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Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract

Classical application domains of parallel computing are dominated by processing large

arrays of numerical data. Whereas most functional languages focus on lists and trees rather

than on arrays, SaC is tailor-made in design and in implementation for efficient high-level

array processing. Advanced compiler optimizations yield performance levels that are often

competitive with low-level imperative implementations. Based on SaC, we develop compilation

techniques and runtime system support for the compiler-directed parallel execution of

high-level functional array processing code on shared memory architectures. Competitive

sequential performance gives us the opportunity to exploit the conceptual advantages of the

functional paradigm for achieving real performance gains with respect to existing imperative

implementations, not only in comparison with uniprocessor runtimes. While the design of

SaC facilitates parallelization, the particular challenge of high sequential performance is that

realization of satisfying speedups through parallelization becomes substantially more difficult.

We present an initial compilation scheme and multi-threaded execution model, which we step-

wise refine to reduce organizational overhead and to improve parallel performance. We close

with a detailed analysis of the impact of certain design decisions on runtime performance,

based on a series of experiments.

1 Introduction

Functional programming languages are generally considered well-suited for paral-

lelization. Program execution is based on the principle of context-free substitution

of expressions. Programs are free of side-effects and adhere to the Church-Rosser

property. Any two subexpressions without data dependencies can be executed in

parallel without any further analysis. Unfortunately, parallel execution inevitably in-

curs overhead for synchronization and communication between cooperating threads

or processes. In practice, it turns out that identification of concurrent subexpressions

whose parallel execution actually pays off can be almost as difficult as parallelization

of imperative code (Hammond, 1994).

Numerous approaches have been developed to address this problem. In one way or

another, they provide the execution machinery with hints of where and how to exploit

concurrency (Cole, 1989; Nöcker et al., 1991; Darlington et al., 1993; Bratvold, 1993;

Bülck et al., 1994; Trinder et al., 1998; Trinder et al., 1999; Hammond & Portillo,

2000). Unlike annotations in imperative settings, e.g. OpenMP (Dagum & Menon,
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1998), they solely affect runtime performance, but not correctness of results. Still, the

goal to obtain parallel code from sequential specifications by simple recompilation

is not achieved.

Other approaches provide programmers with more or less explicit means for

process or thread management synchronization, and communication, (Cooper &

Morrisett, 1990; Reppy, 1991; Bailey & Newey, 1993; Jones et al., 1996; Breitinger

et al., 1997; Kelly & Taylor, 1999; Serrarens, 1999). However, to the same extent

as they provide control over parallel execution, these approaches also introduce the

pitfalls of traditional parallel programming, e.g. deadlocks or race conditions.

Following their sequential host languages, all the approaches mentioned so far

focus on lists or on algebraic data types in general. They are suitable tools for the

parallelization of symbolic computations (Trinder et al., 1996; Loidl et al., 1999),

where they benefit from the expressive power of their host languages. However, clas-

sical domains of parallel computing like image processing or computational sciences

are characterized by large arrays of numerical data, not lists (Bailey et al., 1991).

Unfortunately, most functional languages are not well-suited for high-performance

array processing. Notational support for multi-dimensional arrays is often rudiment-

ary. Even worse, sequential runtime performance in terms of memory consumption

and execution times fails to meet the requirements of numerical applications (Hartel

& Langendoen, 1993; Hartel et al., 1996; Hammes et al., 1997). Their standards are

set by existing implementations written and hand-optimized in low-level imperative

languages like C or Fortran.

Parallelization is no remedy to poor sequential performance. This would require a

completely implicit approach similar to a compiler optimization in addition to free

availability of multiprocessor resources. In practice, however, parallelization does re-

quire additional coding, and people are usually unwilling to pay for a supercomputer

only to obtain a similar runtime performance as with an imperative implementation

on a uniprocessor desktop machine. At least when addressing classical domains

of parallel computing, parallelization is hardly worth the effort as long as the

performance of established solutions is out of reach in sequential execution.

Low sequential performance also confronts research on parallelization techniques

with a specific pitfall. The ratio between time spent in synchronization/communica-

tion operations and time spent in productive code is shifted in favour of productive

code. This effect makes parallelization techniques look more efficient than they

actually are. The true impact of design decisions on performance is disguised,

leading to false assessments.

Reasons for the poor runtime performance of general-purpose functional lan-

guages in processing multi-dimensional arrays are manifold. Certainly, all high-level

language features like polymorphism, higher-order functions, partial applications,

or lazy evaluation contribute some share of the overhead, but array-specific pitfalls

exist as well. Conceptually, functions consume argument values and create result

values from scratch. For small data items, such as list cells, this can be implemented

fairly efficiently. However, operations which “change” just a few elements of a large

monolithic array run into the aggregate update problem (Hudak & Bloss, 1985).

They need linear time to create a copy of the whole array, whereas imperative
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languages accomplish the same task in constant time by destructively writing into

the argument array.

Attempts to avoid or at least to mitigate this effect come at the expense of a more

complex representation of arrays, which creates additional overhead elsewhere. For

example, arrays could be represented as trees rather than as contiguous pieces of

memory. Alternatively, “update” operations could merely be annotated internally,

instead of actually being performed. While copy overhead is reduced, other array

operations, e.g. element selection, become more expensive. Whether such measures

improve performance or not depends on the mix of operations, but the conceptual

problem remains.

Investigations involving Clean and Haskell have shown that arrays need to

be strict and unboxed in order to achieve acceptable runtime performance (van

Groningen, 1997; Serrarens, 1997; Zörner, 1998; Chakravarty & Keller, 2003).

Furthermore, array processing must be organized in a single-threaded manner,

based on uniqueness types (Barendsen & Smetsers, 1995) or on state monads

(Wadler, 1992). An alternative approach is taken by Id and Ml. They introduce

arrays as non-functional, stateful data structures. In all cases, most elegance of

functional programming is lost. Arrays are allocated, copied, and removed under

explicit control of the programmer.

Few functional languages have been designed with arrays in mind. Nesl (Blelloch,

1996) supports nested vectors of varying length. These sequences are half way in

between lists and multi-dimensional homogeneous arrays. They are particularly

useful for processing irregularly structured numerical data. A Nesl-specific op-

timization technique named flattening (Blelloch & Sabot, 1990) aims at increasing

regularity in intermediate code in order to exploit the specific capabilities of vector

processors. Investigations on runtime performance in multiprocessor environments

have shown good results for applications that benefit from Nesl’s support for

irregularity. For example, sparse matrix operations in Nesl outperform equivalent

dense implementations in Fortran (Blelloch et al., 1994). However, if data is more

regularly structured and the specific capabilities of Nesl cannot be exploited,

performance turns out to be inferior to Fortran.

Sisal (McGraw et al., 1985) first showed that efficient processing of regular

arrays is feasible in a functional setting, provided that both language design

and implementation are tailor-made. In order to reduce runtime overhead, Sisal

dispenses with many typical features of functional languages. Sisal neither supports

partial applications nor higher-order functions or polymorphism; the evaluation

order is strict. Memory management for arrays is based on reference counting

rather than on garbage collection. Hence, the exact number of active references

to an array is available at runtime. Array operations can update argument arrays

that are not referenced elsewhere destructively without penetrating the functional

semantics (Cann, 1989). Code optimizations that exploit referential transparency

(Skedzielewski & Welcome, 1985; Cann & Evripidou, 1995) and implicit generation

of parallel code (Haines & Böhm, 1993) have achieved competitive performance

figures for numerical benchmarks in multiprocessor environments (Oldehoeft et al.,

1986; Cann, 1992).
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Unfortunately, the level of abstraction in Sisal programming hardly exceeds

that of imperative languages with specific array support, e.g. Fortran-95 (Adams

et al., 1997) or Zpl (Chamberlain et al., 1998). All array operations must explicitly be

specified by means of for-loops, a Sisal-specific array comprehension. The language

neither provides built-in aggregate operations nor means to define such general

abstractions. Moreover, Sisal only supports vectors. Multi-dimensional arrays must

be represented as nested vectors of equal length. This limitation introduces additional

indirections to array references, which incur increasing overhead with growing array

rank (Scholz, 1997; Bernecky, 1997). These shortcomings are addressed in more

recent versions, e.g. Sisal 2.0 (Oldehoeft, 1992) and Sisal-90 (Feo et al., 1995), but

none of them have been implemented.

SaC (Single Assignment C) is a more recent functional array language (Scholz,

2003). Like Sisal, the language design of SaC aims at high runtime performance.

Still, the level of abstraction in array processing considerably exceeds that of Sisal.

The core syntax of SaC is a subset of C with a strict, purely functional semantics

based on context-free substitution of expressions. Nevertheless, the meaning of

functional SaC code coincides with the state-based semantics of literally identical C

code. This design is meant to facilitate conversion to SaC for programmers with a

background in imperative languages.

The language kernel of SaC is extended by multi-dimensional, stateless arrays.

In contrast to other array languages, SaC provides only a very small set of

built-in operations on arrays, mostly primitives to retrieve data pertaining to the

structure and contents of arrays, e.g. rank, shape, or single elements. All aggregate

array operations are specified in SaC itself using a versatile and powerful array

comprehension construct, named with-loop. In contrast to the for-loops of Sisal,

with-loops allow code to abstract not only from concrete shapes of argument

arrays, but even from concrete ranks. Moreover, such rank-invariant specifications

can be embedded within functions, which are applicable to arrays of any rank and

shape.

By these means, most built-in operations known from Fortran-95 or from

interpreted array languages like Apl, J, or Nial can be implemented in SaC itself

without loss of generality (Grelck & Scholz, 1999). SaC provides a comprehensive

selection of array operations in the standard library. Among others, the array

module includes element-wise extensions of the usual arithmetic and relational

operators, typical reduction operations like sum and product, various subarray

selection facilities, as well as shift and rotate operations. In contrast to array

support which is hard-wired into the compiler, our library-based solution is easier

to maintain, to extend, and to customize for varying requirements.

SaC propagates a programming methodology based on the principles of abstrac-

tion and composition. Like in Apl, complex array operations and entire application

programs are constructed by composition of simpler and more general operations

in multiple layers of abstractions. Unlike Apl, the most basic building blocks of this

hierarchy of abstractions are implemented by with-loops, not built-in. Whenever a

basic operation is found to be missing during program development, it can easily be

added to the repertoire and reused in future projects.
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Despite the high-level Apl-like programming style, SaC code has managed to

outperform equivalent Sisal programs (Scholz, 1999). In several case studies SaC

has also proved to be competitive even with low-level, machine-oriented languages

(Grelck & Scholz, 2000; Grelck, 2002; Grelck & Scholz, 2003b; Scholz, 2003;

Grelck & Scholz, 2003a). We achieve this runtime behaviour by the consequent

application of standard compiler optimizations in conjunction with a number

of tailor-made array optimizations. They restructure code from a representation

amenable to programmers and maintenance towards a representation suitable for

efficient execution by machines (Scholz, 1998; Scholz, 2003; Grelck & Scholz,

2003a; Grelck et al., 2004). Both the general and the array-specific optimizations

substantially benefit from the functional, side-effect free semantics of SaC.

