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The Hamiltonian approach 

We have been concentrating on the Euclidian path integral approach to 
lattice gauge theory. An alternative formulation, first advocated by Kogut 
and Susskind (1975), keeps a continuous time variable and only considers 
three-dimensional space as discrete. Working in the temporal gauge 
Ao = 0, they define a Hamiltonian which is a function of the space 
components of the gauge field and a set of conjugate momenta. This 
formulation also permits a strong coupling expansion, which is now an 
application of quantum mechanical perturbation theory. 

In this chapter we will derive the Kogut-Susskind Hamiltonian from the 
Wilson theory using the transfer matrix in direct analogy with the 
discussion in chapter 3. In this way we will see the equivalence of the two 
approaches. Which is preferable depends on taste and the particular 
question being asked. In the Wilson theory, space-time symmetry is more 
apparent, the particle spectrum is given by the singularity structure of 
Green's functions, and we have the simple analogy with statistical 
mechanics. In the Kogut-Susskind approach, we deal with a conventional 
quantum mechanical system with a well-defined Hamiltonian, the spectrum 
of the theory is directly the spectrum of this Hamiltonian, and phase 
transitions represent level crossings in the infinite volume limit. 

As we wish to consider the continuous time limit of the Wilson theory, 
we introduce a different lattice spacing ao for the time direction. This gives 
the timelike plaquettes a different shape than the spacelike ones and the 
details of the argument in chapter 7 on the classical continuum limit must 
be slightly modified. The couplings on spacelike and timelike plaquettes 
are no longer equal in the action 

s = -fJ8ITr Uo-fJtITr Uo. 
If t 

(15.1 ) 

Here the notation means that the first sum is over spacelike plaquettes only 
and the second over timelike ones. To obtain a proper classical limit we 
should take 

fJ8 = 2nao/(g~ a), 

fJt = 2na/(g~ ao), 

(15.2) 

(15.3) 
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102 Quarks, gluons and lattices 

where a continues to denote the spacelike lattice spacing. As ao goes to 
zero with fixed a, Ps goes to zero and Pt goes to infinity. 

The above argument is essentially classical. For the quantum theory we 
have seen that the bare charge is cutoff-scheme dependent. In particular, 
the spacelike and timelike couplings may correspond to different A 
parameters in the sense discussed in chapter 13. Indeed, if we do not allow 
for such a change in relative spacelike and timelike scales, the speed oflight 
may need to be renormalized (Shigemitsu and Kogut, 1981; Hasenfratz 
and Hasenfratz, 1981). Therefore we introduce two bare couplings and 
their geometric mean Ps = 2nao/(g;a), 

Pt = 2na/(g~ ao), 

(15.4) 

(15.5) 

gk = gsgt· (15.6) 

The subscript on gH stands for the Hamiltonian formulation. As with any 
bare couplings, these must all agree to lowest order 

g; = g~+O(gt) = gk+O(g~). (15.7) 

Introducing a cutoff dependence into the couplings and taking a continuum 
limit at the asymptotically free fixed point, we conclude 

(15.8) 
a-+o 

To proceed toward the Hamiltonian formulation, we now go to the 
temporal gauge. Fixing all timelike links to the identity, we see that a 
time like plaquette represents a coupling between two spacelike links at 
subsequent times. Separating out time dependences, we relabel the sites 
with two indices, i and t, such that the first corresponds to the spatial 
coordinates and ao t represents the time. In this notation the unfixed links 
carry a time index and two space indices Uii, t. The pure gauge theory action 
IS now 

S = -(2a/(g~ao)) 1: ReTr(Uij~t+l Uii,t)-(2ao/(g;a)) 1: ReTr(UO,t), 
{ii},t O,t (15.9) 

where the second sum is over all spacelike plaquettes and all times. 
In analogy with chapter 3 we wish to find a Hilbert space and an 

operator T such that 
z= f(dU)e- S = TrTN, (15.10) 

where N is the number of discrete times and we have imposed periodic 
boundary conditions. From the logarithm of T we will obtain the 
Hamiltonian. The first term in eq. (15.9) will generate the kinetic energy 
and the second, the potential. 
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The space in which T operates is a direct product of spaces of 
square-integrable functions over the gauge group. A state Il/r) in this space 
is specified by a wave function l/r( U) which is a function of link variables 
Uij which are group elements associated with each bond of a spacelike 
lattice. The inner product in this space is 

