CONE CHARACTERIZATION OF REFLEXIVE BANACH LATTICES

by IOANNIS A. POLYRAKIS

(Received 18 June, 1993)

Abstract. We prove that a Banach lattice X is reflexive if and only if X_+ does not contain a closed normal cone with an unbounded closed dentable base.

Suppose that X is a Banach space and P a cone of X (i.e. $P \subseteq X$, $\lambda P + \mu P = P$ for each λ , $\mu \in \mathbb{R}_+$ and $P \cap (-P) = \{0\}$). The cone P is normal (or self-allied) if there exists $a \in \mathbb{R}_+$ such that for each $x, y \in P$, $x \le y$ implies $||x|| \le a ||y||$. A convex subset B of P is a base for P if for each $x \in P$, $x \ne 0$, there exists a unique number $f(x) \in \mathbb{R}_+$ such that $(f(x))^{-1}x \in B$. For each $D \subseteq X$, denote by \overline{co} D the closed convex hull of D. A subset K of X is dentable if for each $\varepsilon \in \mathbb{R}_+$ there exists $x_\varepsilon \in K$ such that $x_\varepsilon \notin \overline{co}\{x \in K \mid ||x - x_\varepsilon|| \ge \varepsilon\}$.

We say that the cone P of X is isomorphic (or according to [6] and [7], locally isomorphic) to a cone Q of a Banach space Y if there exists an one-to-one, additive, positive homogeneous map T of P onto Q and T, T^{-1} are continuous in the induced topologies. Denote by c_0 the space of convergent to zero real sequences with the supremum norm and by l_1 the space of absolutely summing real sequences $\xi = (\xi(i))$ with

the norm $\|\xi\| = \sum_{i=1}^{\infty} |\xi(i)|$. The cones

$$c_0^+ = \{x = (x(i)) \in c_0 \mid x(i) \in \mathbb{R}_+ \text{ for each } i\},$$

$$l_1^+ = \{x = (x(i)) \in l_1 \mid x(i) \in \mathbb{R}_+ \text{ for each } i\},$$

are the positive cones of c_0 , l_1 respectively. If l_1^+ (respectively c_0^+) is isomorphic to a closed cone $D \subseteq P$, then we say that l_1^+ (respectively c_0^+) is embeddable in P. Cones isomorphic to l_1^+ are studied in [6]. For notation and terminology on convex sets we refer to [2].

THEOREM 1 ([5, Theorem 1]). Let X be a reflexive Banach space. Then X does not contain a closed normal cone with an unbounded closed dentable base.

Let X be a Banach lattice. By G. Lozanovskii's Theorem, see [4] or [1, p. 240], X is reflexive if and only if neither c_0 or l_1 is lattice embeddable in X.

THEOREM 2. Let X be a Banach lattice. Then the following statements are equivalent:

- (i) X is reflexive,
- (ii) l_1^+ is not embeddable in X_+ ,
- (iii) X_+ does not contain a closed normal cone P with an unbounded closed dentable base.

Proof. By Theorem 1, (i) \Rightarrow (iii). Let the statement (iii) be true. Suppose that the statement (ii) does not hold. Then there exists a closed cone P of X isomorphic to l_1^+ and

Glasgow Math. J. 37 (1995) 65-67.

let $T: l_1^+ \to P$ be an isomorphism. By the continuity of T and T^{-1} at zero, there exist a, $b \in \mathbb{R}_+$ such that

$$||x|| \le ||T(x)|| \le b ||x||$$
, for each $x \in l_1^+$.

Let $f = (\xi(k))$ with $\xi(k) = k^{-1}$ for each $k \in \mathbb{N}$. The set $B = \{x \in l_1^+ \mid f(x) = 1\}$ is a closed base for l_1^+ and I_2^+ and I_2^+ are considered base for I_2^+ and I_2^+ and I_2^+ are considered base for I_2^+ and

$$g(x) = x(1) - \sum_{k=2}^{\infty} x(k) < x(1) < f(x) = g(e_1).$$

Also, if $x_n \in B$ with $g(x_n) = x_n(1) - \sum_{k=2}^{\infty} x_n(k) \to 1$, then $x_n(1) \to 1$ and $\sum_{k=2}^{\infty} x_n(k) \to 0$; therefore $||e_1 - x_n|| \to 0$. Let $z_1 = T(e_1)$ and $h(y) = g(T^{-1}(y))$, for each $y \in P$. Then $h(y) < h(z_1)$ for each $y \in T(B)$ with $y \ne z_1$. For each sequence $y_n = T(x_n)$ of T(B) with $h(y_n) \to h(z_1)$ we have that $g(x_n) \to g(e_1)$; therefore $x_n \to e_1$ and so $y_n \to z_1$. Thus for each $\varepsilon \in \mathbb{R}_+$ there exists $\rho = \rho(\varepsilon) \in \mathbb{R}_+$ such that $h(y) < h(z_1) - \rho$, for each $y \in T(B)$ with

$$h(y) \le h(z_1) - \rho$$
, for each $y \in \overline{co}\{z \in T(B) \mid ||z - z_1|| \ge \varepsilon\}$,

 $||y-z_1|| \ge \varepsilon$. Since h is additive, positive homogeneous and continuous we have

therefore T(B) is dentable. This is a contradiction; therefore (iii) \Rightarrow (ii).

