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Sug Woo Shin

Compositio Math. 154 (2018), 503–548.

doi:10.1112/S0010437X17007606

https://doi.org/10.1112/S0010437X17007606 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007606
https://doi.org/10.1112/S0010437X17007606


Compositio Math. 154 (2018) 503–548

doi:10.1112/S0010437X17007606

Patching and the p-adic Langlands program
for GL2(Qp)

Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty,
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Abstract

We present a new construction of the p-adic local Langlands correspondence for GL2(Qp)
via the patching method of Taylor–Wiles and Kisin. This construction sheds light on
the relationship between the various other approaches to both the local and the global
aspects of the p-adic Langlands program; in particular, it gives a new proof of many
cases of the second author’s local–global compatibility theorem and relaxes a hypothesis
on the local mod p representation in that theorem.

1. Introduction

The primary goal of this paper is to explain how (under mild technical hypotheses) the patching
construction of [CEGGPS16], when applied to the group GL2(Qp), gives rise to the p-adic local
Langlands correspondence for GL2(Qp), as constructed in [Col10b] and as further analyzed in
[Paš13] and [CDP14]. As a by-product, we obtain a new proof of many cases of the local–global
compatibility theorem of [Eme11] (and of some cases not treated there).

1.1 Background
We start by recalling the main results of [CEGGPS16] and the role we expect them to play in
the (hypothetical) p-adic local Langlands correspondence. Let F be a finite extension of Qp and
let GF be its absolute Galois group. One would like to have an analogue of the local Langlands
correspondence for all finite-dimensional, continuous, p-adic representations of GF . Let E be
another finite extension of Qp, which will be our field of coefficients, assumed large enough,
with ring of integers O, uniformizer $ and residue field F. To a continuous Galois representation
r : GF → GLn(E) one would like to attach an admissible unitary E-Banach space representation
Π(r) of G := GLn(F ) (or possibly a family of such Banach space representations). Ideally, such a
construction should be compatible with deformations, should encode the classical local Langlands
correspondence and should be compatible with a global p-adic correspondence, realized in the
completed cohomology of locally symmetric spaces.

It is expected that the Banach spaces Π(r) should encode the classical local Langlands
correspondence in the following way: if r is potentially semistable with regular Hodge–Tate
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weights, then the subspace of locally algebraic vectors Π(r)l.alg in Π(r) should be isomorphic
to πsm(r) ⊗ πalg(r) as a G-representation, where πsm(r) is the smooth representation of G
corresponding via classical local Langlands to the Weil–Deligne representation obtained from
r by Fontaine’s recipe, and πalg(r) is an algebraic representation of G, whose highest-weight
vector is determined by the Hodge–Tate weights of r.

Example 1.2. If F = Qp, n = 2 and r is crystalline with Hodge–Tate weights a < b, then πsm(r) is
a smooth unramified principal series representation, whose Satake parameters can be calculated
in terms of the trace and determinant of Frobenius on Dcris(r), and πalg(r) = Symb−a−1E2 ⊗
det1−a. (We note that in the literature different normalizations lead to different twists by a power
of det.)

Such a correspondence has been established in the case of n = 2 and F = Qp by the
works of Breuil, Colmez and others; see [Bre08, Col10a] as well as the introduction to [Col10b].
Moreover, when n = 2 and F = Qp, this correspondence has been proved (in most cases) to
satisfy local–global compatibility with the p-adically completed cohomology of modular curves;
see [Eme11]. However, not much is known beyond this case. In [CEGGPS16] we have constructed
a candidate for such a correspondence using the Taylor–Wiles–Kisin patching method, which has
been traditionally employed to prove modularity lifting theorems for Galois representations. We
now describe the end product of the paper [CEGGPS16].

Let r̄ : GF → GLn(F) be a continuous representation and let R�p be its universal framed
deformation ring. Under the assumption that p does not divide 2n, we construct an R∞[G]-
module M∞, which is finitely generated as a module over the completed group algebra
R∞[[GLn(OF )]], where R∞ is a complete local noetherian R�p -algebra with residue field F. If
y ∈ SpecR∞ is an E-valued point, then

