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In this study, we explore the influence of the helicity of the magnetic axis –
defined as the self-linking number of the curve – on the quality of quasi-isodynamic
stellarator-symmetric configurations constructed using the near-axis expansion method
(Plunk et al., J. Plasma Phys., vol. 85, 2019, 905850602; Camacho Mata et al., J. Plasma
Phys., vol. 88, 2022, 905880503). A class of magnetic axes previously unexplored within
this formalism is identified when analysing the axis shape of the QIPC configuration
(Subbotin et al., Nucl. Fusion, vol. 46, 2006, p. 921): the case of half-helicity (per field
period). We show that these shapes are compatible with the near-axis formalism and how
they can be used to construct near-axis stellarators with up to five field periods, εeff ≈
1.3 %, and similar rotational transform to existing conventionally optimized designs,
without the need of a plasma boundary optimization.
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1. Introduction

Quasi-isodynamic (QI) stellarators are relevant fusion reactor candidates due to
their inherent steady-state operation, and reduced toroidal current, which prevents
current-driven instabilities and reduces the Shafranov shift (Helander & Nührenberg
2009; Helander, Geiger & Maaßberg 2011; Helander 2014). Additionally, if the so-called
maximum-J condition is imposed (Rosenbluth 1968), further benefits are expected with
respect to turbulent transport, including trapped particle mode stability (Proll et al. 2012;
Helander, Proll & Plunk 2013; Helander et al. 2015; Alcusón et al. 2020) and some
degree of ITG (ion temperature gradient) stabilization (Proll et al. 2022). Stellarators have
sometimes been considered to be at a disadvantage with respect to tokamaks due to the
technical difficulties involved in their construction, but the success of the Wendelstein
7-X experiment has shown that these devices can be built and operated (Pedersen et al.
2018; Beidler et al. 2021), placing the QI stellarator at the forefront of contenders for
next-generation stellarator reactor concepts.

Quasi-isodynamic configurations are a subset of omnigenous magnetic fields with
poloidally closed contours of the field strength. Omnigenity requires the average radial
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drift of a trapped particle to vanish:∫
(vd · ∇ψ) dt = 0, (1.1)

where vd is the guiding-centre drift velocity and the integration is performed over the
bounce time of the trapped-particle orbit (Hall & McNamara 1975; Cary & Shasharina
1997; Helander 2014). This guarantees radially confined collisionless orbits for trapped
particles, which is in general not guaranteed in stellarators. Another subset of omnigenity
is the case of quasi-symmetry, for which the intensity of the magnetic field is symmetric
when expressed in magnetic coordinates.

Finding stellarator configurations consistent with omnigenity is an arduous task that is
traditionally achieved through numerical optimization of the plasma boundary shape. The
solution space of stellarators is vast, approximately an order of magnitude more degrees
of freedom than tokamaks (Boozer 2015), and as a result, optimization is numerically
expensive and highly dependent on the choice of good initial points.

The near-axis expansion (NAE) method was originally proposed by Mercier (1964) and
adapted for Boozer coordinates by Garren & Boozer (1991). This made it possible to
construct stellarators that are omnigenous at least close to the axis without the need of
an optimization procedure, as shown in Landreman & Sengupta (2018) and Landreman,
Sengupta & Plunk (2019) for the case of quasi-symmetry, and in Plunk, Landreman &
Helander (2019) and Camacho Mata, Plunk & Jorge (2022) for QI fields. We describe the
main equations of the NAE formalism in § 2 and use it throughout this work to shed some
light into the structure of the QI solution space.

An important aspect of the NAE is the intrinsic parametric nature of the construction.
Instead of indicating the shape of the plasma boundary, the input parameters are more
closely related to physically relevant parameters of the configuration, like the shape of
the magnetic axis, directly contributing to the rotational transform ι and the intensity of
the magnetic field along the axis. By carefully choosing these parameters, a low level
of neoclassical confinement can be achieved even at considerable distances from the
axis, i.e. at low aspect ratios (Camacho Mata et al. 2022). Optimization within these
parameters has resulted in remarkably low neoclassical transport, as measured by the
effective neoclassical ripple metric εeff (Jorge et al. 2022). Boundary optimization using
NAE configurations as initial points has also allowed the discovery of novel QI stellarators
with excellent fast-particle confinement (Goodman et al. 2023). However, these methods
have only led to configurations with a small number of field periods (N<3), in stark
contrast to traditionally optimized QI configurations, like W7-X, QIPC (Subbotin et al.
2006) or Shafranov et al. (2004) with N = 5, 6 and 9, respectively.

The space of QI configurations has proven to be complex and difficult to explore,
as is evident from the tendency of traditional boundary optimizations to get stuck in
local minima. The NAE has the potential to help overcome this issue, for example by
mapping a suitably defined solution space, as has been successfully done for the space
of quasi-symmetric configurations in Landreman (2022) and Rodriguez, Sengupta &
Bhattacharjee (2022, 2023). The magnetic axis shape, a three-dimensional curve, is one
of the most important parameters for the NAE construction. The helicity of the axis,
also called self-linking number, counts the number of times the normal Frenet vector
rotates around the axis, and as discussed in Rodriguez et al. (2022) and Landreman &
Catto (2012), divides the space of symmetric configurations into quasi-axisymmetric and
quasi-helical, with the transition between these phases corresponding to the QI case. In
§ 3 we expand on the definition of helicity, and the particularities of calculating it for the
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case of QI near-axis configurations. We also discuss the divisions in the solution space
due to helicity and the impacts of this division in neoclassical confinement and rotational
transform of the configurations.

In § 4 we introduce the possibility of having fractional values of helicity and the
conditions required on the curvature of the axis to attain such values. We proceed by
showing that stellarator-symmetric configurations consistent with the NAE for QI can be
constructed around axes with half-helicity, and we present a two-field-period example with
similar properties to the configuration described in Camacho Mata et al. (2022), showing
that half-helicity configurations can be as good as their integer-helicity counterparts.

We explore the implications of half-helicity (or more precisely, helicity of n+ 1
2 with

n any integer) in the QI space and show that this fractional helicity is the only one
possible for the case of stellarator-symmetric near-axis configurations and corresponds to
the transition between zero and integer helicities, making it a smaller solution space than
the integer-helicity space. We show in § 7 that searching in this smaller space allows us to
find configurations with higher number of field periods and low εeff. A five-field-period
example is also shown, and the details of the construction parameters’ choice are
discussed, including how to reduce elongation of the plasma boundary cross-section.