Suppose now that the statement (ii) holds. Since X_+ does not contain l_1^+ we have that l_1 is not lattice embeddable in X. Let $b_n = \sum_{i=1}^n e_i$, where (e_n) is the usual (Schauder) basis of c_0 . Then (b_n) is a basis of c_0 because for each $x = (x(i)) \in c_0$ we have

$$\sum_{i=1}^{n} (x(i) - x(i+1))b_i = \sum_{i=1}^{n} x(i)e_i - x(n+1)b_n \text{ and } \lim_{n \to \infty} x(n+1)b_n = 0.$$

The basis (b_n) is of type l_+ (i.e. (b_n) is bounded and there exists $k \in \mathbb{R}_+$, $k \neq 0$ such that $\left\|\sum_{i=1}^n a_i b_i\right\| \ge k \sum_{i=1}^n a_i$, for each finite sequence a_1, a_2, \ldots, a_n , of positive real numbers); therefore by [7, Theorem II.10.2, p. 323], the positive cone

$$C = \left\{ \sum_{i=1}^{\infty} \lambda_i b_i \in c_0 \mid \lambda_i \in \mathbb{R}_+ \text{ for each } i \right\} \subseteq c_0^+$$

of the basis (b_n) , is isomorphic to l_1^+ . (C is the set of decreasing real sequences convergent to zero.) This shows that c_0 is not lattice embeddable in X; therefore X is reflexive.

REMARK 1. In the proof of the previous theorem we have also show that l_1^+ is isomorphic to the cone $C \subseteq c_0^+$, of decreasing real sequences convergent to zero; therefore l_1^+ is embeddable in c_0^+ .

It is known [1, Theorem 14.12, p. 226] that a Banach lattice X is a KB-space (i.e. X has the property: every increasing, norm bounded, sequence of X_+ is norm convergent) if

and only if c_0 is not lattice embeddable in X. Also c_0^+ is not embeddable in the positive cone X_+ of a KB-space. This holds because if we suppose that a closed cone $P \subseteq X_+$ is isomorphic to c_0^+ , and $T: c_0^+ \to P$ is an isomorphism then we have: the sequence

 $s_n = T(b_n)$, where $b_n = \sum_{i=1}^n e_i \in c_0^+$, is norm bounded because $||T(b_n)|| \le A ||b_n|| = A$, for

each n. (s_n) is also increasing; therefore (s_n) is norm convergent to a point s of P. If T(e) = s, then $b_n \to e$, which is a contradiction; therefore c_0^+ is not embeddable in X_+ . Now, using Theorem 2 and the above remarks we obtain the following characterization of Banach lattices X in terms of the embeddability of the cones l_1^+ and c_0^+ in X_+ .

THEOREM 3. A Banach lattice X is a non-reflexive KB-space if and only if l_1^+ is embeddable in X_+ and c_0^+ is not embeddable in X_+ .

REFERENCES

- 1. C. D. Aliprantis and O. Burkinshaw, *Positive operators* (Academic Press, 1985).
- 2. J. Diestel and J. J. Uhl, Vector measures (Math. Surveys, Vol. 15. Amer. Math. Soc., 1977).
- 3. G. J. O. Jameson, *Ordered linear spaces*, Lecture Notes in Mathematics No 141 (Springer-Verlag, 1970).
- 4. G. Ya. Lozanovskii, Banach structures and bases, Functional Analysis and its Applictions 1 (1967), 249.
- 5. I. A. Polyrakis, Extreme points of unbounded, closed and convex sets in Banach spaces, Math. Proc. Cambridge Phil. Soc. 95 (1984), 319-323.
- **6.** I. A. Polyrakis, Cones locally isomorphic to the positive cone of $l_1(\Gamma)$, Linear Algebra and Appl. **84** (1986), 323-334.
 - 7. I. Singer, Bases in Banach spaces I (Springer-Verlag, 1974).

DEPARTMENT OF MATHEMATICS
NATIONAL TECHNICAL UNIVERSITY
ZOGRAFOU CAMPUS
15780 ATHENS
GREECE
e-mail: ypoly@hisyros.ntua.gr