyrotactic plumes

Appendix C. The Fokker–Planck equation in cylindrical coordinates

In this section, we demonstrate how to convert the Fokker–Planck equation

∂Ψ

∂t
+ ∇x · (ẋΨ )+ ∇p · (ṗΨ ) = dr ∇2

pΨ (C1)

in Cartesian coordinates, which governs Ψ = Ψ (t, x, p) = Ψ (t, x, y, z, θ, φ), into an
equivalent equation governing Ψ = Ψ̃ (t, xR, pR) = Ψ̃ (t, r, ψ, z, θ̃, φ̃) in cylindrical
coordinates. First, we note that

φ = ψ + φ̃, (C2)

therefore

1
r
∂Ψ

∂ψ

∣∣∣∣
φ

= 1
r

⎛
⎝ ∂Ψ̃
∂ψ

∣∣∣∣∣
φ̃

∂ψ

∂ψ

∣∣∣∣
φ

+ ∂Ψ̃

∂φ̃

∣∣∣∣∣
ψ

∂φ̃

∂ψ

∣∣∣∣∣
φ

⎞
⎠ = 1

r

⎛
⎝ ∂Ψ̃
∂ψ

∣∣∣∣∣
φ̃

− ∂Ψ̃

∂φ̃

∣∣∣∣∣
ψ

⎞
⎠ . (C3)

Substituting the above while converting x-space divergence into cylindrical coordinates
gives

∇x · [ẋΨ ]p = ẋ · ∇xΨ |p = ẋR · Ψ̃ |pR − ẋψ
r
∂Ψ̃

∂φ̃

∣∣∣∣∣
ψ

= ∇xR · [ẋRΨ̃ ]pR − ẋrΨ̃

r
− ẋψ

r
∂Ψ̃

∂φ̃

∣∣∣∣∣
ψ

, (C4)

where in the last step, the term ẋrΨ̃/r arises from (∇xR · ẋR)Ψ̃ . Here, ẋr = −pzpr and
ẋψ = −pzpψ for sinking spheroids, and ẋr = pr and ẋψ = pψ for gyrotactic swimmers.

Meanwhile, the p-space (angular) velocity can be decomposed into

ṗ = ṗR + ẋψ
r

ẑ × pR, (C5)

where the last term represents the centrifugal force arising from the angular velocity ẋψ
of the rotating pR-space. Meanwhile, the operator ∇p = ∇pR remains the same after the
change in coordinates as it was operating at constant x = xR. Hence the Laplacian

∇2
pΨ = ∇2

pR
Ψ̃ (C6)

also remains unchanged. Substituting above while converting p-space divergence from
p-space to the rotating pR-space gives

∇p · [ṗΨ ] = ∇pR · [ṗΨ̃ ] = ∇pR ·
[

ṗR + ẋψ
r

ẑ × pRΨ̃

]
= ∇pR · [ṗRΨ̃ ] + ẋrΨ̃

r
+ ẋψ

r
∂Ψ̃

∂φ̃
. (C7)

The last two terms arising from the centrifugal force in (C7) will therefore cancel with the
last two terms in (C4) when we substitute (C7) and (C6)–(C4) into (C1), resulting in

∂Ψ̃

∂t
+ ∇xR · (ẋRΨ̃ )+ ∇pR · (ṗRΨ̃ ) = dr ∇2

pR
Ψ̃, (C8)

which is the Fokker–Planck equation written in cylindrical coordinates. The derived
equation is also consistent with (2.13)–(2.17) in Jiang & Chen (2020).
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In practice, (C8) is rarely used directly, as it involves duplicated terms and unintuitive
expansion of ṗR. Instead, we use the intermediate result

∂Ψ̃

∂t
+ ẋR · Ψ̃ |pR − 1

r
∂Ψ̃

∂φ̃

∣∣∣∣∣
ψ

+ ∇pR · (ṗΨ̃ ) = dr ∇2
pR
Ψ̃, (C9)

where ṗ can be represented in terms of (θ̃ ,φ̃) and the gradient of u written in cylindrical
coordinates. The main advantage of (C9) over (C8) is that the duplicate term ẋrΨ̃/r is
already cancelled out, and that formulas for ṗ in terms of (θ̃, φ̃) are more readily available.