2. Near-axis expansion

The properties of a magnetohydrodynamic (MHD) equilibrium can be described in the
vicinity of the magnetic axis by performing a Taylor expansion in the parameter ε = a/R,
the inverse aspect ratio, where a and R are the minor and major radius, respectively. This
procedure, using Boozer coordinates (ψ, θ, ϕ), was shown in Garren & Boozer (1991) to
allow for the numerical construction of quasi-symmetric configurations, and was extended
to consider QI configurations at first order in Plunk et al. (2019). We restrict our study to
the case of first-order, QI, stellarator-symmetric equilibria as described in Camacho Mata
et al. (2022).

This method allows us to directly construct QI equilibria at first order by prescribing
the shape of a magnetic axis x0, the intensity of the magnetic field on the axis B0, the
number of field periods N, two toroidal geometric functions α(ϕ) and d(ϕ), which are
later discussed in more detail, and a distance from the axis at which we desire to construct
the equilibrium. In this formalism, the magnetic field intensity is given by

B(ε, θ, ϕ) ≈ B0(ϕ)+ εB1(θ, ϕ) = B0(ϕ) (1 + εd(ϕ) cos[θ − α(ϕ)]) (2.1)

and the plasma boundary is described by

x ≈ r0 + ε (X1ns + Y1bs) , (2.2)

with

X1 = d(ϕ)
κ s

cos [θ − α(ϕ)], (2.3)

Y1 = 2κ s

B0(ϕ)d(ϕ)
(sin [θ − α(ϕ)] + σ(ϕ) cos [θ − α(ϕ)]) . (2.4)

Here κ and τ are the curvature and torsion of the magnetic axis and the quantity σ(ϕ) can
be found by solving

σ ′ + (ι − α′)
(
σ 2 + 1 + B2

0d̄4

4

)
− G0d̄2 (τ + I2/2) = 0 (2.5)
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4 K. Camacho Mata and G.G. Plunk

self-consistently with the rotational transform on axis ι. Here, d̄(ϕ) = d(ϕ)/κ s(ϕ), primes
denote derivatives with respect to the toroidal Boozer angle ϕ and G0 and I2 are related
to the first non-zero terms of the poloidal and toroidal current functions on axis; I2 can be
assumed to be zero for QI configurations.

The function d(ϕ) needs to be specified as an input for the construction, but the choice
is not entirely free; a set of conditions need to be fulfilled to be consistent with omnigenity
and stellarator symmetry. It must vanish at all extrema of the on-axis magnetic field B0:

d(ϕmin) = d(ϕmax) = 0. (2.6)

Given how the definition of the boundary depends directly on the quantity d̄ ((2.3) and
(2.4)), the curvature must necessarily have zeros at the same toroidal locations and of the
same order as d, to ensure a smooth plasma boundary. Additionally d must be an odd
function about ϕmin, which implies this function will always have derivatives of odd order
equal to zero at such points. Then κ must also be zero up to odd order. The simplest case
corresponds to both functions having first-order zeros at the minima of B0.

Finally, the last ingredient for constructing a near-axis QI equilibrium is the function
α(ϕ). Just like d, it must be specified in a way consistent with omnigenity, albeit as shown
in Plunk et al. (2019) this condition being not compatible with a periodic plasma boundary.
For this reason, omnigenity must be broken around the maxima of B0. The method we use
is that described in § 4 of Camacho Mata et al. (2022), with

α(ϕ) = ι(ϕ − ϕi
min)+ π

(
2 mi + 1

2

)
+ π (m − ι/N)

(
ϕ − ϕi

min

π/N

)2k+1

, (2.7)

where m is the axis helicity, to which the next section is devoted, and k is an integer that
controls the size of the region in which the omnigenity conditions are fulfilled; increasing
k results in a larger toroidal domain in which α is omnigenous but at the cost of a sharp
behaviour around the maxima to maintain a periodic behaviour. The superscript i is an
integer number labelling the minima of B0; given how we are just considering a minimum
per field period, this is equivalent to the field-period label.

3. Helicity

The geometric properties of a three-dimensional space curve r(
) can be described
by the Frenet–Serret vectors (t,n, b). These orthogonal unitary vectors, named tangent,
normal and binormal, respectively, are defined by

t(
) = r′(
)
‖r′(
)‖ ,

n(
) = t′(
)
‖t′(
)‖ ,

b(
) = t(
)× n(
),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

https://doi.org/10.1017/S0022377823001204 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001204


Helicity of quasi-isodynamic stellarators 5

and are related to the curvature and torsion (κ, τ ) of the curve through the Frenet–Serret
formulas:

dt
d


= ‖r′(
)‖κn,

dn
d


= −‖r′(
)‖ [κt + τb] ,

db
d


= −‖r′(
)‖τn.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

This frame plays an important role in the construction of exactly omnigenous stellarators
at first order around the magnetic axis as described in Landreman & Sengupta (2018) and
Plunk et al. (2019), given that it is used to describe the plasma boundary as seen in (2.2).

One interesting property of a magnetic axis described using this apparatus is the
so-called helicity, M, the number of times the normal vector n(�) rotates poloidally
around the axis after one toroidal turn. In this work we often refer to the per-field-period
helicity m = M/N, for example, in (2.7), the definition of the α function. In the case of
quasi-symmetric configurations, the helicity effectively divides the space of solutions as
shown in Landreman & Sengupta (2018) and Rodriguez et al. (2022): a value of M = 0
corresponds to axisymmetric configurations while an integer value of M �= 0 corresponds
to quasi-helically symmetric solutions.

For QI configurations, which are the main focus of this work, calculating helicity
requires extra considerations. As shown in the previous section, points of zero curvature
are required in magnetic axes consistent with quasi-isodynamicity in the near-axis
formalism. But we can see from the first equation in (3.2) that κ = 0 results in an
undefined normal vector. In the presence of points of first-order zero curvature,1 the Frenet
frame undergoes a jump-like rotation which makes the frame, specifically the normal and
binormal vectors, non-continuous (Aicardi 2000), as can be seen in figure 1(a). This
discontinuity can be alleviated by using the signed curvature κ s = sκ , where s = ±1
changes at each point of odd-order zeros of curvature. In this new frame (Carroll, Köse
& Sterling 2013), the sign of the traditional Frenet normal and binormal vectors n(
), t(
)
also changes when κ = 0 resulting in a continuous frame as shown in figure 1(b). Helicity
for QI configurations is hence calculated using this modified Frenet frame to avoid any
discontinuities in the plasma boundary shape.

As in the case of quasi-symmetry, helicity also effectively divides the space of
QI near-axis solutions as can be seen in figure 2. Here, the helicity value for 1156
one-field-period, near-axis configurations is shown, each for a different axis shape while
keeping the rest of the near-axis parameters constant. All these configurations have the
same axis radial component

R(φ) = 1 − 0.2 cos(2φ), (3.3)

which ensures two zeros of curvature are present at the minima and maxima of the
magnetic field on axis. The vertical component of the axis shape is different for each
configurations and chosen as

z(φ) = zs(1) sin(φ)+ zs(2) sin(2φ). (3.4)

Each square in figure 2 corresponds to a configuration with zs(1) ranging from 0 to 0.8
and zs(2) from −0.425 to 0.4, constructed using the near-axis method described in § 2.