The tailor-made language design makes SaC a suitable candidate for compiler-

directed parallelization. Competitive sequential performance provides the opportun-

ity to achieve real performance gains with respect to existing imperative imple-

mentations, not only in comparison with SaC uniprocessor runtimes. The particular

challenge of high sequential performance is that realization of satisfying speedups

becomes substantially more difficult. Fast sequential code is bad for the ratio

between time spent in synchronization/communication operations and time spent in

productive code. This ratio eventually determines parallel performance. With high

sequential performance even minor inefficiencies in the organization of parallel pro-

gram execution substantially degrade scalability. In this context, we have developed

compilation techniques and runtime systems for the efficient parallel execution of

high-level SaC array processing code on shared memory multiprocessors (Grelc,

1999, 2001, 2003). Our runtime system is based on the multi-threading standard

Pthreads (Institute of Electrical and Electronic Engineers, Inc., 1995).

We have chosen shared memory multiprocessors as compilation target for several

reasons. This increasingly popular class of machines is in wide-spread use as small-

and medium-range servers. The traditional scalability bottleneck of the shared

memory is mitigated by processor-specific hierarchies of large and fast caches.

Larger systems actually reduce the shared memory to a shared address space on top

of physically distributed memory and a highly integrated interconnection network

(Hennessy & Patterson, 2003). The Top500 list of the most powerful computing sites

worldwide (Dongarra et al., 2003) demonstrates the suitability of shared memory

systems for complex computational tasks in practice.

Since SaC is a dedicated array language, typical SaC code is dominated by

array operations. In one way or another all aggregate array operations in SaC are

implemented by with-loops. Hence, with-loops form the ideal basis for paralleliz-

ation, following a data parallel approach. Targeting shared memory architectures

in general and Pthreads in particular makes explicit decomposition of arrays and

data exchange via message passing superfluous. Hence, integral parts of the existing

sequential compiler framework can be reused with only minor alterations. Therefore,

we can concentrate all effort on those aspects of the compilation process that are

specific to multi-threaded execution.

Our initial compilation scheme focuses on the efficient parallel execution of

individual with-loops. This leads to a fork-join execution model. A master thread
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Fig. 1. Illustration of the refinement of compilation schemes and multi-threaded execution

models from the initial approach (left) to the final solution (right).

executes a program just as in the sequential case. As soon as it reaches a with-loop,

the master thread creates a fixed number of worker threads. The worker threads

cooperatively compute the with-loop and terminate. Meanwhile, the master thread

waits for the last worker thread to complete its share of work and resumes sequential

execution thereafter.

The organization of multi-threaded program execution inevitably incurs some

overhead. In order to achieve high parallel performance and reasonable scalability

we must address all sources of overhead and try to avoid or to reduce them as far

as possible. In our initial approach we can identify various sources of overhead:

creation and termination of threads or synchronization and communication between

threads. Moreover, program execution frequently stalls at barriers. These sources

of overhead are addressed by a step-wise refinement of the initial compilation

scheme and execution model. Figure 1 illustrates the refinement steps starting

with the initial approach on the left hand side. Vertical lines represent threads

computing over time. Dotted lines refer to sleeping threads. Horizontal boxes and

bars represent synchronization and communication. The master thread has thread

ID 0; the example uses 6 worker threads.

Our initial approach is characterized by a sequence of parallel execution steps

interrupted by sequential phases. As a first refinement step, we investigate various

with-loop scheduling techniques. With-loop scheduling is the process of partitioning
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with-loop among worker threads for execution. Different approaches are developed

that aim at a smooth distribution of workload, without ignoring such important

issues as scheduling overhead or data locality. In Figure 1, this is indicated by

adjusting the length of lines which represent computing threads.

In a second step, the initial fork/join execution model is refined to an enhanced

fork/join model. Worker threads remain alive during the whole program execution.

Costly thread creation and thread termination operations are replaced by tailor-

made synchronization barriers. They aim at reducing the runtime overhead directly

inflicted by synchronization and communication. In Figure 1, this is indicated by

replacing horizontal boxes by thin bars. Moreover, the master thread participates in

the cooperative execution of with-loops by temporarily turning itself into a worker

thread rather than sleeping until completion of the with-loop.

In the third refinement step, regions of parallel activity are decoupled from

individual with-loops. We introduce explicit skeleton-like intermediate language

constructs for the internal representation of synchronization and communication

patterns. Tailor-made optimization schemes aim at fusing subsequent steps of parallel

execution into single ones. On the right hand side of Figure 1, this is illustrated

by fusing the first and the second parallel section. This step reduces the number of

synchronization barriers and creates larger regions of parallel execution, which also

render scheduling techniques for workload distribution more effective.

The three refinement steps are presented in the order they have been developed.

In fact, they are mostly independent of each other. Since they address different

sources of overhead in different ways, they could be applied in any order. Still, all

three refinement steps substantially benefit from each other. Only in conjunction

they achieve the desired runtime performance in parallel execution.

The rest of the paper gives a comprehensive and detailed presentation and

evaluation of the compilation techniques sketched out above. Section 2 introduces

the array concept of SaC in general and the with-loop in particular. Section 3

elaborates on the compilation of individual with-loops into multi-threaded code.

Various with-loop scheduling techniques are discussed in section 4. Section 5

refines the initial execution model towards the enhanced fork/join model. Section 6

describes the introduction of skeleton-like structures for the internal representation

of synchronization and communication patterns and the fusion of multiple regions

of parallel execution. Section 7 summarizes various experiments that investigate the

suitability of the approach in general and the effectiveness of individual measures

in particular. Section 8 draws conclusions.

2 Arrays and array operations

Arrays in SaC are represented by two vectors. The shape vector specifies an array’s

rank (number of axes or number of dimensions) and the number of elements along

each axis. The data vector contains all elements of an array in row-major order.

Their relationship is defined as follows. Let A be an n-dimensional array represented

by the shape vector �sA = [s0, . . . , sn−1] and by the data vector �dA = [d0, . . . , dm−1].
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Then the equation

m =

n−1∏
i=0

si

describes the correspondence between the shape vector and the length of the data

vector. Moreover, the set of legal index vectors of the array A is defined as

IVA := {[iv0, . . . , ivn−1] | ∀j ∈ {0, . . . , n − 1} : 0 � ivj < sj}.

An index vector �iv = [iv0, . . . , ivn−1] denotes the element dk of the data vector �dA of

array A if �iv is a legal index vector of A, i.e. �iv ∈ IVA, and the equation

k =

n−1∑
i=0

(
ivi ∗

n−1∏
j=i+1

sj

)

holds. For example, the matrix


0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49




is represented by the shape vector [5,10] and the data vector

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . . , 47, 48, 49].

The set of legal index vectors is

{ [i, j] | [0, 0] � [i, j] < [5, 10] },

and the index vector [3,2] refers to element position 32 of the data vector.

As pointed out in the introduction, SaC provides only a very small set of built-in

operations on arrays, mostly primitives to retrieve data pertaining to the structure

and contents of arrays. For example, shape(a ) and dim(a ) yield the shape and

the rank of an array a , respectively. Furthermore, sel(iv,a ) yields the element of

a at index position iv , provided that the length of the integer vector iv matches

the rank of the array a . Applications of the form sel(iv,a ) may be replaced by

the more familiar notation a [iv ].

With-loops

All aggregate array operations are specified in SaC itself using a versatile and

powerful array comprehension construct, named with-loop. With-loops are versatile

language constructs for the specification of potentially complex map- and fold-

like aggregate array operations. A definition of their syntax is given in Figure 2.

Following the key word with, a with-loop is made up of a non-empty sequence of

parts and a single operation. The operation determines the overall meaning of the

with-loop. There are two variants: genarray and fold. With genarray(Expr ) the

with-loop creates a new array. The expression Expr must evaluate to an integer
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WithLoopExpr ⇒ with [ Part ]+ Operation

Part ⇒ ( Generator ) : Expr

Generator ⇒ Expr <= Identifier < Expr [ Filter ]

Filter ⇒ step Expr [ width Expr ]

Operation ⇒ genarray ( Expr )

| fold ( FoldOp , Expr )

Fig. 2. Syntax definition of with-loops.

vector, which defines the shape of the array to be created. With fold( FoldOp,

Expr ) the with-loop specifies a reduction operation. In this case, FoldOp must

be the name of an appropriate associative and commutative binary operation. The

expression Expr must evaluate to the neutral element of FoldOp .

Each part consists of a generator and an expression. The expression is said to be

associated with the generator. The generator defines a set of index vectors along

with an index variable representing elements of this set. Two expressions, which

must evaluate to non-negative integer vectors of equal length, define lower and

upper bounds of a rectangular range of index vectors. For each element of the index

vector set defined by a generator, the associated expression is evaluated. Depending

on the operational variant of the with-loop, the value of the associated expression

either defines the element value at the corresponding index position of the new array

(genarray), or it is given as an argument to the fold operation (fold).

For example, the matrix


0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49




may be specified by the following with-loop:

with

([0,0] <= iv < [5,10]) : iv[0] * 10 + iv[1]

genarray( [5,10])

Similarly,

with

([0,0] <= iv < [5,10]) : iv[0] * 10 + iv[1]

fold( +, 0)

computes the sum of all elements of the example matrix without actually creating

the matrix.
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With multiple parts, disjoint index subsets of an array may be computed and

initialized according to different specifications. For example,

with

([0,0] <= iv < [5, 8]) : iv[0] * 10 + iv[1]

([0,8] <= iv < [5,10]) : 0

genarray( [5,10])

yields 


0 1 2 3 4 5 6 7 0 0

10 11 12 13 14 15 16 17 0 0

20 21 22 23 24 25 26 27 0 0

30 31 32 33 34 35 36 37 0 0

40 41 42 43 44 45 46 47 0 0




An optional filter may be used to restrict index sets to grids. For example,

with

([0,0] <= iv < [5,10] step [1,2]) : iv[0] * 10 + iv[1]

([0,1] <= iv < [5,10] step [1,2]) : 0

genarray( [5,10])

yields 


0 0 2 0 4 0 6 0 8 0

10 0 12 0 14 0 16 0 18 0

20 0 22 0 24 0 26 0 28 0

30 0 32 0 34 0 36 0 38 0

40 0 42 0 44 0 46 0 48 0




An additional width specification allows generators to define generalized grids as in

the following example where

with

([0,0] <= iv < [5,10] step [4,4] width [2,2]) : 9

([0,2] <= iv < [5,10] step [4,4] width [2,2]) : 0

([2,0] <= iv < [5,10] step [4,1] width [2,1]) : 1

genarray( [5,10])

yields 


9 9 0 0 9 9 0 0 9 9

9 9 0 0 9 9 0 0 9 9

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

9 9 0 0 9 9 0 0 9 9




Expressions that define step and width vectors must evaluate to positive integer

vectors of the same length as the bound vectors of the generator. The full range of

generators can also be used with fold-with-loops.

To give a formal definition of index sets, let a, b, s, and w denote expressions that

evaluate to appropriate vectors of length n. Then the generator

( a <= iv < b step s width w )
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defines the following set of index vectors:

{ iv | ∀j∈{0,...,n−1} : aj � ivj < bj ∧ (ivj − aj) mod sj < wj }.

Two constraints which cannot be expressed by means of syntax apply to with-

loops. Firstly, the index sets defined by multiple generators must be pairwise disjoint.