Πy := Homcont
O (M∞ ⊗R∞,y O, E)

is an admissible unitary E-Banach space representation of G. The composition R�p → R∞
y
→ E

defines an E-valued point x ∈ SpecR�p and thus a continuous Galois representation rx : GF →
GLn(E). We expect that the Banach space representation Πy depends only on x and that it
should be related to rx by the hypothetical p-adic Langlands correspondence; see [CEGGPS16,
§ 6] for a detailed discussion. We show in [CEGGPS16, Theorem 4.35] that if πsm(rx) is generic
and x lies on an automorphic component of a potentially crystalline deformation ring of r̄,
then Πl.alg

y
∼= πsm(rx) ⊗ πalg(rx), as expected; moreover, the points x such that πsm(rx) is

generic are Zariski dense in every irreducible component of a potentially crystalline deformation
ring. (It is expected that every irreducible component of a potentially crystalline deformation
ring is automorphic; this expectation is motivated by the Fontaine–Mazur and Breuil–Mézard
conjectures. However, it is intrinsic to our method that we would not be able to access these
non-automorphic components even if they existed.)

However, there are many natural questions regarding our construction for GLn(F ) that we
cannot answer at the moment and that appear to be genuinely deep, as they are intertwined
with questions about local–global compatibility for p-adically completed cohomology, with the
Breuil–Mézard conjecture on the geometry of local deformation rings and with the Fontaine–
Mazur conjecture for global Galois representations. For example, it is not clear that Πy depends

only on x, it is not clear that Πy is non-zero for an arbitrary y and that furthermore Πl.alg
y is

non-zero if rx is potentially semistable of regular weight and it is not at all clear that M∞ does
not depend on the different choices made during the patching process.
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1.3 The present paper
In this paper, we specialize the construction of [CEGGPS16] to the case F = Qp and n = 2 (so
that G := GL2(Qp) and K := GL2(Zp) from now on) to confirm our expectation that, firstly,
M∞ does not depend on any of the choices made during the patching process and, secondly, that
it does recover the p-adic local Langlands correspondence as constructed by Colmez.

We achieve the first part without appealing to Colmez’s construction (which relies on the
theory of (ϕ,Γ)-modules). The proof that M∞ is uniquely determined highlights some key
features of the GL2(Qp) setting beyond the use of (ϕ,Γ)-modules: the classification of irreducible
mod p representations of GL2(Qp) in terms of Serre weights and Hecke operators, and the fact
that the Weil–Deligne representation and the Hodge–Tate weights determine a (irreducible)
two-dimensional crystalline representation of GQp uniquely (up to isomorphism).

When combined with the results of [Paš13] (which do rely on Colmez’s functor V̌), we obtain
that M∞ realizes the p-adic Langlands correspondence as constructed by Colmez.

We also obtain a new proof of local–global compatibility, which helps clarify the relationship
between different perspectives and approaches to p-adic local Langlands.

1.4 Arithmetic actions
In the body of the paper we restrict the representations r̄ we consider by assuming that they
have only scalar endomorphisms, so that EndGQp (r̄) = F and that r̄ 6∼=

(
ω ∗
0 1

)
⊗χ for any character

χ : GQp → F×. For simplicity, let us assume in this introduction that r̄ is irreducible and let Rp
be its universal deformation ring. Then R�p is formally smooth over Rp. Moreover (as F = Qp

and n = 2), we may also assume that R∞ is formally smooth over R�p and thus over Rp.
The following definition is meant to axiomatize the key properties of the patched module

M∞.

Definition 1.5. Let d be a non-negative integer, let R∞ := Rp[[x1, . . . , xd]] and let M be a
non-zero R∞[G]-module. We say that the action of R∞ on M is arithmetic if the following
conditions hold:
(AA1) M is a finitely generated module over the completed group algebra R∞[[K]];
(AA2) M is projective in the category of pseudocompact O[[K]]-modules;
(AA3) for each pair of integers a < b, the action of R∞ on

M(σ◦) := Homcont
O[[K]](M, (σ◦)d)d

factors through the action of R∞(σ) := Rp(σ)[[x1, . . . , xd]]. Here Rp(σ) is the quotient of
Rp constructed by Kisin, which parameterizes crystalline representations with Hodge–
Tate weights (a, b), σ◦ is a K-invariant O-lattice in σ := Symb−a−1E2 ⊗ det1−a and
(∗)d := Homcont

O (∗,O) denotes the Schikhof dual.
Moreover, M(σ◦) is maximal Cohen–Macaulay over R∞(σ) and the R∞(σ)[1/p]-module
M(σ◦)[1/p] is locally free of rank 1 over its support;

(AA4) for each σ as above and each maximal ideal y of R∞[1/p] in the support of M(σ◦), there
is a non-zero G-equivariant map

πsm(rx)⊗ πalg(rx)→ Πl.alg
y ,

where x is the image of y in SpecRp.