1We refer to first-order zeros as the points where a function F has values F(φ) = 0, and higher-order zeros to points
where (dn−1F)/(dφn−1) = 0 up to nth order.
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(a) (b)

FIGURE 1. (a) Unsigned Frenet frame and (b) signed Frenet frame for a two-field-period axis.
Side view and top view are shown. Normal n̂ and binormal b̂ vectors are shown in red and blue,
respectively. We can see that the discontinuities in the frame are alleviated when using the signed
curvature, κs.

The aspect ratio is set to A = 20, the function α(ϕ) is described by (2.7) with k = 2, the
magnetic field on axis is B0 = 1 + 0.15 cos(ϕ) and d = 0.73κ s.

The solid black lines in figure 2, bounding each helicity region, can be obtained
analytically and correspond to the values of zs(1)−zs(2) that result in second-order zeros
of curvature, i.e. dκ/dφ|ϕ = 0, at ϕmin (upper line) and ϕmax (lower line). The analytical
derivation is shown in Appendix A.

It is clear from figure 2 that the space of QI solutions is divided into subregions by the
helicity of the magnetic axis. But perhaps more surprising is the fact that this division
is also present when calculating the effective ripple of each configuration in this space,
as shown in figure 3. Here, each of the plasma boundary shapes of the configurations
in figure 2 is used to solve for a MHD equilibrium using the VMEC code (Hirshman &
Whitson 1983), and εeff, the effective ripple, is calculated as described in Drevlak et al.
(2003). The maximum value of this quantity is shown colour-coded in the figure. The
white squares correspond to configurations for which VMEC could not find an equilibrium
consistent with the provided plasma boundary. Once again, the division between regions
of helicity is observed, and consistently lower values of εeff and rotational transform
ι are found for zero-helicity configurations. The intensity of B on the boundary for a
configuration from each region is also shown, but constructed at a smaller aspect ratio
A = 10, to exemplify these differences. On the left-hand side, one corresponding to an
m = 1 axis, with a maximum εeff = 1.1 % and rotational transform ι = 0.4351; while the
configuration with m = 0 has a substantially lower εeff = 0.35 % and ι = 0.0587.

Configurations with m = 1 and remarkable low values of εeff can be found as shown
in Jorge et al. (2022) for one field period, but it requires a significant effort in choosing
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FIGURE 2. Space of one-field-period near-axis QI configurations and their helicity values. Each
square corresponds to a near-axis QI configuration and its helicity value, green for m = 1 and
blue m = 0. The solid lines show the transition between helicity regions and correspond to
second-order zeros of curvature at ϕmin (upper line) and ϕmax (lower line).

the initial parameters. The lower values of effective ripple observed in the zero-helicity
configurations suggest that less effort might be necessary in this region of the parameter
space.

Helicity seems to play an important role in the near-axis QI space. Although the
integer-helicity space seems to correlate low rotational transform and low εeff, this occurs
because helicity is directly related to the integrated torsion of the magnetic axis, which
is an important mechanism for rotational transform generation as discussed in Helander
(2014). A more in-depth discussion about the relation between torsion and rotational
transform in the presence of a discontinuous Frenet frame, without using the signed
curvature correction, can be found in Pfefferlé et al. (2018). Optimized examples of QI
configurations with low εeff and higher per-field-period rotational transform exist. The
exploration of such examples may shed light light on novel ways of generating near-axis
equilibria with higher N and small εeff.

4. Half-helicity

In the previous section, we restricted ourselves to the case of integer helicity, implying
that the only case with less than complete rotation of the normal is the zero-helicity case.
However, it is also possible to construct curves with fractional values of per-field-period
helicity. In fact, such behaviour is exhibited by the magnetic axis of QIPC (Subbotin
et al. 2006), a QI stellarator found through numerical optimization. This configuration has
poloidally closed contours of the magnetic field close to the axis and an effective ripple
profile that increases radially, making it more similar to a near-axis QI configuration than
W7-X.
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FIGURE 3. Space of one-field-period, A = 20, near-axis QI configurations. Parameters zs(1)
and zs(2) correspond to the parameters of the cylindrical Fourier representation of the axis (3.4).
Each square is a near-axis configuration constructed with the parameters described in § 3. Colour
coded is the maximum value of the effective ripple εeff. Black solid lines correspond to the
transition between regions with helicity 0 and 1. One configuration of each region is shown as an
example of the properties in that space; the last closed surface and the intensity of the magnetic
field on the boundary are shown. Zero-helicity configurations have lower εeff but also lower
rotational transform than their m = 1 counterparts.

Although QIPC’s magnetic axis does not have points of exactly zero curvature at the
extrema of B0, the curvature does reach relatively small values, and its signed Frenet frame
behaves in a similar way to near-axis configurations, having a flip at points where the
magnetic field on axis has its minimum. Figure 4 shows this axis together with the normal
and binormal vectors associated with its signed Frenet frame, the change in sign being
applied at the position of the minima of B0. As we can see from the figure, the normal
vector does not complete a whole rotation around the axis each field period;instead the
normal vector seems to complete exactly a half-rotation, ending at the opposite direction
to that which it started at the beginning of the period. We note that all QI designs found
in the past by numerical optimization share this half-rotation feature (m = 1/2). However,
this case has not been considered when constructing near-axis QI configurations in the
literature. As we show, it allows us to access a region in the solution space where good
confinement can be achieved with a relatively high number of field periods.

Let us now discuss the particularities of constructing a magnetic axis with m = 1/2.
We know a magnetic axis consistent with omnigenity needs to have points of zero
curvature at all minima and maxima of the magnetic field (Plunk et al. 2019), which
requires calculating helicity in the signed Frenet frame, since the axis helicity is otherwise
not well defined. Additionally, for a curve to have half-helicity, we require the normal
vector to perform half a rotation per field period. This situation is not consistent with
first-order zeros of curvature at both ϕmin and ϕmax, at least not for the case of analytic
stellarator-symmetric axis curves, which can be seen by re-examining the expansion near
zero-curvature points, as follows.