Secondly, for genarray-with-loops the union of all index sets must equal the set of

legal index vectors of the result array, i.e. each element of the result array must be

associated with exactly one generator.

An important property of with-loops is that evaluation of the associated expres-

sion for any element of the union of index sets is completely independent of all others,

leaving a language implementation free to choose any suitable evaluation order. We

exploit this property both for optimization and for parallelization. Consequently,

with-loops form the basis for large-scale code restructuring optimizations, which

combine several individual with-loops into a single one. Therefore, the average

computational workload per array element is much higher than for the mostly light-

weight built-in aggregate operations in other languages. Since increased workload

per element generally improves the ratio between productive computations and

runtime overhead, with-loops are particularly amenable to parallel execution.

Unfortunately, the various benefits of with-loops do not come for free. Whereas

built-in array operations in other languages are almost always homogeneous, with-

loops may represent considerably inhomogeneous operations. A single with-loop

may consist of many generators defining disjoint, but potentially interleaved, index

vector sets. Moreover, associated expressions may substantially differ from each other

with respect to their computational complexity. Such inhomogeneities significantly

complicate the generation of efficiently executable code.

In a sense, with-loops resemble algorithmic skeletons (Cole, 1989; Cole, 2004)

liberated from restrictions imposed by their typical realization as higher-order

functions in statically typed languages. Actually, genarray-with-loops are powerful

array comprehensions, and fold-with-loops are versatile folding templates, both

specifically designed for multi-dimensional arrays. By their semantics, they explicitly

introduce fine-grained concurrency into SaC programs in a way that is particularly

amenable to exploitation for parallel execution. Whether some with-loop actually is

executed in parallel by multiple processors or sequentially by a single processor, is

solely up to compiler and runtime system. Even within a single compiled code, the

same with-loop may be executed in parallel sometimes and sequentially otherwise,

depending on the state of the execution machinery. with-loops do not specify a

pattern of parallel behaviour, but – in conjunction with the entire language design

of SaC – they facilitate automatic or implicit parallelization.

3 Generating multi-threaded code

When contemplating the multi-threaded execution of SaC programs, it turns out

that some program parts require sequential execution by a dedicated thread. For

example, I/O operations must be performed in a single-threaded way in order to

preserve the sequential I/O behaviour. I/O operations and state modifications in
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general are properly integrated into the purely functional world of SaC by a variant

of uniqueness types (Achten & Plasmeijer, 1995), named classes (Grelck & Scholz,

1995). Enforcing the uniqueness property bans all state modifications from bodies

of with-loops. Hence, the easiest way to preserve sequential I/O behaviour is to

restrict parallel program execution to individual with-loops.

Following this idea, a master thread executes most parts of a SaC program

in a single-threaded way, similar to sequential execution. Only when it comes to

computing a with-loop, the master thread creates the desired number of additional

worker threads. Subsequently, all worker threads concurrently, but cooperatively,

execute the single with-loop. Meanwhile, the master thread merely awaits the

termination of the worker threads. After all worker threads have finished their

individual shares of work, they terminate, and the master thread resumes sequential

execution.

The Pthreads standard does not provide any means to associate threads with

processors. The host machine’s operating system is responsible for scheduling worker

threads to different processors in a reasonable way. In general, it is recommended to

use exactly one thread per processor. This choice avoids frequent context switches

between cooperating threads and proved optimal in extensive experiments.

In the following, we present detailed schemes for compiling individual with-loops

into multi-threaded code. Our initial focus is on genarray-with-loops; fold-with-

loops are covered towards the end of this section. Rules of the form

C[[expr]] = expr ′

denote the context-free replacement of a SaC program fragment expr by a pseudo

C program fragment expr ′.

Compilation of genarray-with-loops

Figure 3 shows the compilation scheme CMT for generating multi-threaded C code

from a single genarray-with-loop. Actually, two different fragments of C code

are generated: one for the master thread and one for the worker threads. Their

interaction is indicated by horizontal arrows.

Whenever execution of the master thread reaches a genarray-with-loop, it first

allocates memory appropriate for storing the result array. Here and in the sequel, we

assume that nested expressions have already been flattened by a pre-processing step.

Hence, shp denotes a variable referring to the shape of the array to be created rather

than a complex expression. Due to the commitment to shared memory architectures,

explicit decomposition of arrays is obsolete. Hence, implicit dynamic memory

management for arrays can be adopted from the existing sequential implementation

with only minor adaptations. Arrays are still stored in a single contiguous address

space. Memory is allocated by the master thread during single-threaded execution.

For worker threads to be able to compute their individual shares of a with-

loop, it is necessary to set up an execution environment equivalent to that of the

master thread. More precisely, all those variables referred to within the body of

the with-loop, but defined before, must also exist in the worker thread. Moreover,
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�

WaitThreads( T1, . . . ,Tk);
�
�

�
�Terminate Thread Ti�

�

C′







a = with
gen1 : expr1

.

.

.
genn : exprn

genarray( shp);

|| IdxSeti







�

IdxSeti = UnqSubset( i, shp);
�

ReadFromTaskFrame(

a, shp,
⋃n

j=1 FV (genj:exprj ) );

�

�
�

�
�Start Thread Ti�

�

CreateThreads( T1, . . . ,Tk);
�

WriteIntoTaskFrame(

a, shp,
⋃n

j=1 FV (genj:exprj ) );

�

a = AllocateMemory( shp);
�

CMT







a = with
gen1 : expr1

.

.

.
genn : exprn

genarray( shp);







↙(master code) ↘ (worker code)

Fig. 3. Multi-threaded compilation scheme for genarray-with-loops.

they must be initialized to the current values in the master thread to ensure proper

execution of the with-loop by each worker thread. The required information must

be communicated to the worker threads before they start execution of productive

code. In a shared memory environment communication is realized by writing to and

reading from global data structures. Therefore, each with-loop in a SaC program

is associated with a global buffer, called task frame. The task frame is tailor-made

for communication between master thread and worker threads for that individual

with-loop. In the case of a genarray-with-loop, the master thread – in addition

to the values of all free variables of the various generator-expression pairs – stores

the pre-allocated result array and its shape in the task frame. Due to the shared

memory, it suffices to communicate the base addresses and the shapes of arrays,

rather than the arrays themselves.

Eventually, the desired number of worker threads is created. The actual number

may either be fixed at compile time, or it is determined by a command line parameter
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or by an environment variable upon program start. In any case, the number of

threads remains constant throughout an entire program run.

All worker threads uniformly execute the code shown on the right hand side of

Figure 3, but each thread may identify itself by means of a unique ID. As a first

step, a worker thread sets up its execution environment by extracting the required

information from the task frame. Access to the task frame can always be granted

without costly synchronization of threads via critical regions or similar. As long as

the master thread writes to the task frame, it is known to be the only thread in the

process. As soon as multiple threads exist, the task frame is used as a read-only buffer.

Although all worker threads execute exactly the same code, they must compute and

initialize pairwise disjoint sets of result array elements for parallel execution to make

sense. This additional side condition must be taken into account when eventually

compiling a with-loop into nestings of for-loops in C. Even in the sequential case,

generation of efficient code from with-loops with multiple interleaved generators

has proved to be an extremely complicated and challenging task (Grelck et al., 2000;

Scholz, 2003). Therefore, we want to reuse the existing sequential code generation

scheme for with-loops as far as possible. However, we need to associate each

element of the result array with exactly one thread. The scheduling of array elements

to threads directly affects workload distribution among processors and is vital for

performance.

The solution adopted in Figure 3 keeps code generation and scheduling as separate

as possible. By means of the runtime system function UnqSubset each worker

thread determines a rectangular index subspace IdxSet i based on its unique ID

and the shape of the result array. Proper implementations of UnqSubset guarantee

that each legal index position of the result array is covered by exactly one such

index subspace. Different implementations of UnqSubset allow us to realize various

different scheduling techniques without affecting the compilation scheme otherwise.

Based on programmer annotations or on compiler heuristics, the most appropriate

scheduler implementation may be selected. Section 4 further elaborates on this

topic.

After initialization of the execution environment and allocation of a rectangular

index subspace by the loop scheduler, execution of the with-loop by an individual

worker thread proceeds almost as in the sequential case. In Figure 3, this is indicated

by the recursive application of the code generation scheme C′, which is a variant

of the sequential code generation scheme C (Scholz, 2003). The most significant

difference between C′ and C is that the range of any for-loop in compiled code

is restricted to the intersection of its original range and the rectangular index

subspace IdxSet i allocated by the with-loop scheduler. After having completed its

individual share of work, a worker thread terminates. The master thread waits for

the longest-running worker thread to terminate and resumes sequential execution.

Code generation for worker threads

The adapted code generation scheme C′ for worker threads is formally defined

in Figure 4. The code starts by allocating memory to accommodate the index
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C′







a = with
( l1 <= iv < u1 step s1 width w1 ) : expr1

.

.

.
( ln <= iv < un step sn width wn ) : exprn

genarray( shp);

|| IdxSet







=




iv = AllocateMemory( shape( l1));

C′
[[

( l1 <= iv < u1 step s1 width w1 ) : a[iv] = C[[expr1]] ;

|| IdxSet

]]
.
.
.

C′
[[

( ln <= iv < un step sn width wn ) : a[iv] = C[[exprn]] ;

|| IdxSet

]]

FreeMemory( iv);

Fig. 4. Code generation scheme for genarray-with-loops.

variable iv. Afterwards, the compilation scheme C′ is recursively applied to each

part of the multi-generator with-loop individually. The specification of the local

index subspace IdxSet is propagated as is. However, this is not done before the

corresponding expressions to be evaluated are transformed into assignments of the

form a[iv] = C[[expr ]], which ensures correct insertion of the computed values

into the result array. Using the compilation scheme C here instead of C′ reflects the

fact that compilation of these expressions is independent of the choice of sequential

or multi-threaded program execution. Finally, we de-allocate the memory holding

the index variable because the index variable’s scope is always confined to a single

with-loop.

Generation of C for-loops for individual parts of a with-loop is defined in

Figure 5. The compilation scheme C′ generates either one or two for-loops for each

dimension or axis of the index space. If the corresponding element of the width

vector is known to evaluate to one, the scheme generates a single for-loop only. It

runs on the intersection between the range defined by lower and upper bound of

the generator,�l and �u, and the local index subspace, which itself is defined by the

lower and upper bound vectors �lb and �ub. The corresponding step vector component

determines the for-loop’s increment.

If the current component of the width vector differs from one or is unknown at

compile time, we must create two nested for-loops: an outer loop for initialization

and stepwise increment of the corresponding index variable component and an

inner loop for realization of the width component. The body of the inner loop is

derived from recursive application of the code generation scheme C′ with the leading

elements of the four generator vectors removed. The innermost loop body is defined

by the pregenerated assignment, which is specific to the with-loop variant.

