
4 

The energy-momentum relation 

If the external forces vanish, the equations of motion must have a solution, in which 
the particle travels at constant velocity v in the company of its electromagnetic 
fields. There seems to be no accepted terminology for this object. Since it will be 
used as a basic building block later on, we need a short descriptive name and we 
call this particular solution a charge soliton, or simply soliton, at velocity v, in 
analogy to solitons of nonlinear wave equations. The soliton has an energy and a 
momentum which are linked through the energy-momentum relation. 

For the Lorentz model, by Lorentz invariance, it suffices to determine the four­
vector of total momentum in the rest frame, where it is of the form (ms, 0), ms 

being the rest mass of the soliton. ms depends on lwEI· Through a Lorentz boost 
one obtains the charge soliton moving with velocity v and, of course, the relativis­
tic energy-momentum relation. No such argument is available for the Abraham 
model and one simply has to compute its energy-momentum relation, which can 
be achieved along two equivalent routes. The first one is dynamic, as alluded to 
above, while the second one is static and directly determines the minimal energy 
at fixed total momentum. The minimizer is the charge soliton. 

In the following two sections we compute the conserved energy and momentum, 
the charge solitons, and the energy-momentum relation for both the Abraham and 
the Lorentz model. r/Jex = 0, Aex = 0 is assumed throughout. 

4.1 The Abraham model 

The mechanical momentum of the particle is given by 

mbyv 

and the momentum of the field by 

Pf = J d3x(E(x) x B(x)). 

44 

(4.1) 

(4.2) 
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4.1 The Abraham model 45 

Thus we set the total momentum 

(4.3) 

as a functional on M. It is easily checked that P is conserved by the coupled 
Maxwell and Newton equations (2.39)-(2.41 ). To ensure that P corresponds physi­
cally to the total momentum we note that the Lagrangian (2.43) of the Abraham 
model is invariant under spatial translations. By Noether's theorem, this symmetry 
is linked with a conserved quantity which turns out to be P. 

We want to minimize the energy at fixed total momentum. One eliminates v 

from (2.44) and (4.3) and thus has to minimize 

(m~ + (P- J d3x(E x B))2Y12 + ~ J d3x(E2 + B2) (4.4) 

at fixed P and subject to the constraints V · E = ecp , V · B = 0. By translation 
invariance we may center cp at an arbitrary q E JR3. For q = 0, say, the minimizer 
is unique and given by 

Ev(x) =-Y'c/Jvcp(x) + v(v · Y'c/Jvcp(x)), 

Bv(x) = -v x Y'c/Jvcp(X) 

with v E V = {vllvl < 1}. Here 

¢v(k) = e[k2 - (v. k) 2r 1 , 

or in physical space 

(4.5) 

(4.6) 

(4.7) 

and c/Jvcp is shorthand for the convolution ¢v * cp, i.e. ¢w(k) = (2n) 312((J(k)¢v(k). 
v has to be adjusted such that P = P s ( v) with 

Ps(v) = mbyv+ e2 J d3ki(/J(k)l 2([k2 - (k · v) 2r 1v 

- y-2[k2 - (k 0 v)2r2(k 0 v)k) 

= v(mby + mf lvl-3 [- lvl + (1 + v2)arctanhlvl]), (4.8) 

where mf is the electrostatic energy of the charge distribution ecp, 

mf = ~e2 J d3x d3 x' cp(x) cp(x1)(4n lx- x'l)- 1 . (4.9) 

The map V 3 v c--+ Ps(v) E JR3 is one-to-one and therefore P = Ps(v) has a 
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46 The energy-momentum relation 

unique solution. The minimizing energy is given by 

Es(v) = mby + ~e2 I d3klcp(k)l 2 [k2 - (k · v)2r 2((1 + if)k2 

- (3- if)(v · k)2) 

= mby + mf lvl- 1 [- lvl + 2arctanhlvl]. 

Eliminating now v from Es and P s yields the energy-momentum relation 

Een(p) = Es(v(p)) 

(4.10) 

( 4.11) 

with v(P s) the function inverse to P s ( v). It is emphasized that Eeti depends on the 
charge distribution only through its electrostatic energy. 

We note that 

where 

and that 

T(v) = -mby-I + ~ez Y-2 I d3kli,O(k)l2 [kz- (k. v)2ri 

= -mby- 1 - mf lvl- 1 (1- lvl 2) arctanhlvl, 

Es(V) = Ps(V) · v- T(v). 