As shown in § 3 of Camacho Mata et al. (2022) and discussed after (2.6), omnigenity
conditions imposed in the NAE for stellarator-symmetric configurations require odd-order
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FIGURE 4. Unsigned and signed Frenet frame for the magnetic axis of QIPC, a six-field-period
QI optimized configuration (Subbotin et al. 2006). Green circles indicate the toroidal locations
of the maxima of B0, marking the beginning/end of a magnetic field period. Green diamonds
indicate the minima of B0. Normal and binormal Frenet vectors are shown in red and blue lines,
respectively. A discontinuity in the frame at minima of B0 is evident in the signed frame from
the direction change of the normal vector. This discontinuity is alleviated when using the signed
frame and is transferred to the maxima of B0.

zeros of κ at the minima of B0. If the axis is described as a Fourier series on the cylindrical
R and z coordinates,

R(φ) =
nmax∑
n=0

Rc(n) cos(nNφ), (4.1)

z(φ) =
nmax∑
n=1

zs(n) sin(nNφ). (4.2)

Then having a point of zero curvature at first order requires (d2x/dφ2) · R̂ = 0 at such a
point, as shown in Appendix A (appendix II in Camacho Mata et al. 2022), which given
the definition of n (3.1), is equivalent to the condition

n · R̂ = 0, (4.3)

at ϕ = ϕmin. The case m = 1/2 corresponds to the normal vector performing a π-rotation
in the R̂–ẑ plane per field period. Hence, after half a period, at ϕ = ϕmax, a π/2-rotation
would require the normal vector to point in the radial direction:

n = R̂. (4.4)

As shown above and explained in greater detail in Appendix A, odd-order zeros of
curvature are generally inconsistent with a normal vector having a component in the
radial direction, but consistent with even-order zeros. We can intuitively visualize each
increase in the order of the zeros of curvature as introducing a flip on the Frenet frame,
hence the need for different behaviour of κ at the minima and maxima of B0 to preserve
a discontinuity of the frame that is not corrected by the sign change described in the
previous section. We can then construct half-helicity closed curves, just by requiring a
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first-order zero of curvature at ϕ = ϕmin and a second-order zero at ϕ = ϕmax. We note that
these arguments rely on continuity of the derivatives of the curve, which can safely be
assumed for curves constructed by Fourier series, but need not be the case more generally,
as with curves found by solving Frenet–Serret equations directly. We also remark that,
when assuming stellarator symmetry as is done in this work, the only helicities possible are
either integer or half-helicity, since this is the only fractional helicity allowing for points of
zero curvature and continuity of the plasma boundary. Different fractional helicities might
be possible for certain non-stellarator-symmetric configurations, but this issue needs to be
explored further.

Following the same procedure described in Appendix A, we perform a local expansion
of a stellarator-symmetric magnetic axis described by (4.1) and (4.2), and impose
conditions on the curvature of such an axis, which we can transform into conditions for
the Fourier coefficients Rc(n) and zs(n). The local condition for having first-order zeros of
curvature is

R2 = R0, (4.5)

where Rn and zn denote the nth derivatives with respect to φ. For a second-order zero of κ ,
we additionally need to fulfil

z3 = 2z1. (4.6)

We can apply the previous conditions to a truncated Fourier representation in order to
obtain conditions on its coefficients that can be used to construct curves with the curvature
properties required to obtain a half-helicity behaviour. We can consider, for example, the
family of curves

R = 1 + Rc(1) cos(Nφ)+ Rc(2) cos(2Nφ)+ Rc(3) cos(3Nφ),

z = zs(1) sin(Nφ)+ zs(2) sin(2Nφ)+ zs(3) sin(3Nφ).

}
(4.7)

Applying condition (4.5) at φ = 2π/N and both the previous condition and (4.6) to φ = 0
returns the following restrictions on the Fourier coefficients necessary to construct curves
with half-helicity per field period:

Rc(1) = −Rc(3)+ 9N2Rc(3)
1 + N2

, (4.8)

Rc(2) = − 1
4N2 + 1

, (4.9)

zs(1) = −4zs(2)+ 8N2zs(2)+ 6zs(3)+ 27N2zs(3)
2 + N2

. (4.10)

An axis constructed using this method is shown in figure 5, where the parameters were
chosen as N = 2, Rc(3) = 5×10−3, zs(2) = 3×10−2 and zs(3) = 1.5×10−3. We can see
the rotation of the signed normal and binormal vectors has the expected behaviour, with
one jump per field period.

5. Constructing half-helicity near-axis stellarators

Now we can proceed to use this axis to construct a near-axis configuration, as described
in § 2. A natural question to ask is whether the discontinuity in the signed Frenet frame at
maxima of the magnetic field, required for half-helicity magnetic axes, has a detrimental
effect on the continuity of the plasma boundary. We confirm that the formalism developed
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FIGURE 5. Signed Frenet frame for a half-helicity two-field-period curve. Note the
discontinuity that remains at the location where the magnetic field strength is taken to be
maximal, where the normal vector points in the radial direction.

in Camacho Mata et al. (2022) is valid for fractional helicity and results in continuous
plasma boundaries.

We know from the previous section that the signed Frenet frame, specifically the normal
and binormal vectors are discontinuous at maxima of B0 for half-helicity configurations.
Given how the plasma boundary of a NAE equilibrium is constructed using (2.2),

x ≈ r0 + ε (X1ns + Y1bs) , (5.1)

it would be natural to assume the discontinuity of ns and bs translates into a discontinuity
of the boundary shape, but this is only true if X1 and Y1 are continuous. Let us analyse the
behaviour of this first-order correction to the plasma boundary:

X1 = d(ϕ)
κ s

cos [θ − α(ϕ)], (5.2)

Y1 = 2κ s

B0(ϕ)d(ϕ)
(sin [θ − α(ϕ)] + σ(ϕ) cos [θ − α(ϕ)]) . (5.3)

The quantity d̄ = d(ϕ)/κ s is, by definition, constructed to be symmetric and continuous
at every point, in particular at ϕmin and ϕmax as discussed in § 2 and evident from (2.6)
(Camacho Mata et al. 2022). The magnetic field on axis B0(ϕ) is always continuous, also at
points where the signed Frenet frame is discontinuous. Hence, any possible discontinuity
in X1 and Y1 is going to depend on the behaviour of α(ϕ), given by (2.7), reproduced here:

α(ϕ) = ι(ϕ − ϕi
min)+ π

(
2 mi + 1

2

)
+ π (m − ι/N)

(
ϕ − ϕi

min

π/N

)2k+1

. (5.4)

Note the first term ensures that the magnetic perturbation is approximately in phase
at two bounce points (omnigenity), while the final term is designed to break this criterion
away from minima of the field, while ensuring the boundary retains the correct periodicity;
see Camacho Mata et al. (2022) for more details. For half-helicity curves, m = 1/2, and
let us consider the first field period, which means i = 1 and the minimum of B is located
at ϕi

min = π/N. Now let us calculate the value that the α-function takes at two consecutive
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maxima of B, i.e. the beginning and end of a field period, corresponding to ϕ1
max = 0 and