As pointed out before, one important property of with-loops is the freedom

to choose any suitable evaluation order. We prominently exploit this property for

compilation into multi-threaded code. In a less obvious way, the property is also
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C′




 ([li, . . . , lm−1] <= iv < [ui, . . . , um−1]

step [si, . . . , sm−1] width [1, wi+1, . . . , wm−1]) : Assign

|| [lbi, . . . , lbm−1] [ubi, . . . , ubm−1]






=




for ( iv[i] = max( li, lbi); iv[i] < min( ui, ubi); iv[i] += si) {

C′




 ([li+1, . . . , lm−1] <= iv < [ui+1, . . . , um−1]

step [si+1, . . . , sm−1] width [wi+1, . . . , wm−1] ) : Assign

|| [lbi+1, . . . , lbm−1] [ubi+1, . . . , ubm−1]






}

C′




 ([li, . . . , lm−1] <= iv < [ui, . . . , um−1]

step [si, . . . , sm−1] width [wi, . . . , wm−1]) : Assign

|| [lbi, . . . , lbm−1] [ubi, . . . , ubm−1]






=




for ( iv[i] = max( li, lbi); iv[i] < min( ui, ubi); iv[i] += si - wi) {
stop = min( iv[i] + wi, min( ui, ubi));
for ( ; iv[i] < stop; iv[i] += 1) {

C′




 ([li+1, . . . , lm−1] <= iv < [ui+1, . . . , um−1]

step [si+1, . . . , sm−1] width [wi+1, . . . , wm−1] ) : Assign

|| [lbi+1, . . . , lbm−1] [ubi+1, . . . , ubm−1]






}
}

C′[[( [] <= iv < [] step [] width [] ) : Assign || [] []
]]

= Assign

Fig. 5. Code generation scheme for individual parts.

exploited by the code generation scheme C′, as defined in Figure 4 and in Figure 5.

Addressing each generator of a multi-generator with-loop in isolation substantially

facilitates the compilation process. Unfortunately, this straightforward approach has

two major disadvantages with respect to achieving high runtime performance.

• Separate compilation of generators introduces a considerable amount of loop

overhead, in particular if step and width vectors are used.

• Cache memory utilization is poor because data transfer between main memory

and cache memory in whole cache lines favours consecutive memory references

to adjacent addresses (Hennessy & Patterson, 2003).

Although elaborate C compilers provide optimizations for rearranging loops (Zima

& Chapman, 1991; Wolfe, 1995; Allen & Kennedy, 2001), they usually fail to improve

compiled SaC code in a substantial way because they lack information about the

special properties of the code. For example, C compilers do not a priori know that

all innermost loop bodies can be computed independently of each other or that each

result array element is initialized exactly once. Instead, this information must be

inferred from the code, which proves to be quite difficult in the context of C. C com-

pilers hardly achieve the required accuracy and must make conservative assumptions.

To overcome these limitations, the sequential code generation scheme C is

extended by a post-processing phase, which systematically transforms generator-

centric nestings of for-loops into equivalent ones that obey the canonical order

(Grelck et al., 2000). Elements of the result array are computed and initialized
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in strictly ascending order according to the array’s memory representation. The

canonical order overcomes both deficiencies of the initial approach, excessive loop

overhead and poor cache utilization. This post-processing phase has turned out to be

crucial for overall performance. Fortunately, the design of the compilation scheme

CMT allows us to reuse the sequential post-processing phase for worker thread

code without modification. Therefore, we omit a detailed description here and refer

to (Grelck et al., 2000) and (Scholz, 2003) for additional information.

Compilation of fold-with-loops

Figure 6 shows the generation of multi-threaded code for fold-with-loops. Worker

threads initialize a local accumulation variable ai by the neutral element of the fold

operation. Each worker thread computes a partial fold result based on a subset

of the values to be folded. Upon termination of the worker threads, the master

thread collects their partial fold results and computes the overall result. Unlike some

notions of fold skeletons, e.g. as described in Michaerlson et al. (2001), parallel

activity unfolds and resumes all at once rather than in a divide-and-conquer style.

Compiled code for the master thread starts by writing the values of the with-

loop body’s free variables into the corresponding task frame. The same happens to

the fold operation’s neutral element. Analogously to the result array shape shp in

the compilation of genarray-with-loops, we assume neutral to refer to a simple

variable. Having set up the task frame, the master thread creates the desired number

of worker threads. Worker threads set up their execution environment, retrieved from

the task frame. After that, each worker thread identifies a unique index subspace

by calling the loop scheduler UnqSubset. However, the loop scheduler requires the

shape of the overall index space as an argument. In contrast to genarray-with-

loops, this information is not immediately available in fold-with-loops. Instead, it

must be determined from the set of generators. In Figure 6, this is expressed by

the pseudo operation Closure, which yields the smallest rectangular hull of the

transitive closure of the generators.

Recursive application of the adapted code generation scheme C′ to the with-loop

itself and the description of the unique index subspace IdxSet i results in code that

computes a partial fold result, which is stored in the (thread-) local accumulation

variable ai. Upon completion, a worker thread writes its partial fold result into the

task frame and terminates. In order to avoid costly synchronization upon concurrent

access to the task frame by worker threads, the task frame provides a dedicated

entry for each worker thread. The master thread awaits termination of all worker

threads before it extracts the partial fold results from the task frame. Finally, the

master thread itself combines the various partial fold results to generate the overall

result and resumes sequential execution.

Figure 7 shows the definition of the adapted code generation scheme C′ for fold-

with-loops. First, a worker thread initializes a local accumulation variable a by the

neutral element of the fold operation and allocates memory for the index variable

iv. After that, the compilation scheme C′ is recursively applied to each generator

with the fold operation pregenerated. By abstracting from the actual operation to
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�

a = a1;
for (i=2; i<=k; i++) {

a = fold op ( a, ai);
}

�

ReadFromTaskFrame( a1, . . . , ak);
�

WaitThreads( T1, . . . ,Tk);
�
�

�
�Terminate Thread Ti�

�
WriteIntoTaskFrame( ai);

�

C′







ai = with
gen1 : expr1

.

.

.
genn : exprn

fold( fold op,
neutral);

|| IdxSeti







�

shp = Closure( gen1,. . ., genn);

IdxSeti = UnqSubset( i, shp);

�

ReadFromTaskFrame( neutral,⋃n
j=1 FV (genj:exprj ) );

�

�
�

�
�Start Thread Ti�

�

CreateThreads( T1, . . . ,Tk);
�

WriteIntoTaskFrame( neutral,⋃n
j=1 FV (genj:exprj ) );

�

CMT







a = with
gen1 : expr1

.

.

.
genn : exprn

fold( fold op, neutral);







↙(master code) ↘ (worker code)

Fig. 6. Multi-threaded compilation scheme for fold-with-loops.

be inserted into the innermost for-loop body, the loop generation scheme defined

in Figure 5 can be reused for fold-with-loops without modification.

Nested with-loops

Raising the focus from compilation intricacies of individual with-loops to the

execution of entire programs, it becomes clear that program execution always
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C′







a = with
( l1 <= iv < u1 step s1 width w1 ) : expr1

.

.

.
( ln <= iv < un step sn width wn ) : exprn

fold( fold op, neutral);

|| IdxSet







=




a = neutral;
iv = AllocateMemory( shape( l1));

C′
[[

( l1 <= iv < u1 step s1 width w1 ) : a = fold op( a,C[[expr1]]);

|| IdxSet

]]
.
.
.

C′
[[

( ln <= iv < un step sn width wn ) : a = fold op( a,C[[exprn]]);

|| IdxSet

]]

FreeMemory( iv);

Fig. 7. Code generation scheme for fold-with-loops.

�

exec mode = single threaded;
�

CMT[[ a = with expr;]]

�

exec mode = multi threaded;

C[[ a = with expr;]]

�

single threaded

�

multi threaded
?? exec mode ??

�

CP[[ a = with expr;]]

↘

Fig. 8. Generalized compilation scheme CP.

is in one of two states. Either with-loops are evaluated by a fixed number of

worker threads in parallel, or some other code is executed sequentially by the

master thread. However, with-loops may be nested, both statically in the code or

dynamically in the unfolding of program execution. Program execution may already

be in multi-threaded mode when it reaches a with-loop again. Since the number

of threads already equals the number of available processors, we must prevent a

recursive unfolding of parallel activity. with-loops that are nested within others,

either statically or dynamically, must be executed sequentially. This is achieved by

embedding the compilation scheme CMT within a more general scheme CP, as

shown in Figure 8.
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The runtime system maintains a global flag exec mode, which keeps track of the

current state of program execution. Whenever program execution encounters a with-

loop, the value of the exec mode flag is inspected. Depending on its state, program

execution either branches into multi-threaded code (generated by the compilation

scheme CMT) or into sequential code (generated by the compilation scheme C).

In the former case, the exec mode flag is inverted during execution of the multi-

threaded code. Access to the global state flag goes without protection because any

write operation on it is guaranteed to be executed by the master thread while it

is the only thread of the process. Inspection of the exec mode flag can be avoided

for statically nested with-loops. Moreover, simple heuristics identify with-loops for

which parallel execution is likely not to pay off.

Although the compilation scheme CP restricts the unfolding of parallel activity

to a single level, this does not mean sequential execution of all with-loops that

are nested within others. A SaC-specific optimization technique named with-loop-

scalarization (Grelck et al., 2004) aims at transforming static nestings of with-

loops into single ones – regardless of whether code is compiled for multi-threaded

or for sequential execution. In any case, it is reasonable to assume that an outermost

with-loop provides sufficiently fine-grained concurrency to exploit all available

processors. This is an advantage of processing homogeneous arrays instead of lists

or trees. Moreover, in shared memory environments processor counts are limited by

the trade-off between scalability and hardware cost. Dispensing with nested levels of

parallelism, the entire problem space discussed in the context of nested algorithmic

skeletons (see, for example, Hamdan et al. (1999) and Michaelson et al. (2001)) can

be avoided. As a consequence, our runtime system is significantly more efficient

for realistic applications. This can be observed when comparing SaC performance

figures with, for example, those in Hamdan et al. (1999) and Michaelson et al. (2001).

4 With-loop scheduling

With-loop scheduling is the process of allocating each element of the global index

space defined by a with-loop to exactly one worker thread. This worker thread is

then responsible for evaluation of the associated expression and for initialization of

the corresponding element of the result array (genarray-with-loop) or for execution

of the folding operation (fold-with-loop). Conceptually, each element of the global

index set could be processed in parallel by a different thread. However, the useful

number of threads is limited by the number of available processors. Typically, the

size of the global index set by far exceeds the number of worker threads. Therefore,

it is necessary to allocate entire index subspaces to worker threads rather than

individual elements of the global index set. To facilitate compilation into efficiently

executable code, the compilation schemes outlined in the previous section only

support dense rectangular index subspaces. Similar to with-loop generators, they

are represented by two boundary vectors.

In addition to these technical requirements, the main task of with-loop scheduling

is to distribute the computational workload among threads as evenly as possible.

Since the parallel execution of a with-loop is completed by a barrier synchronization,
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Fig. 9. Examples of static scheduling schemes.

overall execution time is determined by the “slowest” thread. Successful workload

balancing is one major prerequisite for achieving good parallel performance. Un-

fortunately, the process of finding a suitable workload distribution contributes

to organizational overhead. Hence, the scheduling problem is characterized by a

trade-off between quality of workload balancing and overhead produced. Since the

scheduling problem itself is not SaC-specific, we summarize existing approaches first

and describe the solution adopted for the specific conditions of our compilation

framework towards the end of the section.