Now, in the axisymmetric case where Ψ̃ = Ψ̃ (r, pR, t) and u = u(r, t) ẑ, the
Fokker–Planck equation becomes

∂Ψ̃

∂t
+ ẋr

∂Ψ̃

∂r
+ ∇pR · (ṗΨ̃ ) = dr ∇2

pR
Ψ̃. (C10)

In particular, for the examples considered in this work, (C9) can be written as

∂Ψ̃

∂t
+ K̃

∂Ψ̃

∂r
+ L̃pr(r, t) Ψ̃ = 0, (C11)

where

K̃ = − cos θ̃ sin θ̃ cos φ̃, (C12a)

L̃pr(r, t) Ψ̃ =
(
∂u
∂r

)[
1
2

(
cot θ̃ sin φ̃

∂Ψ̃

∂φ̃
− cos φ̃

∂Ψ̃

∂θ̃

)

+ ξ

6

(
−3 cos φ̃ sin 2θ̃ Ψ̃ − cot θ̃ sin φ̃

∂Ψ̃

∂φ̃
+ cos 2θ̃ cos φ̃

∂Ψ̃

∂θ̃

)]

−dr ∇2
pR
Ψ̃, (C12b)

with ξ = 3α0 for the sinking spheroid suspension, and

K̃ = sin θ̃ cos φ̃, (C13a)

L̃pr(r, t) Ψ̃ = 1
2
∂u
∂r

(
cot θ̃ sin φ̃

∂Ψ̃

∂φ̃
− cos φ̃

∂Ψ̃

∂θ̃

)

+ dr

(
2ξ

(
−2 cos θ̃ Ψ̃ − sin θ̃

∂Ψ̃

∂θ̃

)
− ∇2

pR
Ψ̃

)
, (C13b)

with ξ = λ/2dr for gyrotactic swimmer suspension.
The above equations are effectively the same as (2.15)–(2.17) if we take r 	→ x, ∂r 	→ ∂x,

θ̃ 	→ θ , φ̃ 	→ φ and Ψ̃ 	→ Ψ . Hence one can follow the same procedure from (2.15) to
(3.3)–(3.4) to get (4.4)–(4.5).

Appendix D. Linear and weakly nonlinear analysis in cylindrical coordinates

In this section, we will demonstrate, through weakly nonlinear analysis, that the bifurcation
is a supercritical pitchfork bifurcation. We define Ri = Ric + εΔRi and slow time T = εt,
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and expand u and Ψ as

u = 0 + εu1 + ε2u2 + ε3u3 + · · · , (D1)

Ψ = g( p) n0 + εΨ1 + ε2Ψ2 + ε3Ψ3 + · · · , (D2)

which leads to
n = 1 + εn1 + ε2n2 + ε3n3 + · · · , (D3)

where we define ni = ∫
Sp
Ψi d2p. Substituting the above into (2.14) and (2.15) and

collecting the terms at each order, we have, at first order O(ε),

∂u1

∂t
= 1

Re
D2u1 − Ri n1, (D4a)

∂Ψ1

∂t
= −ξK g( p) n0 Du1 − K DΨ1 − LHΨ1, (D4b)

where D = ∂/∂r and D2 = (1/r)(∂/∂r)(r ∂/∂r). At Ri = Ric, ∂tu1 = ∂uΨ1 = 0, which
leads to

D2u1 + Re Ri ξn0u1 = D2u1 + κ2u1 = 0, where κ2 = Re Ric ξn0. (D5)

Solving the equation with the boundary conditions gives the stability mode

u1 = A J0(κr) and Ψ1 = −A g( p) ξn0 J0(κr), (D6a,b)

where A = u1(0) = A(T) is the amplitude of the linear mode growing in the slow time
scale T , Jm(r) is the mth Bessel function of the first kind, and κ is the first zero of J1(r).
At the next order, O(ε2), we have

∂u1

∂T
+ ΔRic n1 = −∂u2

∂t
+ 1

Re
D2u2 − Ri n2, (D7a)

∂Ψ1

∂T
+ (Du1)LSΨ1 = −∂Ψ2

∂t
− ξKΨ0 Du2 − Pes K DΨ2 − LHΨ2. (D7b)

Note that LSΨ1 = ξKΨ1 (see § 3). When the solution reaches a steady saturation, A′(T) =
0 and ∂tu2 = ∂uΨ2 = 0. Hence

ΔRic n1 = 1
Re

D2u2 − Ri n2, (D8a)

(Du1)LSΨ1 = −ξKΨ0 Du2 − Pes K DΨ2 − LHΨ2. (D8b)

Here, the Fredholm alternative is satisfied automatically in the p-space, while the
Fredholm alternative in the r-space requires∫ 1

0
v (ΔRi n1) r dr +

∫ 1

0
Φ ((Du1)ξKΨ1) r dr = 0, (D9)

where v(r, p) and Φ(r, p) are the solutions to the adjoint of the right-hand side of (D4).
Therefore, we can show that

− Cξn0 ΔRi A + E
κ2

Re n0
A2 = 0 (D10)

961 A12-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.242


L. Fung

or

ΔRi = E
C

Ric ξA, (D11)

where C and E are defined as

C =
∫ 1

0
[J0(κr)]2r dr = 1

2 [J1(κ)]2 (D12)

and

E =
∫ 1

0
J0(κr) J2

1(κr) r dr. (D13)

In other words, there is a transcritical bifurcation at Ri = Ric.
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