ϕ2
max = 2π/N:

α(ϕ1
max) = ι(−π/N)+ π

(
1 + 1

2

)
+ π

(
1
2

− ι/N
) (−π/N

π/N

)2k+1

= π, (5.5)

α(ϕ2
max) = ι(2π/N − π/N)+ π

(
1 + 1

2

)
+ π

(
1
2

− ι/N
)(

π/N
π/N

)2k+1

= 2π. (5.6)

We can see that for m = 1/2 the function increases by π per field period, contrary to the
2π-periodicity necessary in the integer-helicity curves. Now let us see the impact this has
on the functions X1 and Y1 describing the plasma boundary, (2.3) and (2.4):

X1(θ, ϕ = ϕ1
max) = d(ϕ)

κ s
cos [θ − π] = −d(ϕ)

κ s
cos [θ ], (5.7)

X1(θ, ϕ = ϕ2
max) = d(ϕ)

κ s
cos [θ − 2π] = d(ϕ)

κ s
cos [θ ] = −X1(θ, ϕ = ϕ1

max), (5.8)

Y1(θ, ϕ = ϕ1
max) = 2κ s

B0(ϕ)d(ϕ)
(sin [θ − π] + σ(ϕ) cos [θ − π])

= − 2κ s

B0(ϕ)d(ϕ)
(sin [θ ] + σ(ϕ) cos [θ ]) , (5.9)

Y1(θ, ϕ = ϕ2
max) = 2κ s

B0(ϕ)d(ϕ)
(sin [θ − 2π] + σ(ϕ) cos [θ − 2π])

= −Y1(θ, ϕ = ϕ1
max). (5.10)

As shown above, the boundary components X1 and Y1 are discontinuous at maxima of B0.
This discontinuity is, necessarily, of the same type as that of the Frenet frame; continuity of
the coordinate mapping (2.2) is thus achieved despite a discontinuous signed Frenet frame.
Now we can use the formalism developed in Camacho Mata et al. (2022) to construct a
magnetic configuration that is QI at first order, using a half-helicity magnetic axis.

5.1. A two-field-period half-helicity near-axis stellarator
Let us now proceed to show an example of a two-field-period configuration constructed
around a half-helicity magnetic axis:

R = 1 − 0.074 cos (2φ)− 1
17 cos (4φ)+ 0.01 cos (6φ), (5.11)

z = −0.474 sin (2φ)+ 0.06 sin (4φ)+ 6 × 10−3 sin (6φ). (5.12)

This axis was constructed to have m = 1/2 as described in § 4, and the values of the
near-axis parameters were chosen such that the corresponding VMEC equilibrium has
small εeff on its boundary, as discussed below. The shape of this magnetic axis, together
with its signed Frenet frame, and curvature and torsion profiles are shown in figure 6.
We can observe the expected curvature behaviour for half-helicity: a first-order zero at
half-period and second-order zeros at the end/beginning of the period.
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(a)

(b)

FIGURE 6. (a) Two-field-period half-helicity magnetic axis described by expressions (5.10) and
(5.11). The normal and binormal vectors are shown. The discontinuity of the signed Frenet
frame is evident at the beginning/end of the period. (b) Curvature (solid) and torsion (dashed)
per-field-period profiles of the axis. Note the first-order zero of curvature at φ = π/N and
second-order zeros at φ = 0, 2π/N, necessary to achieve values of helicity m = 1/2.

The intensity of the magnetic field on this axis must also be specified and was chosen as

B0(ϕ) = 1 + 0.165 cos (2ϕ), (5.13)

which, as required by the near-axis formalism, has extrema at points where the curvature
of the magnetic axis is zero. Another parameter playing an important role in the quality of
the solutions, specifically in their elongation and maximum values of εeff, is the function
d(ϕ). It was chosen to be proportional to the curvature of the axis as d = dκκ s, with

dκ(ϕ) =
√

0.4/B0(ϕ). (5.14)

This particular form of d(ϕ), inversely proportional to B0, is useful for controlling
elongation, and here helps flatten the elongation profile, i.e. reduce its variation in
ϕ, resulting in smaller maximum elongations than using a constant d̄ choice.2 It is
important to remember the elongation dependence on d̄ is complicated and includes other
quantities of the near-axis construction, making it difficult to predict which combination
of parameters will result in a desired elongation behaviour. The freedom in d̄, however,
actually allows more control of the elongation profile, as compared with quasi-symmetric
configurations where it must be constant; this is demonstrated in § 7.

The α function is defined as in (2.7), with k = 2 chosen for this configuration.
A near-axis solution is constructed using the aforementioned parameters at an aspect

ratio A =
√

B0/2(Rc(0)/ε) = 10, where B0 is the average value of B0. The boundary is
converted to cylindrical coordinates using the method described in § 4.1 of Landreman
et al. (2019), which results in elliptical cross-sections as shown in figure 7. This plasma
boundary is then used to calculate a MHD equilibrium using the VMEC code. The
intensity of the magnetic field on the last-closed flux surface is depicted in figure 8,
which shows, even at this small aspect ratio, the behaviour expected for a QI configuration,
with poloidally closing contours of |B|. These contours in Boozer coordinates are shown

2Note that in this particular case, dκ = d̄, but in the following examples, when more complicated d(ϕ) expressions
are used, this will not be generally true.
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(a) (b)

FIGURE 7. (a) Cross-sections of the two-field-period configuration shown in figure 8 at
different toroidal values. (b) Elongation toroidal profile for the same configuration.

(b)
(a)

FIGURE 8. Magnetic field intensity in the plasma boundary for a two-field-period half-helicity
configuration. (a) Side view and (b) top view.

in figure 9. As expected, the contours look ‘more QI’ the closer we look to the axis, in the
sense of having a greater degree of poloidal closure, as well as fewer island defects.

The resulting configuration has maximum elongation under 5.5 and a dependence on φ
as shown in figure 7. Elongation here is taken at φ = constant in real space, and calculated
as the ratio between the maximum and minimum distances from the axis on the resulting
cross-section. One of the interesting properties of half-helicity configurations is the higher
values of rotational transform they can achieve compared with zero-helicity cases due to
the fact that the axis curves have higher values of integrated torsion. Here, a rotational
transform spanning from ι = 0.351 to 0.367 is found for the VMEC equilibria as seen in
figure 10.

The effective ripple, εeff, is a proxy often used to estimate neoclassical transport in the
1/ν regime in stellarators. We have calculated it as described in Drevlak et al. (2003) for 16
radial points. A maximum value of εeff = 1 % is found, as shown in figure 18. The values
of the effective ripple are similar to those of the standard configuration of W7-X, with the
important distinction that this configuration consists entirely of elliptical cross-sections
and no boundary optimization was required. Half-helicity configurations seem to provide
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(a) (b) (c)

FIGURE 9. Contours of magnetic field intensity for the configuration in § 5.1 at s = 0.1 (a), s =
0.5 (b) and s = 1 (c). The poloidally closed contours of B, characteristic of QI configurations,
degrade with distance from the axis.