The last condition says that M encodes the classical local Langlands correspondence. This is
what motivated us to call such actions arithmetic. (In fact in the main body of the paper we use
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a reformulation of condition (AA4); see § 3.1 and Remark 3.3.) To motivate (AA3), we note for
the sake of the reader familiar with Kisin’s proof of the Fontaine–Mazur conjecture [Kis09] that
the modules M(σ◦) are analogues of the patched modules denoted by M∞ in [Kis09], except that
Kisin patches algebraic automorphic forms for definite quaternion algebras and in this paper we
will ultimately be making use of patching arguments for algebraic automorphic forms on forms
of U(2).

1.6 Uniqueness of M∞
As already mentioned, the patched module M∞ of [CEGGPS16] carries an arithmetic action of
R∞ for some d. In order to prove that M∞ is uniquely determined, it is enough to show that
for any given d, any R∞[G]-module M with an arithmetic action of R∞ is uniquely determined.
The following is our main result, which for simplicity we state under the assumption that r̄ is
irreducible.

Theorem 1.7. Let M be an R∞[G]-module with an arithmetic action of R∞.

(i) If π is any irreducible G-subrepresentation of the Pontryagin dual M∨ of M , then
π is isomorphic to the representation of G associated to r̄ by the mod p local Langlands
correspondence for GL2(Qp).

(ii) Let π ↪→ J be an injective envelope of the above π in the category of smooth locally
admissible representations of G on O-torsion modules. Let P̃ be the Pontryagin dual of J . Then
P̃ carries a unique arithmetic action of Rp and, moreover,

M ∼= P̃ ⊗̂Rp R∞

as R∞[G]-modules.

The theorem completely characterizes modules with an arithmetic action and shows that
M∞ does not depend on the choices made in the patching process. A further consequence is that
the Banach space Πy depends only on the image of y in SpecRp, as expected.

Let us sketch the proof of Theorem 1.7 assuming for simplicity that d = 0. The first step is to
show that M∨ is an injective object in the category of smooth locally admissible representations
of G on O-torsion modules and that its G-socle is isomorphic to π. This is done by computing
HomG(π′,M∨) and showing that Ext1

G(π′,M∨∞) vanishes for all irreducible F-representations π′

of G; see Proposition 4.2 and Theorem 4.15. The arguments here use the foundational results
of Barthel and Livné [BL94] and Breuil [Bre03a] on the classification of irreducible mod p
representations of G, arguments related to the weight part of Serre’s conjecture and the fact that
the rings Rp(σ) are formally smooth over O, whenever σ is of the form Symb−a−1E2 ⊗ det1−a

with 1 6 b− a 6 p.
This first step allows us to conclude that M∨ is an injective envelope of π, which depends

only on r̄. Since injective envelopes are unique up to isomorphism, we conclude that any two
modules with an arithmetic action of Rp are isomorphic as G-representations. Therefore, it

remains to show that any two arithmetic actions of Rp on P̃ coincide. As Rp is O-torsion free, it
is enough to show that two such actions induce the same action on the unitary E-Banach space
Π := Homcont

O (M,E). Since M is a projective O[[K]]-module by (AA2), one may show using
the ‘capture’ arguments that appear in [CDP14, § 2.4] and [Eme11, Proposition 5.4.1] that the
subspace of K-algebraic vectors in Π is dense. Since the actions of Rp on Π are continuous, it
is enough to show that they agree on this dense subspace. Since the subspace of K-algebraic
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vectors is semisimple as a K-representation, it is enough to show that the two actions agree on
σ-isotypic subspaces in Π for all irreducible algebraic K-representations σ. These are precisely
the representations σ in axiom (AA3). Taking duals one more time, we are left with showing
that any two arithmetic actions induce the same action of Rp on M(σ◦)[1/p] for all σ as above.

At this point we use another special feature of two-dimensional crystalline representations of
GQp : the associated Weil–Deligne representation together with Hodge–Tate weights determine a
two-dimensional crystalline representation of GQp up to isomorphism. Using this fact and axioms
(AA3) and (AA4) for the arithmetic action, we show that the action of the Hecke algebraH(σ) :=
EndG(c-IndGK σ) on M(σ◦)[1/p] completely determines the action of Rp(σ) on M(σ◦)[1/p]; see
the proof of Theorem 4.30 as well as the key Proposition 2.13. Since the action of H(σ) on
M(σ◦)[1/p] depends only on the G-module structure of M , we are able to conclude that the two
arithmetic actions are the same. The reduction from the case when d is arbitrary to the case
when d = 0 is carried out in § 4.16.

