Outflow Angles and Bulk Lorentz Factors for Different Categories of AGN

Erick. J. Guerra, Ruth A. Daly
Department of Physics, Princeton University, Princeton NJ, 08544

Abstract

Relativistic outflows from AGN can be parameterized by θ, the angle subtended by the direction of the outflow and the line of sight to the observer, and γ, the bulk Lorentz factor of the outflow. The Doppler factor, δ, and the apparent speed in the plane of the sky, $\beta_{a p p}$, are combinations of θ and γ. The Doppler factor can be estimated using either the equipartition Doppler factor, $\delta_{e q}$ (Readhead 1994), or the inverse Compton Doppler factor, $\delta_{I C}$. These Doppler factor estimates are combined with observed $\beta_{a p p}$ to solve for θ and γ for different categories of AGN.

Ghisellini et al. (1993) compute $\delta_{I C}$ for 105 compact radio sources, and Güijosa \& Daly (1996) compute $\delta_{e q}$ for the same sample. Daly, Guerra, \& Güijosa (1996) estimate θ and γ for the 43 sources that have $\beta_{a p p}$ listed by Vermeulen \& Cohen (1994) and $\delta_{e q}$ computed by Guiijosa \& Daly (1996).

Solutions and errors for θ and γ are presented in Figures 1 and 2 using $\delta_{e q}$ and $\delta_{I C}$ respectively. Guerra \& Daly (1996) discuss these estimates and errors in greater detail. These AGN fall into the following categories: BL Lacertae objects (BL Lacs), core-dominated high-polarization quasars (CDHPQ), core-dominated low-polarization quasars (CDLPQ), core-dominated quasars with no polarization information (CDQ(NPI)), lobe-dominated quasars (LDQ), and radio galaxies (RG).

Acknowledgments. This work supported in part by the U.S. National Science Foundation through a Graduate Student Fellowhsip and a National Young Investigator Award.

References

Daly, R. A., Guerra, E. J., \& Güijosa, A. 1996, in "Energy Transport in Radio Galaxies and Quasars", eds. P. Hardee, A. Bridle, \& J. Zensus (San Francisco: ASP conf. series), 73
Ghisellini, G., Padovani, P., Celotti, A., \& Maraschi, L. 1993, ApJ, 407, 65
Guerra, E. J. \& Daly, R. A. 1996, ApJ, submitted
Güijosa, A. \& Daly, R. A. 1996, ApJ, 461, 600
Readhead, A. C. S. 1994, ApJ, 426, 51
Vermeulen, R. C. \& Cohen, M. H. 1994, ApJ, 430, 467

Figure 1. Estimates of θ vs. γ using $\delta_{e q}$ and $\beta_{a p p}$.

Figure 2. Estimates of θ vs. γ using $\delta_{I C}$ and $\beta_{a p p}$.