Static scheduling

Two classes of loop scheduling techniques can be distinguished: static and dynamic

approaches. Static techniques employ an a-priori association of loop iterations

with threads. Well-known representatives of this class are block scheduling, cyclic

scheduling, and block-cyclic scheduling. They are illustrated in Figure 9 for the

2-dimensional case and four threads. Block scheduling subdivides the iteration space

into disjoint rectangular blocks, one for each thread. Cyclic scheduling associates

every n-th iteration with the same thread. As a combination of both, block-cyclic

scheduling subdivides the iteration space into blocks of a fixed size and applies

cyclic scheduling on the level of these blocks. In the context of multi-dimensional

loops or loop nestings, additional degrees of freedom arise from the selection of one

or several scheduling dimensions and the possibility to combine different techniques

along different axes of the iteration space.

Static scheduling techniques have been studied intensively in the context of Hpf

and its predecessors (Tseng, 1993; Loveman, 1993; Koebel et al., 1994; Roth, 1997).

If the computational workload is regularly distributed over the iteration space, block
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scheduling combines low overhead with good workload balancing and high data

locality. Cyclic scheduling is the choice whenever workload depends on the loop

index, e.g. when processing triangular matrices. However, on modern cache-based

computer architectures cyclic scheduling suffers from poor data locality. It is usually

replaced by block-cyclic scheduling, which often is a reasonable compromise between

data locality and workload balancing.

Dynamic scheduling

Multiprocessor systems rarely run a single application only. Threads of compiled SaC

code compete for limited computing resources with unrelated processes incidentally

running on the same system. As a matter of principle, static scheduling techniques

cannot reflect changing workload characteristics of machines which run several

independent processes. This scenario asks for dynamic or adaptive scheduling

techniques.

Early examples such as self-scheduling (Tang & Yew, 1986) or uniform-sized

chunking (Kruskal & Weiss, 1985) associate individual iterations or entire sets of

iterations to threads on demand. A central task queue stores tasks ready to be

computed. Each thread retrieves a new task from the task queue as soon as it

has finished its previous task. This technique ensures proper balancing even in the

presence of irregular workload distributions and changing availability of processors.

Unfortunately, this advantage comes at the expense of considerable organizational

overhead for managing the central task queue. Shared among all threads, the task

queue constitutes a critical region and requires synchronization upon each access.

A key factor for successful application of dynamic scheduling techniques is the

choice of a suitable granularity, i.e. the size of the tasks or groups of iterations

as basis for the demand-driven allocation to threads. While a large number of

small tasks results in good load balancing, the organizational overhead becomes

prohibitive. Low granularity keeps the overhead within bounds, but load balancing

may be insufficient. More advanced scheduling schemes address this dilemma by

adapting task granularity during execution. They start with rather large tasks for

low overhead in the beginning and systematically reduce task sizes for good load

balancing towards approaching the final synchronization barrier. Examples are

guided self-scheduling (Polychronopoulos & Kuck, 1987), factoring (Hummel et al.,

1992), or the trapezoid method (Tzen & Ni, 1993). Basically, they differ in the design

of the task size regression scheme.

Another important source of overhead arises from the central task queue design.

With increasing task granularity and growing processor counts, the central task

queue is likely to become a performance bottleneck. Even worse, data locality is

usually poor because schedulers based on a central task queue do not take into

account the history of tasks previously associated with some thread (Squillante &

Lazowska, 1993). Since modern shared memory multiprocessor systems heavily rely

on effective utilization of processor-specific cache hierarchies, more recent dynamic

scheduling techniques such as locality-based dynamic scheduling (LDS) (Li et al.,

1993), affinity scheduling (Markatos & LeBlanc, 1994), or adaptive affinity scheduling
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�

Continuei ?yes

no

�
C′[ . . . || IdxSeti]

�

Continuei, IdxSeti = UnqSubset( i, shp);
�

�

Fig. 10. Extending CMT for dynamic workload balancing.

(Yan et al., 1997) operate on thread-specific task queues. Based on a static a-priori

allocation of tasks to threads, under-utilized threads “steal” tasks from heavier

loaded threads once they have completed their own a priori assignment.

Adapting compilation schemes for dynamic scheduling

A common characteristic of all dynamic loop scheduling techniques is the repeated

allocation of tasks to individual threads. This is a prerequisite for any kind of

adaptive workload balancing. Unfortunately, our multi-threaded compilation scheme

CMT, as defined in Section 3, associates exactly one rectangular index subspace

with each worker thread. To support dynamic with-loop scheduling, we extend the

compilation scheme CMT as illustrated in Figure 10. In addition to computing

some iteration subspace, a scheduler provides a flag Continue, which decides whether

or not the scheduler wishes to re-assign additional work to the thread later on. Once

a worker thread has completed processing the assigned index subspace, it inspects

the flag Continue. Depending on the value of Continue, the worker thread either

continues as described in the previous section or it returns to the scheduler for

assignment of further work.

Task selection and scheduling

Implementations of with-loop schedulers must address two more or less orthogonal

aspects: task selection and task scheduling. Task selection combines individual

elements of the global index set to tasks; task scheduling allocates entire tasks to

threads. By choosing the number and size of tasks, task selection determines the

granularity of task scheduling. Both task selection and task scheduling offer a wide

range of design choices. Previous research on loop scheduling in general has shown

that different settings require different scheduling techniques. No single approach is

optimal in all cases. We have implemented two different task selectors and three

different task schedulers. Their combinations provide the necessary flexibility to

realize most of the loop scheduling techniques sketched out before.

The task selector Even(n ) organizes the iteration space as equally sized rectan-

gular blocks. The parameter n defines the desired number of tasks as a multiple of
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Table 1. Example application of task selector Factoring

Task Size Task Size Task Size Task Size

T1 101 T9 25 T17 6 T25 2

T2 101 T10 25 T18 6 T26 2

T3 101 T11 25 T19 6 T27 2

T4 101 T12 25 T20 6 T28 2

T5 50 T13 13 T21 3

T6 50 T14 13 T22 3

T7 50 T15 13 T23 3

T8 50 T16 13 T24 3

the number of threads. The task selector Factoring defines tasks with decreasing

size according to a formula proposed in Hummel et al. (1992):

task size =

⌊
remaining iterations

2 ∗ number of threads

⌋
+ 1.

One task size is used for as many consecutive tasks as threads are used. The term

remaining iterations refers to the number of iterations not yet allocated to tasks.

Table 1 illustrates this task selector for an example of 800 iterations and four threads.

In general, the factoring approach has shown to be a suitable compromise for the

task granularity trade-off.

The three task schedulers are called Static, Self, and Affinity. The task

scheduler Static offers the simplest implementation; it assigns tasks to threads

statically in a round-robin manner. In combination with the task selector Even(1),

the task scheduler Static realizes a standard block scheduling. The general case

Even(n ) leads to a block-cyclic scheduling and, with increasing n , to cyclic

scheduling. The task scheduler Self implements a central task queue, from which

worker threads obtain tasks on demand. Depending on the choice of the task

selector, the task scheduler Self either implements self-scheduling or factoring. The

task scheduler Affinity requires the most complex implementation. It employs an

individual task queue for each thread. As long as the associated local task queue

is not empty, a thread always selects the next task pre-assigned to it. After having

completed all statically pre-assigned tasks, a thread tries to identify heavily loaded

threads with non-empty local task queues and “steals” tasks from them. Affinity

scheduling offers all load balancing opportunities of a dynamic loop scheduler while

avoiding the drawbacks of a central task queue design, i.e. frequent synchronization

on access, low data locality, and the potential for becoming a scalability bottleneck.

For the time being, task selector Even(1) and task scheduler Static are used as

defaults. However, for experimental purposes programmers are free to choose any

combination of task selector and task scheduler either on a program-wide basis or

for individual with-loops. Based on experimental experience, we envision compiler

heuristics that implicitly select the most appropriate combination of task selector

and task scheduler in the future.
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Fig. 11. Comparison of pure and enhanced fork/join execution models.

5 Enhancing the execution model

The compilation scheme CMT, as defined in section 3, addresses individual

with-loops. In compiled code, there is no connection between multi-threaded

execution of consecutive with-loops. This limited scope facilitates the definition

of a basic compilation scheme, yet it excludes any optimization across multiple

with-loops. Following the multi-threaded execution of one with-loop, all worker

threads terminate during synchronization. The same number of worker threads is

again created for the multi-threaded execution of the following with-loop. Program

execution is a sequence of steps alternatingly performed in single-threaded and in

multi-threaded mode, as illustrated on the left hand side of Figure 11.

This fork/join execution model is conceptually simple. Synchronization and

communication events are confined to thread creation and thread termination.

Worker threads do not interact with each other at all. However, the price for

simplicity is excessive runtime overhead due to frequent creation and termination

of threads. Although the associated costs are much smaller than those for process

creation and termination, they are still prohibitive for successful parallelization.

A solution which combines the conceptual simplicity of the fork/join approach

with an efficient execution scheme is shown on the right hand side of Figure 11. In

the enhanced fork/join model, the desired number of worker threads is created once

at program start, and all threads remain active until the whole program terminates.

Two tailor-made barriers, the start barrier and the stop barrier, realize all necessary

synchronization among threads.
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START_BARRIER_WAIT( )
{

while (local_flag == global_flag);
local_flag = global_flag;

}

START_BARRIER_LIFT( )
{

global_flag = 1 - global_flag;
}

Fig. 12. Implementation of start barriers.

After creation, worker threads immediately hit a start barrier. As soon as the

master thread encounters the first with-loop, the start barrier is lifted. The worker

threads thereupon activated share the computation of the with-loop, exactly as in

the pure fork/join model. Unlike in the pure fork/join model, the master thread

temporarily turns itself into a worker thread and joins the other threads in the

cooperative execution of the with-loop. Regular worker threads that have completed

their individual computations pass the following stop barrier and, with nothing

else to do, immediately move on to the next start barrier. After having finished

its own assignment of work, the master thread waits at the stop barrier for the

longest-running worker thread to arrive. Only then the master thread proceeds with

subsequent (sequential) computations.

Implementing synchronization barriers

The combination of a stop barrier and a subsequent start barrier represents a full

barrier synchronization, which is known to cause considerable runtime overhead

with increasing numbers of threads (Cohen et al., 1994; Hill & Skillicorn, 1998).

Therefore, careful design and efficient implementation of start and stop barriers are

crucial for performance. Figure 12 shows our implementation of the start barrier.

It is based on a global flag, which is shared by all threads, and on one local flag

within the scope of each worker thread. All flags are statically initialized to zero.

Worker threads executing START BARRIER WAIT block on the condition of the empty

while-loop. By inverting the global flag during execution of START BARRIER LIFT,

the master thread activates the worker threads. Having passed the barrier, worker

threads copy the new value of the global flag into their local flags to prepare

execution of subsequent instances of the start barrier.

Inverting the global flag while worker threads continuously poll on it, is a race

condition. However, this race condition is without problems. On the one hand, only

the master thread has write access to the global flag. On the other hand, worker

threads only reflect the change of the flag’s value, not the specific state of the memory

location. By exploiting a controlled race condition this start barrier implementation

completely avoids expensive thread synchronization mechanisms such as mutex locks

or semaphores. The sole assumption made on the memory consistency model is that

write operations issued by one processor are observed by others.
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Fig. 13. Organization of tree-structured stop barriers.