Remark 1.8. As we have already remarked, the arguments up to this point make no use of
(ϕ,Γ)-modules. Indeed, the proof of Theorem 1.7 does not use them. One of the objectives of
this project was to find out how much of the p-adic Langlands for GL2(Qp) correspondence can
one recover from the patched module M∞ without using Colmez’s functors, as these constructions
are not available for groups other than GL2(Qp), while our patched module M∞ is. Along the
same lines, in § 5 we show that to a large extent we can recover a fundamental theorem of Berger
and Breuil [BB10] on the uniqueness of unitary completions of locally algebraic principal series
without making use of (ϕ,Γ)-modules; see Theorem 5.1 and Remark 5.3.

Remark 1.9. As already explained, Theorem 1.7 implies that Πy depends only on the image of y
in SpecRp. However, we are still not able to deduce using only our methods that Πy is non-zero
for an arbitrary y ∈ m-SpecR∞[1/p]. Since M∞ is not a finitely generated module over R∞,
theoretically it could happen that Πy 6= 0 for a dense subset of m-SpecR∞[1/p], but Πy = 0 at
all other maximal ideals. We can only prove that this pathological situation does not occur after
combining Theorem 1.7 with the results of [Paš13].

In § 6 we relate the arithmetic action of Rp on P̃ to the results of [Paš13], where an action
of Rp on an injective envelope of π in the subcategory of representations with a fixed central
character is constructed using Colmez’s functor; see Theorem 6.18. Then by appealing to the
results of [Paš13] we show that Πy and rx correspond to each other under the p-adic Langlands
correspondence as defined by Colmez [Col10b] for all y ∈ m-SpecR∞[1/p], where x denotes the
image of y in m-SpecRp[1/p].

It follows from the construction of M∞ that after quotienting out by a certain ideal of R∞
we obtain a dual of completed cohomology; see [CEGGPS16, Corollary 2.11]. This property
combined with Theorem 1.7 and with the results in § 6 enables us to obtain a new proof of
local–global compatibility as in [Eme11] as well as obtaining a genuinely new result, when ρ|GQp

is isomorphic to
(

1 ∗
0 ω

)
⊗ χ, where ω is the cyclotomic character modulo p. (See Remark 7.7.)

1.10 Prospects for generalization
Since our primary goal in this paper is to build some new connections between various existing
ideas related to the p-adic Langlands program, we have not striven for maximal generality, and
we expect that some of our hypotheses on r̄ : GQp → GL2(Fp) could be relaxed. In particular,
it should be possible to prove results when p = 2 by using results of Thorne [Tho17] to redo the
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patching in [CEGGPS16]. It may also be possible to extend our results to cover more general r̄
(recall that we assume that r̄ has only scalar endomorphisms, and that it is not a twist of
an extension of the trivial character by the mod p cyclotomic character). In § 6.27 we discuss
the particular case where r̄ has scalar semisimplification; as this discussion (and the arguments
of [Paš13]) show, while it may well be possible to generalize our arguments, they will necessarily
be considerably more involved in cases where r̄ does not satisfy the hypotheses that we have
imposed.

Since the patching construction in [CEGGPS16] applies equally well to the case of GL2(F )
for any finite extension F/Qp, or indeed to GLn(F ), it is natural to ask whether any of our
arguments can be extended to such cases (where there is at present no construction of a p-adic
local Langlands correspondence). As explained in Remark 3.2, the natural analogues of our
axioms (AA1)–(AA4) hold, even in the generality of GLn(F ). Unfortunately, the prospects for
proving analogues of our main theorems are less rosy, as it seems that none of the main inputs to
our arguments will hold. Indeed, already for the case of GL2(Qp2) there is no analogue available
of the classification in [Bre03a] of the irreducible F-representations of GL2(Qp), and it is clear
from the results of [BP12] that any such classification would be much more complicated.

Furthermore, beyond the case of GL2(Qp) it is no longer the case that crystalline
representations are (essentially) determined by their underlying Weil–Deligne representations,
so there is no possibility of deducing that a p-adic correspondence is uniquely determined by
the classical correspondence in the way that we do here, and no hope that an analogue of the
results of [BB10] could hold. Finally, it is possible to use the constructions of [Paš04] to show
that for GL2(Qp2) the patched module M∞ is not a projective GL2(Qp2)-module.

1.11 Outline of the paper
In § 2 we recall some well-known results about Hecke algebras and crystalline deformation rings
for GL2(Qp). The main result in this section is Proposition 2.15, which describes the crystalline
deformation rings corresponding to Serre weights as completions of the corresponding Hecke
algebras. In § 3 we explain our axioms for a module with an arithmetic action, and show how
the results of [CEGGPS16] produce patched modules M∞ satisfying these axioms.