(4.12) 

(4.13) 

(4.14) 

This suggests that T will play the role of the inertial term in an effective 
Lagrangian and E s the role of an effective Hamiltonian as our notation in ( 4.11) 
indicates already. In particular, 

and, equivalently, 

dPs(v) 
--- V = Y'v Es(v) 

dv 

(4.15) 

(4.16) 

which implies that v is to be interpreted as a velocity and dP sl dv, regarded as a 
3 x 3 matrix, as the velocity-dependent mass. 

For a relativistic theory one expects that 

( 4.17) 

Since the Abraham model is semirelativistic, there is no reason for such a prop­
erty to be satisfied. Still, as in the relativistic case, the energy-momentum relation 
depends on the charge distribution ecp only through mf. 
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4.1 The Abraham model 47 

To gain a feeling for the field contributions to the mass we define 

d(Ps -mbyv) ~ ~ ~ ~ 
mf(V) = = m[(V)V Q9 V + mt(V)(D- V Q9 v), 

dv 
(4.18) 

where vis the unit vector along v; m1 ( v) is the longitudinal and mt( v) is the trans­
verse field mass. Using (4.8) one obtains 

m1(v) = mflvl-3 (21vl(l- lvl 2)-1 - 2arctanhlvl), 

mt(v) = mflvl-3(- lvl + (1 + lvl 2)arctanhlvl), 

and by expanding in small v, i.e. smalllvl/c, 

In particular one has 

Thus the effective mass in the nonrelativistic approximation is 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.24) 

We compare ( 4.19)-( 4.22) with a relativistic particle for small v and of the same 
mass. Then 

mrel = mfelv ® v + m~el(n-v ® v) (4.25) 

with 

(4.27) 

If one sets the bare mass to zero, mb = 0, even for lvl = 0.5 the error in the 
velocity-dependent mass is less than 5%. Only at speeds lvl > 0.5 will the 
Abraham model lose its empirical validity. The model could be partially saved by 
declaring the Compton wavelength as the characteristic size of the charge distri­
bution. Then mf/ mb ~ 0.01 and the relativistic dispersion would be violated only 
for speeds very close to one. 
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48 The energy-momentum relation 

The energy minimizer has a simple dynamical interpretation. We look for a 
solution of (2.39)-(2.41) traveling at constant velocity. Let us first define 

Sq.v = (Ev(x- q), Bv(X- q), q, v) (4.28) 

with v E V, q E IR3, and Bv, Ev from (4.5). Then the solution traveling at constant 
velocity is 

Y(t) = Sq+vt.v. (4.29) 

The particular state ( 4.28) will play an important role and is called a charge soliton, 
labeled by its center q and its velocity v. It has the energy £(Sq,v) = Es(v) and 
momentum P(Sq,v) = Ps(v). The set of all charge solitons is 

S = {Sq,vl V E V, q E IR3} C M. (4.30) 

Sometimes we use the same words and symbols for the field configuration only. 
There is an instructive alternate way to represent the charge soliton. We consider 

the inhomogeneous Maxwell-Lorentz equations (2.39) and prescribe the initial 
data at time r. We require that the particle travels along the straight line q = vt. 
If we let r --+ - oo and consider the solution at time t = 0, then in (2.16), (2.17) 
the initial fields will have escaped to infinity and only the retarded fields survive. 
Using (2.16), (2.17) this leads to 

0 

Ev(x)=- J dt J d3y(VG_t(x-y)ecp(y-vt) 

-00 

+ at G -t (x - y )veep (y - vt)) , 

0 

Bv(x) = J dt J d3y V' x G_t (x- y) vecp(y- vt), 

-00 

(4.31) 

(4.32) 

which can be checked either in Fourier space or as being a solution of the Maxwell 
equations traveling at constant velocity v. 