FIGURE 10. Rotational transform profile for the two-field-period half-helicity configuration.

the high rotational transform benefits from m = 1 configurations while preserving the low
values of neoclassical transport found in m = 0 equilibria. In the next section we show that
we can take advantage of this property to construct N > 3 equilibria with low effective
ripple.

6. The half-helicity space

Now that we have adjusted the near-axis method to deal with the possibility of
half-helicity axes, we proceed to identify in which region of the space of solutions we
can find such configurations. Let us analyse the space of five-field-period configurations
using the same procedure as that in § 3.

Once again, we hold all parameters fixed, apart from those of the magnetic axis, and we
parametrize the axis in cylindrical coordinates as

R(φ) = 1 − 1
101

cos(5φ), (6.1)

z(φ) = zs(1) sin(5φ)+ zs(2) sin(10φ). (6.2)

The aspect ratio is chosen as A = 20, the function α(ϕ) is described by (2.7) with k = 2,
the magnetic field on axis is B0 = 1 + 0.15 cos(ϕ) and d = 0.73κ s. Each colour-coded
square in figure 11 is an integer-helicity axis configuration, with values of zs(1) ranging
from 0 to 0.18 and zs(2) from −0.425 to 0.425, constructed using the near-axis method
described in § 2.
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FIGURE 11. Space of five-field-period near-axis configurations. Squares correspond to
integer-helicity values (m = 0, 1) and circles to half-helicity (m = 1/2). Colours indicate the
maximum effective ripple. An example of each type of helicity is shown on the right. Note that
the half-helicity configurations attain values of εeff similar to those of integer configurations but
have higher values of rotational transform.

We also include half-helicity axes for which Rc(3) and zs(3) in expression (4.8) are zero.
Thirty-seven values of zs(1) are considered, ranging from 0 to 0.18. In order to fulfil the
half-helicity constraints on the axis, zs(2) is calculated following expression (4.8):

zs(2) = 2 + N2

4 + 8N2
z1. (6.3)

The configurations for these axes are constructed as in the previous section: the only
difference from the integer-helicity cases is the need to set m = 1/2 when calculating
the function α(ϕ). All other initial parameters are as described earlier in this section.
Given how zs(1) depends on the chosen values for zs(2) when restricting ourselves to two
parameter curves, the half-helicity space has one dimension fewer than the equivalent
integer-helicity space. This is always the case, independently of the number of Fourier
coefficients included in the axis representation.

In figure 11, the circles correspond to the half-helicity configurations and are distributed
on the line where the conditions for second-order zeros of curvature at the maxima of B0
are fulfilled. The line in the upper quadrant is for those axes in which κ is zero at second
order at the minima of B0. These are not consistent with near-axis QI equilibria; hence the
lack of configurations in said region.

A configuration from the zero-helicity section is shown above a half-helicity
configuration in figure 11. Both are the configurations with lowest εeff in the boundary,
in each space. We can see that both have similar boundary effective ripple values (1.99 %
for m = 0 and 2 % for m = 1/2) but the rotational transform is substantially larger for
the half-helicity case (ιm=0 = 0.23 and ιm=1/2 = 0.85). This behaviour is consistently
observed between all configurations in this space. The half-helicity space, apart from
its lower dimensionality, also has higher values of rotational transform, closer to the
per-field-period values encountered in traditional optimized stellarators. Higher values of
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FIGURE 12. Curvature (solid) and torsion (dashed) profiles of the five-field-period magnetic
axis described by (7.1) and (7.2).

rotational transform are desirable as they are related to improved confinement (Ascasíbar
et al. 2008) and given the dependence of ideal MHD β-limit on ι (Miyamoto 2005; Loizu
et al. 2017).

7. Five-field-period configuration

Up until now it has proven difficult to find configurations with integer helicity, high
numbers of field periods and reasonably low aspect ratio, which are accurate to first order,
using VMEC as described previously. This is true even when attempting to optimize within
the space of near-axis solutions. We now show that this is not the case when searching in
the lower-dimensional space of half-helicity magnetic axes in the NAE.

A magnetic axis shape is chosen by varying the Fourier coefficients Rc(3), zs(2) and
zs(3) of expression (4.7) and imposing the half-helicity conditions in (4.8). An axis is
selected such that low values of effective ripple are achieved in the boundary. The one
used for the construction of the following example is described by

R = 1 + 0.2260
26 cos (5φ)− 1

101 cos (10φ)− 1 × 10−3 cos (15φ), (7.1)

z = − 3.1986
27 sin (5φ)+ 7 × 10−3 sin (10φ)+ 2.6 × 10−3 sin (15φ). (7.2)

The curvature and torsion per field period are shown in figure 12. For this high number
of field periods, the magnetic field on axis and the function d(ϕ) need to be carefully
chosen to reduce εeff to acceptable levels. These quantities are parametrized as

B0(ϕ) = 1 + B01 cos (5ϕ)+ B02 cos (10ϕ), (7.3)

d(ϕ) =
√

dκ/B0(ϕ))κ
s + dκcκ

s cos (5φ)+ dκsκ sin (5φ). (7.4)

Adding more parameters to these expressions allows for a finer profile control. These
parameters are varied for a set axis shape until a desired configuration is found. For
this example dκ = 0.28, dκc = −0.065, dκs = 0.04, B01 = 0.12 and B02 = −0.002. The
resulting shapes of B0(ϕ) and d̄(ϕ) are shown in figure 13. Here we can observe a
non-analytic behaviour present at ϕ = π/N. This arises due to the sine term in expression
(7.4) and can be set to zero but including it resulted in lower values of εeff, and, most
importantly, it does not result in any sharp behaviour on the plasma boundary. As in the
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(a) (b)

FIGURE 13. (a) Profiles of ē for the two five-field-period configurations presented. The dotted
line correspondsto the configuration with parameter d(ϕ) optimized for low elongation. (b)
Magnetic field on axis B0(ϕ) used for the construction of these configurations.