Section 4 proves that the axioms determine M∞ (essentially) uniquely, giving a new
construction of the p-adic local Langlands correspondence for GL2(Qp). It begins by showing
that M∞ is a projective GL2(Qp)-module (Theorem 4.15), before making a category-theoretic
argument that allows us to ‘factor out’ the patching variables (Proposition 4.22). We then use
the ‘capture’ machinery to complete the proof.

In § 5 we explain how our results can be used to give a new proof (not making use of (ϕ,Γ)-
modules) that certain locally algebraic principal series representations admit at most one unitary
completion. Section 6 combines our results with those of [Paš13] to show that our construction is
compatible with Colmez’s correspondence, and as a by-product extends some results of [Paš13]
to a situation where the central character is not fixed.

Finally, in § 7 we explain how our results give a new proof of the second author’s local–
global compatibility theorem, and briefly explain how such results can be extended to quaternion
algebras over totally real fields (Remark 7.8).

1.12 Notation
We fix an odd prime p, an algebraic closure Qp of Qp and a finite extension E/Qp in Qp, which
will be our coefficient field. We write O = OE for the ring of integers in E, $ = $E for a
uniformizer and F := O/$ for the residue field. We will assume without comment that E and F
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are sufficiently large, and in particular that if we are working with representations of the absolute

Galois group of a p-adic field K, then the images of all embeddings K ↪→ Qp are contained in E.

1.12.1 Galois-theoretic notation. If K is a field, we let GK denote its absolute Galois group.

Let ε denote the p-adic cyclotomic character and ε = ω the mod p cyclotomic character. If K is

a finite extension of Qp for some p, we write IK for the inertia subgroup of GK . If R is a local

ring, we write mR for the maximal ideal of R. If F is a number field and v is a finite place of F ,

then we let Frobv denote a geometric Frobenius element of GFv .

If K/Qp is a finite extension, we write ArtK : K×
∼−→ W ab

K for the Artin map normalized

to send uniformizers to geometric Frobenius elements. To avoid cluttering up the notation, we

will use ArtQp to regard characters of Q×p , Z×p as characters of GQp , IQp , respectively, without

explicitly mentioning ArtQp when we do so.

If K is a p-adic field and ρ a de Rham representation of GK over E and if τ : K ↪→ E,

then we will write HTτ (ρ) for the multiset of Hodge–Tate numbers of ρ with respect to τ .

By definition, the multiset HTτ (ρ) contains i with multiplicity dimE(ρ ⊗τ,K K̂(i))GK . Thus

for example HTτ (ε) = {−1}. If ρ is moreover crystalline, then we have the associated filtered

ϕ-module Dcris(ρ) := (ρ⊗Qp Bcris)
GK , where Bcris is Fontaine’s crystalline period ring.

1.12.2 Local Langlands correspondence. Let n ∈ Z>1, let K be a finite extension of Qp and

let rec denote the local Langlands correspondence from isomorphism classes of irreducible smooth

representations of GLn(K) over C to isomorphism classes of n-dimensional Frobenius semisimple

Weil–Deligne representations of WK defined in [HT01]. Fix an isomorphism ı : Qp → C. We

define the local Langlands correspondence recp over Qp by ı ◦ recp = rec ◦ ı. Then rp(π) :=

recp(π ⊗ |det |(1−n)/2) is independent of the choice of ı. In this paper we are mostly concerned

with the case that n = 2 and K = Qp.

1.12.3 Notation for duals. If A is a topological O-module, we write A∨ := Homcont
O (A,E/O)

for the Pontryagin dual of A. We apply this to O-modules that are either discrete or profinite,

so that the usual formalism of Pontryagin duality applies.

If A is a pseudocompact O-torsion-free O-module, we write Ad := Homcont
O (A,O) for its

Schikhof dual.

If F is a free module of finite rank over a ring R, then we write F ∗ := HomR(F,R) to denote

its R-linear dual, which is again a free R-module of the same rank over R as F .

If R is a commutative O-algebra, and if A is an R-module that is pseudocompact and

O-torsion free as an O-module, then we may form its Schikhof dual Ad, which has a natural

R-module structure via the transpose action, extending its O-module structure. If F is a finite-

rank free R-module, then A⊗R F is again an R-module that is pseudocompact as an O-module

(if F has rank n, then it is non-canonically isomorphic to a direct sum of n copies of A) and

there is a canonical isomorphism of R-modules (A⊗R F )d
∼−→ Ad ⊗R F ∗.