(l/r'Il/r) = f(dU)l/r+(U)l/r(U). (15.11) 

For simplicity we use the same notation as for the path integral, but in 
eq. (15.11) only spacelike variables enter. We can expand the states of this 
space in the non-normalizable basis {lU)}, where a state in this set is 
determined by a group element Uij on each spacelike bond. These satisfy 
a condition that the reversed links are not independent 

Uij = Uii1• 

The overlap of states in this basis is 

(15.12) 

(15.13) 

where the delta function over the group was introduced in chapter 9, 
eq. (9.14). The completeness statement is 

1 = f(dU)Iu) (UI· (15.14) 

The general state takes the form 

Il/r) = f(dU)IU)l/r(U). (15.15) 

Working in this Hilbert space, one may write down by inspection the 
matrix elements of an operator satisfying eq. (15.10) 

(U'ITIU) = exp«2a/(g1ao»l: ReTr(Uij1Uij» 
{ij} 

x exp«2ao/(g= a»l: Re Tr (Uo» (15.16) 
o 

Just as we expressed Tfor quantum mechanics in terms of the operators 
p and X, we would like to write this T in terms of some simple operators 
in the present Hilbert space. We begin by defining a set of matrix valued 
operators Oij and unitary operators Rij(g), where g is an element of the 
gauge group 

OijlU) = UijlU), 

Rtj(g) IV: = IU'),} 
Uij = gUij 

(15.17) 

(15.18) 

and Rtj does not alter any other links. The operators 0 clearly are the 
analog of the coordinate x in ordinary quantum mechanics. The operators 
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Rij(g) satisfy the group representation property 

Rij(g) Rij(g') = Rij(gg')· (IS.l9) 

They translate the variables U and thus are related to the canonical 
momentum, in a sense which will be made more precise shortly. In terms 
of these quantities, T takes the form 

T = (I1( fdg Rij(g) exp «2a/(gi ao» Re Tr g» 
{ij} 

x exp «2ao/(g~ a» 1: Re Tr UO>, 
o 

(1S.20) 

where Vo is the product of the Uij around the corresponding plaquette. 
We now wish to consider the limit as ao goes to zero. As ao becomes 

small, the integrals in eq. (1S.20) become dominated by group elements 
near the identity. We parametrize the elements as in chapter 6 

where Tr(AIXAp) = !8<XP, 

[AIX, AP] = ijIXPrXY. 

(1S.21) 

(1S.22) 

(1S.23) 

The invariant group measure takes the form 

dg = J(w)fIdwlX. (1S.24) 
IX 

The only properties of the Jacobean function J that we will need are that 
in a neighborhood of the identity it is regular and non-vanishing and that 

J(w) = J(-w), (IS.2S) 

which follows because dg = dg-1. 

As with any representation of the group, the operator Rij(g) can be 
written in terms of a set of generators for that representation 

Rij(g) = exp(iwlX/t) = exp (iw· lij). (1S.26) 

In our Hilbert space the It are Hermitian operators satisfying 

[l~j' IfJ] = ijlXPrlfJ, (1S.27) 

[It, Vij] = -AIXVij, (1S.28) 

[ifj' Vji] = VjiAIX, (1S.29) 

[/ij,/fj] = 0 = [/lj, Rij(g)]· (15.30) 

The operators corresponding to different links all commute. In eq. (1S.30) 
we have introduced the quadratic Casimir operator for the group 

Ifj = 1: It Ifj· (1S.31) 
IX 

These operators may be all represented by differential operators in the 
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group parameters. For example, with the group V(1) = {exp (itJ)}, we have 
a single generator A = 2 -! and 

Iii = 2-td/dtJji. (15.32) 

To consider a link in the reversed direction, first note that eq. (15.12) 
carries over to the operators A At 

Vij = Vii' 

The connection between lij and Iji follows from 

Rji(g)IVji ) = IVjig-l) 

= I(Vjjg-lVi.?) Vii) 

.. . = Rjj(Vijg-lVi/)IVii)' 
ThIS ImplIes for the generators 

IjjlV) = -G(Vji)'Y'Pltl V), 

where G(g)'zP denotes the adjoint representation of the group 

g-W'tg = G(g)aflAfI. 