One may argue that iteratively reading the global flag in very short time intervals

generates heavy contention on the shared memory. In fact, the opposite is true

for modern multiprocessors with processor-specific cache memories and hardware

cache coherence. As soon as an individual worker thread hits the start barrier, it

loads the global flag into the local cache of the processor it is currently running

on. Afterwards, it only accesses the local cache when polling on the global flag.

However, when the master thread inverts the global flag and writes its new value

back to memory, the cache coherence mechanism invalidates the local copies in all

other caches. Only then worker threads reload the global flag from memory and

proceed beyond the start barrier. Each thread performs at most two main memory

accesses during execution of the start barrier.

Our stop barrier implementation follows the same approach as the start barrier. It

employs a global vector of flags, one for each thread. To improve scalability, the stop

barrier is implemented as a binary tree of pairwise synchronizations, as illustrated

in Figure 13. After having set its associated ready flag, a worker thread with an

odd ID immediately passes the stop barrier to hit the subsequent start barrier. Each

thread with an even ID n waits for thread n + 1 to complete before it either passes

the stop barrier itself if its ID is not a multiple of four, or it continues waiting for

thread n + 2 otherwise, and so on.

The basic realization of the stop barrier has been refined several times. For

example, threads which synchronize with multiple other threads may do so in any

order. In the case of fold-with-loops, final folding operations are integrated into

the stop barrier and performed as soon as two threads synchronize with each other.

This solution interleaves synchronization overhead with productive computations.

Implementing thread creation

In the enhanced fork/join model the performance impact of thread creation decreases

with growing program execution time. Nevertheless, it makes sense in principle to

care for efficient implementations. In a straightforward approach, the master thread

creates all worker threads, one after the other. Execution of productive code is

delayed by a time which grows linearly with the number of threads. We can reduce

this initial delay by having the worker threads participate in thread creation. With

a binary tree thread creation scheme, the initial delay is only O (log NUM THREADS).

Yet, we can do even better by exploiting the observation that many programs

have a sequential startup phase. For example, they read input data from files or they
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Fig. 14. Organization of thread creation phase.

initialize data structures. Therefore, it makes sense to exclude the master thread from

worker thread creation. As sketched out in Figure 14, the master thread only creates

a single worker thread and immediately starts execution of productive code. Instead

of the master thread, the first worker thread initiates a binary tree thread creation

scheme. Thread creation almost completely overlaps with a program’s sequential

startup phase and effectively reduces the thread creation overhead to O(1).

6 SPMD optimization

The enhanced fork/join execution model significantly reduces synchronization costs

by replacing thread creation and thread termination by less expensive start and stop

barriers, respectively. Nevertheless, program execution stalls at each stop barrier

until arrival of the longest-running worker thread. Start and stop barriers are still

major sources of overhead. In this section we describe optimization techniques which

aim at eliminating synchronization barriers. Besides avoiding the cost immediately

associated with the execution of the barrier code and the need to wait for the

longest-running worker thread, larger regions of parallel execution also render the

scheduling techniques discussed in section 4 more effective.

Introducing SPMD skeletons

So far, with-loops are used to describe both a computational task and a coordination

behaviour, i.e. the organization of the parallel execution of the given task by multiple

threads. Creating regions of parallel execution that stretch over several with-loops

requires explicit separation of these two aspects. Therefore, we introduce SPMD

skeletons as intermediate representations of the coordination behaviour of regions

of parallel execution. Within such regions, which may contain multiple with-loops,

program execution follows the “Single Program, Multiple Data” approach, hence

the name. Our SPMD skeletons have the form

spmd( USE, MAP, FOLD, CODE ).

The fourth parameter CODE refers to a sequence of with-loops embedded in a

joint region of parallel execution without synchronization and communication inside.

The other three parameters provide the necessary information to generate multi-

threaded code from the spmd skeleton without identifying the with-loops inside.

The first parameter USE contains the set of argument variables, which have to be

communicated to worker threads when initiating parallel program execution. The

second parameter MAP denotes a set of pairs each consisting of the result variable of

an embedded genarray-with-loop and the associated shape specification. Similarly,
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SPMD







a = with
gen1 : expr1

.

.

.
genn : exprn

genarray( shp);

Rest







=⇒a = spmd({shp} ∪
⋃n

j=1 FV (genj : exprj ),

{ [a, shp] },
{ },
a = with

gen1 : expr1
.
.
.

genn : exprn

genarray( shp); );
SPMD[[Rest]]

SPMD







a = with
gen1 : expr1

.

.

.
genn : exprn

fold( fold op, neutral);
Rest







=⇒a = spmd({neutral} ∪
⋃n

j=1 FV (genj : exprj ),

{ },
{ [a, fold op ] },
a = with

gen1 : expr1
.
.
.

genn : exprn

fold( fold op, neutral); );
SPMD[[Rest]]

SPMD[[ a = expr; Rest]] =⇒ a = expr; SPMD[[Rest]]

SPMD[[return( a0, . . ., ak);]] =⇒ return( a0, . . ., ak);

Fig. 15. Embedding with-loops within spmd skeletons.

the third parameter FOLD denotes a set of pairs each consisting of the result variable

of an embedded fold-with-loop and the associated fold operation. Figure 15

shows the transformation scheme SPMD, which introduces spmd skeletons around

individual with-loops.

Merging SPMD skeletons

Introducing spmd skeletons around with-loops alone does not alter the multi-

threaded code generated. We merely lay the foundation for a subsequent optimization

step, which tries to merge several spmd skeletons into a single one. This optimization

is formalized by the transformation scheme MERGE, which is shown in Figure 16.

The definition of MERGE is based on guarded transformation rules. Predicate
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MERGE
[[
A = spmd( USEA, MAPA, FOLDA, CODEA);
B = spmd( USEB, MAPB, FOLDB, CODEB);
Rest

]]

=⇒ MERGE





A, B = spmd( USEA ∪ USEB,

MAPA ∪ MAPB,
FOLDA ∪ FOLDB,
CODEA; CODEB);
Rest






| A ∩ USEB = ∅ = A ∩ B

=⇒ A = spmd( USEA, MAPA, FOLDA, CODEA);

MERGE
[[
B = spmd( USEB, MAPB, FOLDB, CODEB);
Rest

]]
| OTHERWISE

Fig. 16. SPMD optimization scheme MERGE.

A = with ... D ... k ... C ... genarray( shp_A);
B = with ... C ... x ... y ... genarray( shp_B);
d = with ... k ... x ... z ... fold( fun, neutr);

⇓ ⇓ ⇓

A = spmd( {shp_A, D, k, C},
{[A, shp_A]},
{ },
A = with ... D ... k ... C ... genarray( shp_A); );

B = spmd( {shp_B, C, x, y},
{[B, shp_B]},
{ },
B = with ... C ... x ... y ... genarray( shp_B); );

d = spmd( {neutr, k, x, z},
{ },
{[d, fun]},
d = with ... k ... x ... z ... fold( fun, neutr); );

⇓ ⇓ ⇓

A, B, d = spmd( {shp_A, shp_B, D, k, C, x, y, z, neutr},
{[A, shp_A], [B, shp_B]},
{[d, fun] },
A = with ... D ... k ... C ... genarray( shp_A);
B = with ... C ... x ... y ... genarray( shp_B);
d = with ... k ... x ... z ... fold( fun, neutr); );

Fig. 17. Example illustrating the SPMD optimization.

expressions following vertical bars restrict transformation rules to specific conditions.

The predicate “otherwise” matches whenever none of the previous rules was

applicable. MERGE identifies pairs of spmd skeletons which are directly adjacent

in a sequence of assignments and which are free of data dependencies. Such pairs

are combined into a single spmd skeleton with multiple return values. An example

which illustrates both the introduction of spmd skeletons and the merging step can

be found in Figure 17. For reasons of simplicity, only the free variables of the

generator-expression pairs are shown rather than complete with-loops.
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�

ForAll [t,fold op ] ∈ FOLD :
t = t1;
for (i=2; i<=k; i++)
t = fold op ( t, ti);

�

ForAll [t,fold op ] ∈ FOLD :
ReadFromTaskFrame( t1, . . . , tk);

�

WaitThreads( T1, . . . ,Tk);
�
�

�
�Terminate Thread Ti�

�

ForAll [t,fold op ] ∈ FOLD :
WriteIntoTaskFrame( ti);

�
CMT′[[CODE]]

�

ForAll [t, shp] ∈ MAP, t ∈ USE :
ReadFromTaskFrame( t);

�

�
�

�
�Start Thread Ti�

�

CreateThreads( T1, . . . ,Tk);
�

ForAll [t, shp] ∈ MAP, t ∈ USE :
WriteIntoTaskFrame( t);

�

ForAll [t, shp] ∈ MAP :
t = AllocateMemory( shp);

�

CMT[[ res = spmd( USE, MAP, FOLD, CODE);]]

↙(master code) ↘ (worker code)

Fig. 18. Compilation scheme for spmd skeleton.

Compilation of SPMD skeletons

The SPMD optimization may lead to complex spmd skeletons containing many

different with-loops. Nevertheless, the compilation schemes described in section 3

can be adapted to spmd skeletons almost straightforwardly. As shown in Figure 18,

compilation of spmd skeletons mostly combines elements from Figure 3 and from

Figure 6. In order to facilitate comparison of the new scheme with those presented

in section 3, the terminology is based on the simple fork/join model rather than on

the enhanced version.

Evaluation of an spmd skeleton starts with the allocation of memory for the result

arrays of its embedded genarray-with-loops. Both their identifiers as well as their

shapes are derived from the MAP set. Afterwards, all variables of the USE and MAP

sets are written to the task frame. After creation, each worker thread immediately

sets up its local execution environment for all with-loops within the spmd skeleton.

With-loops from the CODE section of the spmd skeleton are compiled using the

slightly modified scheme CMT′, which is shown in Figure 19. For each individual
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CMT′







a = with
gen1 : expr1

.

.

.
genn : exprn

genarray( shp);
Rest







=




IdxSeti = UnqSubset( i, shp);

C′







a = with
gen1 : expr1

.

.

.
genn : exprn

genarray( shp);
|| IdxSeti







CMT′[[Rest]]

CMT′







a = with
gen1 : expr1

.

.

.
genn : exprn

fold( fold op, neutr );
Rest







=




shp = Closure( gen1, . . . , genn);

IdxSeti = UnqSubset( i, shp);

C′







a = with
gen1 : expr1
.
.
.

genn : exprn

fold( fold op, neutr );
|| IdxSeti







CMT′[[Rest]]

Fig. 19. Worker thread compilation scheme for spmd skeleton.

with-loop, code is generated which first identifies a unique index subspace and then

performs the given numerical operation in a way that restricts all computations to

exactly this subspace. Before termination, each worker thread sends its partial fold

results, i.e. the variables of the FOLD set, back to the master thread. Eventually, the

master thread folds the partial results to obtain the final values.