1.12.4 Group-theoretic notation. Throughout the paper we write G = GL2(Qp) and

K = GL2(Zp), and let Z = Z(G) denote the centre of G. We also let B denote the Borel subgroup

of G consisting of upper-triangular matrices, and T denote the diagonal torus contained in B.

If χ : T → E× is a continuous character, then we define the continuous induction (IndGB χ)cont

to be the E-vector space of continuous functions f : G → E satisfying the condition f(bg) =

χ(b)f(g) for all b ∈ B and g ∈ G; it forms a G-representation with respect to the right regular

action. If χ is in fact a smooth character, then we may also form the smooth induction (IndGB χ)sm;
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this is the E-subspace of (IndGB χ)cont consisting of smooth functions, and is aG-subrepresentation
of the continuous induction.

If χ1 and χ2 are continuous characters of Q×p , then the character χ1⊗χ2 : T → E× is defined

via
(
a 0
0 d

)
7→ χ1(a)χ2(d). Any continuous E-valued character χ of T is of this form, and χ is

smooth if and only if χ1 and χ2 are.

2. Galois deformation rings and Hecke algebras

2.1 Galois deformation rings
Recall that we assume throughout the paper that p is an odd prime. Fix a continuous
representation r̄ : GQp → GL2(F), where as before F/Fp is a finite extension. Possibly enlarging
F, we fix a sufficiently large extension E/Qp with ring of integers O and residue field F.

We will make the following assumption from now on.

Assumption 2.2. Assume that EndGQp (r̄) = F and that r̄ 6∼=
(
ω ∗
0 1

)
⊗ χ for any character χ :

GQp → F×.

In particular this assumption implies that r̄ has a universal deformation O-algebra Rp, and
that either r̄ is (absolutely) irreducible or that r̄ is a non-split extension of characters.

We begin by recalling the relationship between crystalline deformation rings of r̄ and the
representation theory of G := GL2(Qp) and K := GL2(Zp). Given a pair of integers a ∈ Z
and b ∈ Z>0, we let σa,b be the absolutely irreducible E-representation deta⊗ SymbE2 of K.
Note that this is just the algebraic representation of highest weight (a+ b, a) with respect to the
Borel subgroup given by the upper-triangular matrices in G.

We say that a representation r : GQp → GL2(Qp) is crystalline of Hodge type σ = σa,b
if it is crystalline with Hodge–Tate weights (1 − a,−a − b);1 we write Rp(σ) for the reduced,
p-torsion-free quotient of Rp corresponding to crystalline deformations of Hodge type σ.

2.3 The morphism from the Hecke algebra to the deformation ring
We briefly recall some results from [CEGGPS16, § 4], specialized to the case of crystalline
representations of GL2(Qp).

Set σ = σa,b and let H(σ) := EndG(c-IndGK σ). The action of K on σ extends to the action
of G. This gives rise to the isomorphism of G-representations:

(c-IndGK 1)⊗ σ ∼= c-IndGK σ, f ⊗ v 7→ [g 7→ f(g)σ(g)v].

The map
H(1)→ H(σ), φ 7→ φ⊗ idσ (2.4)

is an isomorphism of E-algebras by [ST06, Lemma 1.4]. Using the above isomorphism we will
identify elements of H(σ) with E-valued K-bi-invariant functions on G, supported on finitely
many double cosets.

Proposition 2.5. Let S ∈ H(σ) be the function supported on the double coset of
(p 0

0 p

)
, with

value p2a+b at
(p 0

0 p

)
, and let T ∈ H(σ) be the function supported on the double coset2 of

(
p 0
0 1

)
,

with value pa+b at
(
p 0
0 1

)
. Then H(σ) = E[S±1, T ] as an E-algebra.

1 Note that this convention agrees with those of [CEGGPS16, Eme11].
2 The function supported on the double coset KgK with value 1 at g, viewed as an element of H(1), acts on
v ∈ V K by the formula [KgK]v =

∑
hK⊂KgK hv.
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Proof. This is immediate from (2.4) and the Satake isomorphism. 2

Let r, s be integers with r < s and let t, d ∈ E, with d ∈ E×. We let D := D(r, s, t, d) be the
two-dimensional filtered ϕ-module that has e1, e2 as a basis of its underlying E-vector space,
has its E-linear Frobenius endomorphism ϕ given by

ϕ(e1) = e2, ϕ(e2) = −de1 + te2

and has its Hodge filtration given by

FiliD = D if i 6 r, FiliD = Ee1 if r + 1 6 i 6 s and FiliD = 0 if i > s.