4.2 The Lorentz model 

We fix a Lorentz frame, FL, and seek a solution with q(r) = 0, w(r) = w for all 
r. The corresponding four-current is 

j(x) = ecpr(lxl)f! · x (4.33) 
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4.2 The Lorentz model 49 

and provides the source for the electromagnetic vector potential. The inhomoge­
neous Maxwell equations yield 

f 3 I 1 I 
¢o w(x) = d- x ecp(x), 

· 4rrlx -x1
1 

(4.34) 

Ao w(x) = J d3 X 1 1 
WE x X1 ecp(x 1

), 

· 4rr lx- X 1
1 

(4.35) 

the index 0 standing for v = 0. 
Outside the support of the charge distribution, ¢o.w is the Coulomb potential, 

e 
"'o (x) = -- lxl > R '~-' ,w 4n lx I ' - lfJ ' 

(4.36) 

and Ao,w is the vector potential generated by the magnetic moment 

p, = ~ J d3xx x (WE x x)ecp(x) = f.lWE with 1-1 = le J d3xcp(x)x2 , 

(4.37) 

which means 

Ao (x) - p, x x I I R 
,w - 4rrlxl 3 ' x:::: <p· 

(4.38) 

To check the Lorentz force and torque we note that a well-defined momentum 
and angular momentum requires the equator to have subluminal speed, i.e. 

(4.39) 

Inserting the fields (4.34), (4.35) in Eqs. (2.92), (2.95) we indeed find f(r) = 0, 
t( r) = 0 and thus (2.86), (2.87) are satisfied. 

The family of charge solitons is obtained from (4.34), (4.35) through a Lorentz 
boost with velocity u = (y, yv). They are labeled by their center at t = 0, set 
equal to zero here, by the velocity v, and by their angular velocity w. Explicitly 
we have 

cp(x, t) = ¢v,w(X- vt), A(x, t) = Av,w(X- vt). (4.40) 

Because of the convolution structure ¢v,w, Av,w are more easily written in Fourier 
space, where 

¢v,w(k) = 2 e [q?(D- 1k) + v · (w X i'Vk~(D- 1k) J, (4.41) 
k - (k. v)2 

Av,w(k) = 2 e 2 [vcp(D- 1k) + _!__(w x i'Vkcp)(D- 1k) 
k - (k. v) y 

+ ~v · (w x i'Vkcp)(D- 1k)] (4.42) 
l+y 
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with D- 1k = k- (y- 1 - 1)(v · k)v. We note that (4.40), (4.42) coincide with 
( 4.5), ( 4.6) for w = 0 and D = 1. Put differently, ( 4.40) and ( 4.42) properly incor­
porate the Lorentz contraction of the charge distribution and the extra fields due 
to the nonvanishing magnetic moment. To obtain the energy-momentum relation 
we only have to compute the energy of the soliton in its rest frame. By rotation 
invariance, this energy depends on w through its absolute value w = lw 1. From 
(2.89) the bare gyrational mass of the particle is given by 

mg(w) = mb I d3 xcp(x)(1- lwE x xl 2)-112 

100 1 
= mb dr4Jrr2cpr(r)-arctanhwr. 

o wr 

The field energy is defined through 

mf =~I d3x(E2 + B2). 

Inserting from (4.34), (4.35) results in 

mf(W) = ~e2 I d3klif5P ; 2 + ~w2e2 I d3kl\7kif5P ; 2 . 

Thus the charge soliton carries the energy 

and its energy-momentum relation is necessarily relativistic, 

E = (p2 + m;)l/2. 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

The rotational degrees of freedom are handled in the same spirit. The charge dis­
tribution carries the magnetic moment defined in (4.37). JL sets the rotational cou­
pling to the electromagnetic field. Like the charge, it is not renormalized through 
the interaction with the field. According to (2.93), (2.94), the bare angular momen­
tum of the particle is 

(4.48) 

where 

100 1 1 + w2r 2 
h(w) = mb dr4nr 2cpr(r)-2 (- 1 + arctanhwr). (4.49) 

o 2w wr 

In addition, the soliton carries a field angular momentum defined by 

Sf = I d3 XX X (E X B) (4.50) 
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4.3 The limit of zero bare mass 51 

with E, B in their rest frame inserted from ( 4.34 ), ( 4.35). One obtains 

22/3 ~21 
Sf= hWE, h = 3e d· kl\lk<pl k2 · (4.51) 

Thus the charge soliton carries the spin 

Ss = Sb +Sf= (h(w) + h)WE. (4.52) 

4.3 The limit of zero bare mass 

The bare mass seems to be an artifact of the theory, since there is no way to 
determine its value through experiments involving only electromagnetic forces 
(unless the charge distribution could be probed). Thus a natural and conceptu­
ally attractive proposal is to take mb = 0, thereby declaring all mass to be of 
electromagnetic origin. We discuss here the limit mb --+ 0+ on the level of the 
energy-momentum relation, whereas the correct procedure would be to study 
this limit on the level of a solution to the evolution equations. The problem re­
mains unexplored, since for the equations of motion zero bare mass is rather 
singular. 