Enhancing the SPMD optimization by code restructuring

The optimization scheme MERGE discussed so far is limited to immediately adjacent

spmd skeletons. Unfortunately, typical intermediate SaC codes interleave with-

loops with scalar computations; adjacent spmd skeletons are rare. In order to

improve the effectiveness of the transformation we extend MERGE by a code

restructuring component. Our enhanced version of MERGE aims at moving scalar

code between two consecutive spmd skeletons either ahead of the first skeleton or

behind the second skeleton. However, both data dependencies and anti-dependencies

restrict opportunities for code movement. Data dependencies reflect the nature

of the problem and, hence, cannot be eliminated. In contrast, anti-dependencies

arise from incidentally giving two conceptually different variables the same name.

Anti-dependencies could be avoided by consistent variable renaming, but such a

general code transformation is beyond the scope of this paper. Therefore, we take

anti-dependencies into account in the sequel. Both data dependencies and anti-

dependencies can be direct or indirect, as illustrated in the following example:

a = spmd( {u,c}, ... ) ;

b = ... a ... ;

c = ... d ... ;

d = spmd( {b,d}, ...) ;
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Ignoring the scalar code between the two spmd skeletons makes them perfect can-

didates for merging. However, merging is prohibited by an indirect data dependency

between the two skeletons via the scalar variable b. The assignment defining c also

may not be moved, despite the absence of data dependencies. Both moving it ahead

of the first or behind the second skeleton would penetrate the binding structure of

the code fragment.

Figure 20 shows a refined version of the optimization scheme MERGE, which –

based on a thorough analysis of both direct and indirect dependencies and anti-

dependencies – reorganizes the code as necessary to merge spmd skeletons whenever

possible. Despite the restrictions discussed above, code reorganization is often

feasible. To do so in a single sweep, three auxiliary parameters store, use, and def

temporarily store scalar assignments and keep track of associated data dependencies

and anti-dependencies; application of MERGE starts with all three being empty.

Leading scalar code is traversed by MERGE without alteration (3rd rule). The

interesting case is encountered when the first spmd skeleton is reached during code

traversal. Let us assume, the first skeleton is followed by a scalar assignment (2nd

rule). If neither data dependencies nor anti-dependencies exist between them, the

two assignments are exchanged. We keep the chance to merge the spmd skeleton

with some subsequent one. Otherwise, it may still be possible to push the scalar

assignment further down behind a subsequent skeletal assignment, but whether

this will be possible with respect to data dependencies or whether another spmd

skeleton follows at all is currently unknown. Therefore, the decision is postponed by

temporarily appending the scalar assignment to the auxiliary store. To keep track of

all data dependencies involving assignments currently residing in the auxiliary store,

two variable sets use and def are maintained. Assuming another scalar assignment

follows, it becomes clear that the decision whether this can be moved ahead of the

preceding skeletal one involves all assignments in the auxiliary store.

Two skeletal assignments which directly follow each other or which have been

made so by preceding transformations may or may not be merged. Once again,

this depends on the auxiliary store (1st rule). In the absence of dependencies and

anti-dependencies the two spmd skeletons are merged exactly as by the initial version

of MERGE. However, if merging is not possible, all scalar assignments from the

auxiliary store are re-introduced into the sequence of assignments in between the two

skeletons and the optimization scheme continues with the second skeletal assignment.

The auxiliary store is flushed when MERGE reaches a return-statement (4th rule).

Discussion

As pointed out before, the SPMD optimization solely addresses with-loops in

a sequence of assignments. Nestings of with-loops are eliminated beforehand as

far as possible by with-loop-scalarization (Grelck et al., 2004), a SaC-specific

optimization technique. For remaining with-loop nestings, the recursive unfolding

of parallel activity is prevented, as described in Section 3. Problems caused by the

nesting of algorithmic skeletons are avoided.
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(1) MERGE[[ A1, . . . , An = spmd( USEA, MAPA, FOLDA, CODEA);

B1, . . . , Bm = spmd( USEB, MAPB, FOLDB, CODEB);

Rest ]]
[[ store]][[ use]][[ def ]]

=⇒ MERGE[[ A1, . . . , An, B1, . . . , Bm = spmd(USEA ∪ USEB,

MAPA ∪ MAPB,

FOLDA ∪ FOLDB,

CODEA ; CODEB );
Rest ]]

[[ store]][[ use]][[ def ]]

| ∅ = ({A1, . . . , An} ∪ def ) ∩ USEB

| ∅ = ({A1, . . . , An} ∪ def ∪ use) ∩ {B1, . . . , Bm}

=⇒ A1, . . . , An = spmd( USEA, MAPA, FOLDA, CODEA);

store

MERGE[[ B1, . . . , Bm = spmd( USEB, MAPB, FOLDB, CODEB);

Rest ]]
[[ ]][[ ]][[ ]]

| OTHERWISE

(2) MERGE[[ A1, . . . , An = spmd( USEA, MAPA, FOLDA, CODEA);

B1, . . . , Bm = expr;

Rest ]]
[[ store]][[ use]][[ def ]]

=⇒ B1, . . . , Bm = expr;

MERGE[[ A1, . . . , An = spmd( USEA, MAPA, FOLDA, CODEA);

Rest ]]
[[ store]][[ use]][[ def ]]

| ∅ = ({A1, . . . , An} ∪ def ) ∩ USEexpr

| ∅ = ({A1, . . . , An} ∪ USEexpr ∪ use) ∩ {B1, . . . , Bm}

=⇒ MERGE[[ A1, . . . , An = spmd( USEA, MAPA, FOLDA, CODEA);

Rest]]
[[ store B1, . . . , Bm = expr; ]][[ use ∪ USEexpr]][[ def ∪ B]]

| OTHERWISE

(3) MERGE[[ A1, . . . , An = expr; Rest ]] [[ store]][[ use]][[ def ]]

=⇒ A1, . . . , An = expr; MERGE[[Rest]][[ store ]][[ use ]][[ def ]]

(4) MERGE[[ return( A1, . . . , An); ]][[ store]][[ use]][[ def ]]

=⇒ store return( A1, . . . , An);

Fig. 20. Refined MERGE scheme with code restructuring capability.
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for (i=0; i<max_iter; i+=1) {
A = with

([ 0, 0] <= iv < [ 1, N]) : B[iv]
([ 1, 0] <= iv < [M-1, 1]) : B[iv]
([ 1, 1] <= iv < [M-1,N-1]) : 0.25 * (B[iv+[1,0]] + B[iv-[1,0]]

+ B[iv+[0,1]] + B[iv-[0,1]])
([ 1,N-1] <= iv < [M-1, N]) : B[iv]
([M-1, 0] <= iv < [ M, N]) : B[iv]

genarray( [M,N]);
B = A;

}

Fig. 21. Code fragment of benchmark jacobi.

The SPMD optimization bears some similarity to the fusion of adjacent collective

operations in Mpi (Gorlatch et al., 1999) or to the elimination of synchronization

barriers in the parallelization of imperative programs (O’Boyle et al., 1995; Tseng,

1995; Han et al., 1998). However, the often opaque data flow in imperative

environments prevents large-scale code restructuring as we do.

7 Experimental evaluation

This section reports on a series of experiments evaluating the compilation techniques

presented so far. In order to quantify the impact of individual design decisions on

the parallel performance of compiled SaC code we restrict ourselves to a set of

representative micro benchmarks. Readers looking for more general case studies

on programming methodology and runtime performance in comparison with other

programming environments are referred elsewhere (Grelck & Scholz, 2000; Grelck,

2002; Grelck & Scholz, 2003b; Grelck & Scholz, 2003a). Experiments have been

made on three different machine architectures: a 4-processor SUN E650, a 12-

processor SUN E4000, and a 72-processor SUN E15k. All machines run different

versions of the Solaris operating system. Since access to the two larger machines has

been non-exclusive, not all processors could effectively be used for the experiments.

Comparison of execution models

As a starting point and performance base line we investigate the parallel performance

of a well-known benchmark kernel: 2-dimensional Jacobi relaxation with a 4-point

stencil. Various ways of implementing Jacobi relaxation in SaC have been discussed

in Grelck (2001) and Scholz (2003). Figure 21 shows the relevant fragment of

intermediate SaC code compiled from various different high-level specifications.

Basically, a new array A is computed from an existing array B by setting all

inner elements to the arithmetic mean of their four direct neighbours while copying

the boundary elements. A single multi-generator with-loop suffices as internal

representation. Embedding the with-loop within a sequential for-loop reflects the

iterative nature of relaxation. For reasons of simplicity, we use a fixed number of

iterations rather than a convergence criterion. This intermediate SaC code can be
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Fig. 22. Speedups observed for different problem sizes of benchmark jacobi on SUN E650

with parallelization according to the simple fork/join model (left) and to the enhanced

fork/join model (right).

compiled into C code which is competitive with hand-optimized implementations in

low-level imperative languages (Grelck, 2001; Scholz, 2003).

Despite its simplicity, jacobi is not a trivial benchmark as it does require

synchronization and data exchange between processors after each iteration. In

this important aspect it differs from other popular benchmarks like ray tracing,

Mandelbrot sets, or matrix multiplication. Jacobi relaxation is particularly suitable

for our purpose because we can manipulate the ratio between computation and

synchronization/communication by simple modification of the array size.

Figure 22 compares speedups achieved by parallelization according to the initial,

pure fork/join execution model, described in section 3, with those obtained by using

the enhanced fork/join execution model, outlined in section 5. All speedup figures

are given relative to sequential execution time of the same SaC code. To compare

both execution models on a fair basis, we allow the master thread to participate in

parallel execution of with-loops even in the initial model.

As expected, the organizational overhead inflicted by thread creation and termina-

tion in the initial execution model is prohibitively high. For small problem sizes and,

hence, high synchronization and communication demands, severe slowdowns must be

observed. Even with a large array size of 2000 by 2000 elements and, hence, relatively

infrequent synchronization and communication events, the simple fork/join model

dissatisfies with a maximum speedup of only 2.2 with four processors. In contrast,

the enhanced fork/join model achieves almost linear speedups. Even for array sizes

as small as 25 by 25 elements and, hence, extremely frequent synchronization and

communication events four processors achieve a speedup of 2.0, not a slowdown.

This experiment also demonstrates the sensitivity of sequentially competitive code

to certain design decisions in parallelization. With arrays of 200 by 200 elements and

two processors parallelization according to the simple fork/join model yields almost

the same execution time as sequential operation. This means that the overhead

of creating and terminating a single worker thread in each iteration equals the

entire runtime of the productive code. Consider as an example the productive code

would be ten times slower. Thread creation and termination take the same absolute
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Fig. 23. Speedups observed for different problem sizes of benchmark jacobi on SUN E4000

(left) and SUN E15k (right) with parallelization according to the enhanced fork/join model.

time as before. Suddenly, an excellent speedup of 1.9 could be observed for the

simple fork/join model. The enhanced fork/join model would still yield a speedup

of 2.0, just as before. Without any modification to the parallelization techniques,

the – obviously false – impression would be that in practice both execution models

yield similar efficiency. This example illustrates both the importance of sequentially

competitive code for analysis and evaluation of parallelization techniques and the

particular challenge to actually achieve reasonable speedups by parallelization of

competitive sequential code.