We note that t is the trace and d is the determinant of ϕ on D, and both are therefore determined
uniquely by D. The same construction works if E is replaced with an E-algebra A. We will still
write D(r, s, t, d) for the resulting ϕ-module with A-coefficients if the coefficient algebra is clear
from the context.

Lemma 2.6. If V is an indecomposable two-dimensional crystalline representation of GQp over
E with distinct Hodge–Tate weights (s, r), then there exists a unique pair (t, d) ∈ E × E× such
that Dcris(V ) ∼= D(r, s, t, d). Moreover, vp(d) = r + s and vp(t) > r.

Proof. This is well known, and is a straightforward computation using the fact that Dcris(V ) is
weakly admissible. For the sake of completeness, we sketch the proof; the key fact one employs is
that V 7→ Dcris(V ) is a fully faithful embedding of the category of crystalline representations of
GQp into the category of weakly admissible filtered ϕ-modules. (Indeed, it induces an equivalence
between these two categories, but that more difficult fact is not needed for this computation.)
We choose e1 to be a basis for FilsDcris(V ); the assumption that V is indecomposable implies
that FilsDcris(V ) is not stable under ϕ, and so if we write e2 := ϕ(e1) then e1, e2 is a basis for
Dcris(V ), and ϕ has a matrix of the required form for a uniquely determined t and d. The asserted
relations between vp(t), vp(d), r and s follow from the weak admissibility of Dcris(V ). 2

In fact, it will be helpful to state a generalization of the previous result to the context of
finite-dimensional E-algebras. (Note that the definition of D(r, s, t, d) extends naturally to the
case when t and d are taken to lie in such a finite-dimensional algebra.)

Lemma 2.7. If A is an Artinian local E-algebra with residue field E′, and if VA is a crystalline
representation of rank 2 over A whose associated residual representation VE′ := E′ ⊗A VA is
indecomposable with distinct Hodge–Tate weights (s, r), and if Dcris(VA) denotes the filtered
ϕ-module associated to VA, then there exists a unique pair (t, d) ∈ A×A× such that Dcris(VA) ∼=
D(r, s, t, d).

Proof. Choose a basis e1 for FilsDcris(VE′), and choose e1 ∈ FilsDcris(VA) lifting e1. By
Nakayama’s lemma, e1 generates FilsDcris(VA) and, by considering the length of FilsDcris(VA)
as an E-vector space, we see that FilsDcris(VA) is a free A-module of rank 1.

Let e2 = φ(e1) and write e2 for the image of e2 in Dcris(VE′). As in the proof of Lemma 2.6,
e1, e2 is a basis of Dcris(VE′), and thus by another application of Nakayama’s lemma, e1, e2 are
an A-basis of Dcris(VA). The matrix of φ in this basis is evidently of the required form. 2

Corollary 2.8. If V is an indecomposable two-dimensional crystalline representation of GQp
over E with distinct Hodge–Tate weights (s, r), for which Dcris(V ) ∼= D(r, s, t0, d0), then the
formal crystalline deformation ring of V is naturally isomorphic to E[[t− t0, d− d0]].
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Proof. This is immediate from Lemma 2.7 and the fact that V 7→ Dcris(V ) is an equivalence of
categories. 2

Suppose that r̄ has a crystalline lift of Hodge type σ. By [CEGGPS16, Theorem 4.1], there is
a natural E-algebra homomorphism η : H(σ) → Rp(σ)[1/p] interpolating a normalized local
Langlands correspondence rp (introduced in § 1.12). In order to characterize this map, one
considers the composite

H(σ)
η−→ Rp(σ)[1/p] ↪→ (Rp(σ))an,

where (Rp(σ))an denotes the ring of rigid analytic functions on the rigid analytic generic
fibre of Spf Rp(σ). Over (Rp(σ))an, we may consider the universal filtered ϕ-module, and the
underlying universal Weil group representation (given by forgetting the filtration). The trace
and determinant of Frobenius on this representation are certain elements of (Rp(σ))an (which in
fact lie in Rp(σ)[1/p]), and η is characterized by the fact that it identifies appropriately chosen
generators of H(σ) with these universal trace and determinant.

It is straightforward to give explicit formulas for these generators of H(σ), but we have found
it interesting (in part with an eye to making arguments in more general contexts) to also derive
the facts that we need without using such explicit formulas.

Regarding explicit formulas, we have the following result.