As this is a real orthogonal representation, we have 

(15.33) 

(15.34) 

(15.35) 

(15.36) 

I;j = 17i' (15.37) 

Thus the quadratic Casimir does not depend on the direction chosen for 
the link. 

With this bit of group theory in hand, we return to the transfer matrix 
and insert eqs (15.21), (15.24) and (15.26) into eq. (15.20) 

T = (TI (f(TI dwa) J(w) exp (iljj 'w)exp «2a/(gf ao» Trcos (w. A») 
{ii} a 

X exp «2ao/(g~ a» L Re Tr Vo ). (15.38) 
o 

When ao goes to zero, the integral over w is dominated by w near the 
maximum ofTr cos (w' A). For a unitary group this maximum always occurs 
near w = O. We expand about this point 

Trcos(w'A) = n-iw2 +O(w4 ). (15.39) 

Inserting this into eq. (15.38), we do the Gaussian w integrals to obtain 

the result T = Kexp( -aoH+O(am, (15.40) 

where K is an irrelevant constant factor and 

H = (gt/gs)«gh-/(2a» L Ili +(2/(gh- a» L Re Tr 00)' (15.41) 
{ii} 0 

This is the Kogut-Susskind Hamiltonian. 
The two terms in eq. (15.41) have a direct interpretation in analogy to 

the usual continuum gauge theory Hamiltonian. The second term is a sum 
over spacelike plaquettes and represents the lattice form of the magnetic 
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field squared. The first term involves the canonical momenta and represents 
the electric field squared. Indeed, the operator Iii corresponds directly to 
the flux of electric field passing through link ij. 

In eq. (lS.4I) we have removed a factor of gt/gs so that the remainder 
of the Hamiltonian only depends on the mean, gH' Note that by virtue 
of eq. (IS.8), this prefactor approaches unity in the continuous space limit. 
Thus for spectrum calculations in the continuum, we can ignore this factor. 
The coupling gH has its own associated A parameter, defined in analogy 
with eq. (13.19). As indicated there, the relationship of this parameter with 
any other scheme can be. determined perturbatively. Hasenfratz and 
Hasenfratz (1981) have calculated 

AH/Ao { = 0.84, n = 2 } (lS.42) 
= 0.91, n = 3. 

The above Hamiltonian possesses a large amount of symmetry due to 
the remaining gauge freedom of the theory. As we have only specified the 
temporal gauge, we can still do time-independent gauge transformations. 
An operator that performs such a transformation at space site i is 

(IS.43) 

where the product extends over all bonds emanating from site i. This is 
a symmetry operator which commutes with the Hamiltonian. All physical 
states should be singlets under this operation in the sense that 

Ji(g) 11ft) = 11ft)· (IS.44) 

In terms of the generators Iii' this amounts to 

1: I~ 11ft) = o. 
{ij} => i 

(IS.4S) 

This equation says that the net electri~ flux out of any site is zero. Thus 
we have a discrete version of Gauss's law. Alternatively we could study 
external sources by allowing some sites to be other than a gauge singlet. 
Note that the counting of degrees of freedom parallels continuum treat
ments. The temporal gauge has removed timelike links as variables. 
Gauss's law removes one variable per group generator on each site. Thus 
the final theory has two degrees of freedom for each gauge boson, as 
expected from the possible polarizations in the continuum theory. 

A strong coupling series is easily formulated for this Hamiltonian. When 
g H is large, the electric term dominates. The kinetic part of the Hamiltonian 
is diagonalized by placing all links into singlet states with ITj = O. The 
natural basis of states for the strong coupling expansion is in terms of 
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definite representations of the gauge group on each link. The potential or 
magnetic term in the Hamiltonian then acts as a perturbation which 
excites links into intermediate states involving higher representations. The 
first correction involves the excitation of the links around a single plaquette 
into the fundamental representation. For further details we refer the reader 
to the review by Kogut (1979). 

Here we have only considered pure gauge fields. The Hamiltonian is 
easily extended to include fermionic or other matter fields. With fermions 
one again has the doubling problem alluded to in chapter 5 except that 
one factor of two is saved because time is continuous. 
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