(i) Abraham model. Since ms is additive, the only choice is simply to set mb = 

0. In particular, the kinetic energy equals ~(1mf)if for small velocities. If we 
equate 4mf!3 with mexp, the experimental mass of the electron, we conclude that 
Rep~ rc1 = 3 x w- 13 em with a prefactor which depends on the choice of the 
form factor (if. 

(ii) Lorentz model. Since mg depends on w, the Lorentz model offers more 
variety. We recall Eq. ( 4.43). If the integral is bounded, which in particular is 
the case for <p bounded and wRep _:::: 1, then mg vanishes in the limit mb --+ 0. 
We conclude that ms = mf(W) and Is = h. A novel situation occurs if the inte­
gral in (4.43) can be made to diverge, for which we must choose <p to be well 
concentrated at the sphere with radius Rep. To be concrete let us set R = Rep and 
<p(x) = 8(1xl - R)(4rr R2)- 1. We also reintroduce c. Then the integral in (4.43) 
becomes 

c wR 
ma(w) = mb- arctanh-. 

b wR c 

We let wRjc--+ 1 and mb--+ 0 such that 

wR 
mb arctanh---+ m 

c 

(4.53) 

(4.54) 

with m ::::_ 0 still at our choice. Note that in this limit the equator rotates with 
the speed of light. For the mass, moment of inertia, and magnetic moment of the 
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soliton, one obtains, respectively, 

(4.55) 

which leaves us with R and m as free parameters. They can be fitted through the 
experimentally determined mass and gyro magnetic ratio of the electron. While for 
the mass we simply set ms = mexp. the g-factor requires a more elaborate discus­
sion which will be taken up in section 1 0.1. 

Notes and references 

Section 4.1 

Abraham (1905) computes the energy-momentum relation in essence along the 
same lines as outlined here (except for the variational characterization). Sommer­
feld ( 1905) uses the expansion of the exact self-force, as will be explained in chap­
ter 7. Lorentz (1904a) proposes a model charge which relativistically contracts 
parallel to its momentary velocity. Thus provisionally we replace the charge dis­
tribution ecp(x) by its Lorentz contracted version 

This expression is substituted in (4.5) and gives the electromagnetic fields comov­
ing with the charge at velocity v. Their energy and momentum are computed as 
before with the result 

PL(v) = v( mby(v) + ~ mfy(v)), 

EL(v) = mby(v) + mfy(v)( 1 + lif). 
(4.57) 

(4.58) 

The momentum has the anticipated form, except for the factor 4/3 which should 
be I. The energy has an unwanted if j3. In particular the relation ( 4.16) does not 
hold, which implies that the power equation it EL(v) differs from the force equa­

tion v ·it PL(v). We refer to Yaghjian (1992) for a thorough discussion, which 
however somehow misses step zero, namely to specify a relativistically covariant 
model for an extended charge, as, e.g., in section 2.5. Schott (1912, 1915) em­
ploys a deformable elastic medium as a model charge. To compute the velocity­
dependent mass he uses essentially the same method as Sommerfeld, an exact 
self-force and an expansion in the charge diameter. Schott considers also elec­
tron models different from those of Abraham and Lorentz. Reviews are Neumann 
(1914) and Richardson (1916). 
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There have been various attempts to improve on the oversimplistic version 
( 4.56) of the Lorentz model. Fermi (1922) argues that in a relativistic theory energy 
and momentum have to be redefined. His argument has been rediscovered several 
times and is explained in Rohrlich ( 1990). Poincare ( 1906) takes the elastic stresses 
into account. We refer to Rohrlich ( 1960) and Yaghjian (1992), and the instructive 
example by Schwinger (1983). 

Section 4.2 

Since the Lorentz model is defined through a Lagrangian, the total energy and 
momentum are determined from Noether's theorem for space-time translations. 
The transformation as a four-vector is then automatically guaranteed, a property 
which we used in the computation of the soliton mass. 

Section 4.3 

The limit of zero bare mass is discussed in Appel and Kiessling (2001). 
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