(a) (b)

FIGURE 14. (a) Cross-sections of the five-field-period configuration shown in figure 15. (b)
Elongation profiles for the two five-field-period configurations shown in § 7. The dotted line
corresponds to the configuration with parameter d(ϕ) optimized for low elongation.

previous section, the function α is defined through (2.7) with k = 2. Following the NAE
formalism, we construct a solution at a set distance from the axis, in this case r = 1/12
corresponding to an aspect ratio A = 12. However, using the method of § 4.1 of Landreman
et al. (2019) was not enough to obtain equilibria with good confinement; instead the
method of § 4.2 of the same publication was used. This method, albeit more complicated,
results in boundary shapes identical at first order to the boundary in the X–Y space, with
the caveat that cross-sections in the R–z plane are no longer elliptical, as can be seen in
figure 14. Having a boundary defined by elliptical cross-sections requires the use of less
poloidal modes when using equilibrium codes like VMEC and might be useful for plasma
boundary optimization, where initial points with low modes are preferred, although not
necessary (Landreman 2022).

The intensity of the magnetic field on the boundary, as obtained from VMEC, is shown
in figure 15. Despite the contours of |B| looking far from the expected behaviour for a
QI field, this configuration has good neoclassical confinement properties, as is evident
from its effective ripple profile in figure 18. With εeff ≈ 1.3 % it is comparable to that of
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(a)

(b)

FIGURE 15. Intensity of the magnetic field on the boundary of the five-field-period
configuration. (a) Side view and (b) top view.

(a) (b) (c)

FIGURE 16. Contours of magnetic field intensity for the configuration in § 7 at s = 0.1 (a), s =
0.5 (b) and s = 1 (c). The poloidally closed contours of B, characteristic of QI configurations,
degrade with distance from the axis.

W7-X and QIPC without the need of performing a boundary optimization. As is typical
for near-axis configurations, the contours of |B| resemble more straight poloidally closed
contours the closer we look to the axis, as seen in figure 16.

The elongation of the plasma boundary cross-sections in the cylindrical angle φ is
shown in figure 14, where a maximum value of e = 5.05 is found. We can observe a clear
difference in the elongation profile of this configuration and that of the two-field-period
example shown in figure 7. The rotational transform radial profile for this configuration is
shown in figure 17, where is clear the per-field-period rotational transform value achieved
is close to those in existing optimized stellarators.

7.1. Optimizing d for low elongation
The choice of the function d(ϕ) plays an important role in the resulting elongation of
the plasma boundary and needs to be chosen carefully, as most values will result in
impractically large elongations. This function can be tuned to obtain a desired elongation
profile, although the dependence on this and other quantities is not straightforward, as is
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FIGURE 17. Rotational transform profile for the five-field-period configuration of § 7.

clear from equation (5.1) of Camacho Mata et al. (2022):3

e(ϕ) = B0d̄2

4
+ 1

B0d̄2
(1 + σ 2)+

√(
B0d̄2

4

)2

+ (σ 2 − 1)
2

+
(

1
B0d̄2

(1 + σ 2)

)2

. (7.5)

For this reason, in the following configuration, d(ϕ) is chosen through an optimization
procedure to minimize elongation. All other near-axis parameters are kept the same as in
the previous example. The function d is parametrized as

d(ϕ) =
√

dκ/B0(ϕ))κ
s +

4∑
i=1

dκc(i)κ s cos (5iφ), (7.6)

and the coefficients dκc(i) are optimized using an off-the-shelf optimization method4 to
reduce the elongation variation, i.e. the difference between the maximum and minimum
elongation, both outputs of the NAE construction. For this configuration the values
resulting in the elongation shown with a dotted line in figure 14 are

dκ = 0.4, dκc = [0.0591,−0.0282,−0.0157,−0.0038], (7.7)

corresponding to ē(ϕ) shown in figure 13. We can see that the variation in the elongation
profile is greatly reduced compared with the previous configuration, which is also evident
by looking at the toroidal cross-sections of the plasma boundary shown in figure 19, and
comparing them with the previous configuration as done in figure 20. But even using
four Fourier modes in the representation of d(ϕ) is not enough to obtain a constant
elongation profile, which is a particularly attractive case, allowed by the NAE QI theory,

3This expression calculates elongation’s dependence on the Boozer toroidal angle ϕ. Geometrically, this is the
elongation of the elliptical cross-sections made by cutting the plasma volume perpendicular to the magnetic axis. This
is not strictly the same as the profile e(φ), which is shown in figures 7 and 14, where elongation is derived from
cross-sections formed by cuts along planes of constant φ. However, the two quantities behave in a qualitatively similar
manner. The VMEC elongation, e(φ), usually larger, can be used for direct comparison with existing (VMEC) equilibria,
hence shown in this work.

4The optimization method used is the Nelder–Mead simplex algorithm as described in Lagarias et al. (1998) and
implemented in the fminsearch MATLAB function. The tolerances used are 1×10−5 in the parameters and 1×10−7 in the
target function. The optimization is initialized at different values, and the configuration with the least elongation variation
and lowest maximum elongation is chosen. For the example shown here, the final value of the metric is �e(ϕ) = 0.196.
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FIGURE 18. Effective helical ripple εeff for the three configurations shown in this work (solid
lines) and two QI optimized configurations: W7-X (dotted line) and QIPC (dashed line).

0.8 0.9 1 1.1

R [m]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Z
 [m

]

 = 0
 = /4N
 = /2N
 = 3 /2N
 = /N

0 0.5 1

Normalized toroidal flux

0.94

0.96

0.98

1

1.02

R
ot

at
io

na
l t

ra
ns

fo
rm

, 

(a) (b)

FIGURE 19. (a) Cross-sections of the configuration shown in figure 21. (b) Rotational
transform profile for the same configuration.

due to its especially smooth boundary behaviour. This fact, together with the complicated
dependence of elongation, and the parameters required for the equilibrium construction
(see (7.6)), as well as the non-analyticity of d̄(ϕ) necessary to achieve good confinement
in the example in § 7 are clear indications of the unsuitability of d(ϕ) as a natural input
parameter for the NAE. A possible solution to this problem is specifying the elongation
function as an input parameter instead. This will be described in a future publication.

The rotational transform profile is shown in figure 19. It crosses the value ι = 1,
which might result in the presence of magnetic islands degrading the nested flux surfaces
necessary for confinement. No effort has been made in this work to avoid such regions and
further optimization of this configuration with specific targets to limit ι can be applied if
necessary.

The intensity of the magnetic field on the boundary (A = 12) for the configuration
constructed in this section is shown in figure 21. We can see that the contours at maximum
field do not close as expected but nonetheless εeff remains under 1 % for half-flux and is
comparable to that of QIPC in the remaining region as shown in figure 18. As expected,
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FIGURE 20. Cross-section comparisons between the two five-field-period configurations shown
in § 7 at different toroidal locations. Dotted lines correspond to the configuration optimized for
constant elongation.

(b)

(a)

FIGURE 21. Magnetic field intensity on the boundary for the five-field-period low-elongation
configuration described in § 7.1. (a) Side view and (b) top view.

a reduction in elongation results in worse QI quality as discussed in Camacho Mata et al.
(2022).