Since the simple fork/join model does not even scale on the smallest of our three

test systems, all further experiments use the enhanced execution model. Figure 23

shows speedups for jacobi on the SUN E4000 and on the SUN E15k. Scalab-

ility carries over to larger processor counts. With infrequent synchronization and

communication, parallel performance is mostly limited by the memory bandwidth

constraints of the different architectures. The fact that reasonable speedups are

obtained even for arrays as small as 50 by 50 elements demonstrates the efficiency

of our implementation in the context of extremely frequent synchronization and

communication.

Superlinear speedups observed for some problem sizes must be attributed to cache

effects. Employing additional processors increases the amount of cache memory. For

certain combinations of problem size and cache configuration, taking one additional

processor lets all memory accessed by one processor fit into its local caches. The

abruptly improved data locality results in a performance boost.

Evaluation of the SPMD optimization

Since Jacobi relaxation requires synchronization after each iteration step, it is not

suitable to analyze the performance impact of our SPMD optimization. Instead, we

use two micro benchmarks called sequence and triangular.

As shown in Figure 24, the micro benchmark sequence consists of a loop

containing a sequence of five genarray-with-loops. Each with-loop creates a vector

of N integers initialized to a constant value. In the absence of data dependencies,
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for (i=0; i<M; i+=1) {
A = with

([0] <= iv < [N]) : 1
genarray( [N]);

B = with
([0] <= iv < [N]) : 2

genarray( [N]);
C = with

([0] <= iv < [N]) : 3
genarray( [N]);

D = with
([0] <= iv < [N]) : 4

genarray( [N]);
E = with

([0] <= iv < [N]) : 5
genarray( [N]);

}

Fig. 24. Code fragment of benchmark sequence.
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Fig. 25. Effect of the SPMD optimization on speedups achieved by benchmark sequence

for different problem sizes on SUN E15k.

the SPMD optimization manages to merge the initially five SPMD skeletons into a

single one and, hence, to remove four out of five synchronization barriers in compiled

code. The effect on parallel performance is shown in Figure 25 for different vector

sizes N. As expected, the impact of the SPMD optimization on runtime performance
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A = with
([0] <= iv < [M]) : with

([0] <= jv < iv) : 0
( iv <= jv < [N]) : expensive(iv,jv)

genarray( [N])
genarray( [M]);

B = with
([0] <= iv < [M]) : with

([0] <= jv < iv) : expensive(iv,jv)
( iv <= jv < [N]) : 0

genarray( [N])
genarray( [M]);

Fig. 26. Code fragment of benchmark triangular.
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Fig. 27. Effect of SPMD optimization on speedups achieved by benchmark triangular on

SUN E15k.

grows with program execution being increasingly dominated by synchronization

overhead, which in turn grows with increasing processor counts.

The micro benchmark triangular, as shown in Figure 26, maps a complex

numerical operation to an upper triangular matrix and, in a subsequent step, to a

lower triangular matrix. The purpose of triangular is to demonstrate the potential

impact of the SPMD optimization on workload distribution.

Using the default with-loop scheduling, workload is poorly balanced in both in-

dividual steps. However, if we manage to eliminate the intermediate synchronization

barrier, workload imbalances should vanish. Figure 27 shows the observable impact

of the SPMD optimization on speedups achieved by triangular for a matrix size

of 1000 by 1000 elements each. Speedups almost double with SPMD optimization

switched on, although the frequency of synchronization is insignificant due to the

large size of the matrices involved.

Although the SaC programs implementing the two micro benchmarks are rather

simple, it is noteworthy that no optimization would have been possible at all by using

only the simple version of the MERGE scheme. Preceding code transformations

and optimizations performed by the SaC compiler always introduce scalar code in

between with-loops. This demonstrates the need for the code restructuring version

of MERGE, as described in section 6.
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M = N / 8;
A = with

([ 0] <= iv < [ M]) : fun(1)
([ M] <= iv < [2*M]) : fun(2)
([2*M] <= iv < [3*M]) : fun(4)
([3*M] <= iv < [4*M]) : fun(8)
([4*M] <= iv < [5*M]) : fun(16)
([5*M] <= iv < [6*M]) : fun(32)
([6*M] <= iv < [7*M]) : fun(64)
([7*M] <= iv < [ N]) : fun(128)

genarray( [N]);

Fig. 28. Code fragment of benchmark zones.
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Fig. 29. Performance impact of different task sizes and task schedulers on benchmarks

jacobi (left) and zones (right) using 3 threads on SUN E650.

Evaluation of with-loop scheduling

All experiments described so far have used the default with-loop scheduler Static/

Even(1), which realizes a static horizontal block decomposition. However, the

opportunity to plug in different task selectors and different task schedulers, as

explained in Section 4, offers a wide range for further experimental investigation.

We use two different benchmarks for this. Jacobi relaxation, as introduced in the

beginning of this section, serves as a representative for programs with an even

distribution of computational workload. In the following, we use a fixed problem

size of 2000 by 2000 elements and 100 iterations. As a representative for irregular

codes, the micro benchmark zones processes a vector which is divided into eight

equally sized sections; the computational complexity per element doubles from one

section to the next. The relevant code fragment of zones is shown in Figure 28.

Figure 29 illustrates the performance impact of different task sizes for all three

task schedulers introduced in section 4. For the regular code of benchmark jacobi

a small number of tasks turns out to be more advantageous than a large number. As

active workload balancing is not necessary, large numbers of tasks only contribute to

organizational overhead. Both Static and Self task scheduling additionally suffer

from decreasing data locality. In contrast, Affinity task scheduling retains almost

constant performance levels. For a regular distribution of workload, as in the case
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Fig. 30. Impact of different combinations of task selector and task scheduler on the

scalability of benchmarks jacobi (left) and zones (right) on SUN E4000.

of jacobi, affinity scheduling never reaches the work stealing phase. As long as the

static a-priori assignment of work to threads suffices, Affinity produces very low

overhead.

In the less regular scenario of benchmark zones, larger numbers of tasks generally

improve the dynamic load balancing capabilities of the task schedulers Self and

Affinity. However, over a certain threshold, the positive impact of improved load

balancing is outweighed by increasing overhead. These contrary effects result in a

rather small, but still observable, performance impact of the task size. Since the

example is not sensitive to data locality, the task scheduler Affinity cannot exploit

its specific capabilities and creates slightly more overhead than Self. The Static

task scheduler achieves poor speedups with a single task per thread. With increasing

number of tasks per thread, Static results in a block-cyclic and, eventually, in a

cyclic scheduling, which better suits the distribution of computational workload in

the benchmark zones. Again, after reaching a certain level of workload balancing,

additional increase in the number of tasks creates more overhead than is outweighed

by an even smoother workload distribution.

Figure 30 shows the parallel performance of the benchmarks jacobi and zones

with different combinations of task selectors and task schedulers. In this experiment,

we use nine tasks per thread as a compromise to remove one degree of freedom.

It turns out that the performance differences in the regular case are extremely

small. Table 2 provides exact figures for ten processors. Minor differences to the

data shown in Figure 23 are due to using different SaC implementations of

Jacobi relaxation at different times and with slightly different machine configur-

ations. For benchmark zones, the different load balancing capabilities of the task

scheduler / task selector combinations become more apparent. While Affinity

and Self/Even(9) as dynamic techniques yield the best results, Static/Even(9)

achieves almost as good figures. This combination of task selector and task scheduler

realizes a block-cyclic scheduling, which perfectly matches the remaining regularity

in the example code. All other combinations turn out to be inappropriate in this

scenario.
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Table 2. Speedups achieved by benchmarks jacobi and zones with different

combinations of task selector and task scheduler using 10 processors on SUN E4000

Task Scheduler Task Selector jacobi zones

Static Even(1) 8.04 2.12

Static Even(9) 7.87 4.55

Static Factoring 7.90 3.39

Self Even(9) 7.76 5.24

Self Factoring 7.99 3.35

Affinity Even(9) 8.08 5.60

8 Conclusion

SaC is a purely functional array processing language designed with numerical

applications in mind. SaC combines declarative programming on multi-dimensional

stateless arrays with high runtime performance. Tailor-made optimization techniques

restructure SaC code from a representation amenable to development and main-

tenance towards a representation suitable for efficient execution by machines. As a

result of thorough optimization, the runtime behaviour of high-level SaC programs is

often competitive with equivalent applications implemented in low-level imperative

languages.

High sequential performance gives us the opportunity to achieve real performance

gains over existing imperative implementations, when exploiting the conceptual

advantages of the functional paradigm for parallelization. The particular challenge

is that high sequential performance makes the realization of satisfying speedups

much more difficult. Fast sequential code is bad for the ratio between organizational

overhead and productive code. Even minor inefficiencies in the organization of

parallel program execution substantially degrade scalability.

This paper describes compilation techniques and runtime system support for the

implicit parallelization of SaC programs similar to a compiler optimization. We

specifically target shared memory multiprocessors; our runtime system is based on

Pthreads. Several case studies have shown that simple recompilation of SaC code

yields speedups that are competitive with manually parallelized imperative programs.

High sequential performance allows implicitly parallelized SaC code to substantially

outperform even hand-optimized sequential imperative programs (Grelck & Scholz,

2000; Grelck, 2002; Grelck & Scholz, 2003b; Grelck & Scholz, 2003a).

SaC demonstrates the suitability of functional languages for numerically intensive

application domains in principle. However, efficient support for processing multi-

dimensional arrays must be a primary concern for language design, implementation,

and parallelization. When these conditions are met, the functional paradigm has

a lot to offer to numerical application programmers. Functional programs are

generally more closely related to mathematical specifications of algorithms than

their imperative counterparts. Narrowing the gap between algorithmic specification
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and executable code increases both programmer productivity and confidence in

correctness. Even research labs and government agencies will not forever have

the necessary manpower and relaxed time constraints to create larger and larger

application programs based on low-level machine-oriented techniques. Confidence

into program correctness is of specific interest to numerical applications because

in many cases, e.g. simulations, hardly more than weak plausibility checks can be

applied to examine the correctness of numerical results.

Another consequence of high-level programming is a loss of control over the intric-

acies of program execution. This prevents manual optimization and customization of

code to concrete target machines. However, it is exactly this manual optimization and

customization that takes a lot of time, effort, and expert knowledge when applying

low-level, machine-centric programming techniques. Adaptation to specific machine

requirements reduces readability and portability of code and seriously complicates

code maintenance.

Abstract program specifications give compilers more freedom in code generation

and often a better understanding of what is to be computed. The absence of

side-effects and an explicit data flow enhance opportunities for large-scale code

restructuring optimizations just as for truly compiler-directed parallelization. By

utilization of moderate additional hardware resources, functional programs may

significantly outperform imperative programs, as shown in this paper.

Although we have developed and presented our parallelization techniques in the

context of the functional array language SaC, many ideas are not limited to SaC.

They could be carried over to implementations of other functional languages which

meet the essential requirement of the domain of numerical applications: efficient

support for multi-dimensional numerical arrays.

Having shown that SaC programs can be compiled into efficiently executable

parallel code for shared memory systems, our next step is to address distributed

memory architectures. Finding out to which extent the experience gained with shared

memory systems can be carried over to distributed memory systems will be both

interesting and challenging. With dedicated implementations for both architectures,

we would also provide a tailor-made solution for modern hybrid systems made up

of clusters of large SMP nodes.
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