8. Conclusions

Using the NAE method, at first order, we have analysed the impact the magnetic axis
helicity has on the quality of the construction of QI stellarator-symmetric configurations.

The difficulties encountered when performing stellarator boundary optimization have
often been associated with the complexity of the solution space. As a first step to
understanding the landscape of solutions, we generated a multitude of configurations with
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identical near-axis parameters, differing only in their axis shape. This was parametrized by
two terms in a Fourier representation of the axis. We show how the helicity of the magnetic
axis divides the space of QI near-axis configurations with clear divisions between the
considered helicities, m = 0 and m = 1. The effective ripple was calculated for each
of the constructed configurations and a region of poor-quality configurations (extremely
elongated or effective ripple larger than 1 %) was observed in the helicity transition region.
Notably, consistently lower values of effective ripple were observed for the zero-helicity
region compared with the helicity one, with this behaviour being present at different
number of field periods. However, given the relation between helicity and integrated
torsion, the configurations in the m = 0 region have low values of rotational transform.
The presence of a sharp division between helicity regions would make it challenging for
an optimizer to find solutions outside of its starting region.

Stellarators such as QIPC (Subbotin et al. 2006) that were optimized by conventional
means rather than through the NAE sometimes possess a half-helicity axis, so that the
normal vector performs exactly half a rotation around the axis in every field period. The
conditions on the coefficients of a Fourier series necessary for achieving this behaviour
were calculated and correspond to the transition between integer-helicity regions. We show
that half-helicity axes are compatible with the near-axis formalism when modifying the
α(ϕ) function accordingly. We present a two-field-period configuration constructed around
one such axis. At an aspect ratio A = 10 the maximum εeff is 1 %, ι = 0.35–0.37 and the
maximum elongation remains under e = 5.5.

The case of five field periods was investigated, locating the half-helicity configurations
within the solution space. We note that, when using a set number of Fourier axis modes,
the half-helicity space has one fewer dimension compared with the integer-helicity space.
This is especially relevant when a low number of Fourier modes are being used as is in
this work.

In this way, configurations with N = 5 were found with an aspect ratio A = 12 and lower
effective ripple (εeff ≈ 1.3 %) than previously achieved for near-axis QI configurations
with this high number of field periods. We also demonstrate the utility of d(ϕ) in managing
elongation, by showing a configuration with a low toroidal variation of this quantity. It
is noted that this control over elongation, due to the freedom in d, is not possible for
quasi-symmetric configurations, and it is planned to investigate this further in a future
publication.

The use of half-helicity axes makes it possible to construct QI stellarators with
characteristics similar to those of existing traditionally optimized QI devices, and opens
the door to exploring the space of solutions in a systematic way by using near-axis
configurations in the high-N region of space. Using near-axis QI solutions as initial points
for boundary optimization will allow the expansion of the QI library of suitable reactor
configurations. The use of optimization within the near-axis space is being currently
explored to identify particularly good initial points for further optimization.
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Appendix A. Conditions for zeros of curvature

Given the need to have points of zero curvature on the magnetic axis, it is important to
be able to control this behaviour at different orders. We reproduce here the relevant parts
of Appendix B in Camacho Mata et al. (2022) for our discussion.

We use the Fourier axis representation (4.1) and (4.2), and we employ a Taylor expansion
to describe the axis locally, around points of stellarator symmetry (which coincide with
extrema of B0):

R(φ) =
∑
i=0

R2i

(2i)!
φ2i, (A1)

z(φ) =
∑
i=0

z2i+1

(2i + 1)!
φ2i+1, (A2)

where Rn and Zn denote the nth derivatives with respect to ϕ. We can also see from the
curvature and torsion expressions for a general parametrization,

κ = |x′ × x′′|
|x′|3 , (A3)

τ = (x′ × x′′) · x′′′

|x′ × x′′|2 , (A4)

that we need to calculate up to third derivatives of the axis position function x(φ). These
derivatives can be easily calculated by noting dR̂/dφ = φ̂ and dφ̂/dφ = −R̂. Further
substituting the expansions for R and z, (A1)–(A2), the contributions to each derivative
can be collected by their order in φ, the following properties can be confirmed:

R̂ ·
(

dnx
dφn

)
m

= 0, for odd n + m, (A5)

ẑ ·
(

dnx
dφn

)
m

= φ̂ ·
(

dnx
dφn

)
m

= 0, for even n + m. (A6)

where the subscript m denotes the (m+1)th order in φ.
Now we can proceed to find the necessary conditions for having zeros in curvature at

a given order (m + 1). We will classify the zeros in curvature by the order of the first
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Order Constraint

0 R2 = R0
1 z3 = 2z1
2 R4 = 5R0
3 z5 = 16z1
4 R6 = 61R0

TABLE 1. Conditions for zero curvature.

non-zero term in the power series, for example

κ = κmφ
m + κm+1φ

m+1 + · · · . (A7)

Assuming that x′ is itself non-zero, the conditions on zeros in curvature are found by
requiring

x′ × x′′ = 0 (A8)

at each order in φ. At first order (m = 0), x′′ has its only non-zero component in the R̂
direction, and the condition x′ × x′′ = 0 is satisfied by x′′ · R̂ = 0, which results in the
condition

R0 − R2 = 0. (A9)

The curvature can be made zero to higher order by considering higher-order
contributions to x′′. At odd orders, these are contained in the φ̂–ẑ plane and must be
made parallel to the zeroth-order contribution from x′, while at even orders, the even-order
contribution to x′′ must simply be zero. Thus, conditions at arbitrary order can be obtained,
and a few are listed in table 1.

The tabulated constraints on the derivatives of the axis components can be applied to a
truncated Fourier representation. Equations (4.7) are simply substituted into the constraint
equations with φ set to a location of stellarator symmetry (for instance at φ = 0,π/N in
the first period). This results in a set of linear conditions on the Fourier coefficients that
can be solved numerically, or by computer algebra.

As a simple example let us consider the family of 2-mode curves:

R = 1 + Rc(1) cos(Nφ)+ Rc(2) cos(2Nφ), (A10)

z = zs(1) sin(Nφ)+ zs(2) sin(2Nφ). (A11)

Enforcing the conditions for first-order zeros of curvature (R0 − R2 = 0) at extrema of B0,
φ = 0 and φ = π/N gives

Rc(1) = 0, (A12)

Rc(2) = − 1
4N2 + 1

. (A13)

Having second-order zeros of κ requires imposing conditions on the z coefficients. At
φ = 0 this results in

zs(2) = − 2 + N2

4 + 8N2
zs(1), (A14)
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and when imposing it at the minima of B0

zs(2) = 2 + N2

4 + 8N2
zs(1). (A15)
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