Proposition 2.9. The elements η(S), η(T ) ∈ Rp(σ)[1/p] are characterized by the following
property: if x : Rp(σ)[1/p] → Qp is an E-algebra morphism, and Vx is the corresponding

two-dimensional Qp-representation of GQp , then x(η(T )) = pa+bt and x(η(S)) = p2a+b−1d, where
t, d are respectively the trace and the determinant of ϕ on Dcris(Vx).

Proof. Lemma 2.7 implies that there are uniquely determined t, d ∈ Qp such that

Dcris(Vx) ∼= D(r, s, t, d),

where r = −a − b and s = 1 − a. The Weil–Deligne representation associated to D(r, s, t, d) is
an unramified two-dimensional representation of WQp , on which the geometric Frobenius Frobp
acts by the matrix of crystalline Frobenius on D(r, s, t, d), which is

(
0 −d
1 t

)
. Thus,

WD(Dcris(Vx)) = recp(χ1)⊕ recp(χ2),

where χ1, χ2 : Q×p → Q×p are unramified characters such that χ1(p) + χ2(p) = t and χ1(p)
χ2(p) = d.

If π = (IndGB | � |χ1 ⊗ χ2)sm, then π ⊗ |det|−1/2 ∼= ιGB(χ1 ⊗ χ2), where ιGB denotes smooth
normalized parabolic induction. Then

rp(π) = recp(ι
G
B(χ1 ⊗ χ2)) = recp(χ1)⊕ recp(χ2).

The action ofH(1) on πK is given by sending [K
(
p 0
0 1

)
K] to p|p|χ1(p)+χ2(p) = t and [K

(p 0
0 p

)
K] to

|p|χ1(p)χ2(p) = p−1d. By [CEGGPS16, Theorem 4.1] and the fact that the evident isomorphism
between πK = HomK(1,1 ⊗ π) and HomK(σ, σ ⊗ π) is equivariant with respect to the actions
by H(1) and H(σ) via the isomorphism (2.4), we see that

x(η(T )) = p−rt = pa+bt, x(η(S)) = p−r−sd = p2a+b−1d. (2.10)

Since Rp(σ)[1/p] is a reduced Jacobson ring, the formulas determine η(T ) and η(S) uniquely. 2
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Corollary 2.11. η(S) and η(T ) are contained in the normalization of Rp(σ) in Rp(σ)[1/p].

Proof. It follows from (2.10) and Lemma 2.6 that for all closed points x : Rp(σ)[1/p]→ Qp, we

have x(η(S)), x(η(T )) ∈ Zp. The result follows from [deJ95, Proposition 7.3.6]. 2

A key fact that we will use, which is special to our context of two-dimensional crystalline
representations of GQp , is that the morphism

(Spf R(σ))an
→ (SpecH(σ))an

induced by η is an open immersion of rigid analytic spaces, where the superscript ‘an’ signifies
the associated rigid analytic space. We prove this statement (in its infinitesimal form) in the
following result.

Lemma 2.12. Let σ = σa,b, with a ∈ Z and b ∈ Z>0. Then

dimκ(y) κ(y)⊗H(σ) Rp(σ)[1/p] 6 1, ∀y ∈ m-SpecH(σ).

Proof. Let us assume that A := κ(y) ⊗H(σ) Rp(σ)[1/p] is non-zero. If x, x′ ∈ m-SpecA, then
the Frobenii on Dcris(Vx) and Dcris(Vx′) will have the same trace and determinant (since, by
Proposition 2.9, these are determined by the images of T and S in κ(y)); denote them by t and
d. It follows from Lemma 2.6 that Dcris(Vx) ∼= Dcris(Vx′) and hence x = x′. Since D(r, s, t, d) can
be constructed over κ(y) (as t and d lie in κ(y)), so can Vx and thus κ(x) = κ(y). To complete
the proof of the lemma, it is enough to show that the map my → mx/m

2
x is surjective. Since we

know that Rp(σ)[1/p] is a regular ring of dimension 2 by [Kis08, Theorem 3.3.8], it is enough
to construct a two-dimensional family of deformations of Dcris(Vx) to the ring of dual numbers
κ(y)[ε], which induces a non-trivial deformation of the images of S, T . That this is possible is
immediate from Corollary 2.8 and Proposition 2.9. 2

Proposition 2.13. Let σ = σa,b, with a ∈ Z and b ∈ Z>0. Let y ∈ m-SpecH(σ) be the image of
x ∈ m-SpecRp(σ)[1/p] under the morphism induced by η : H(σ)→ Rp(σ)[1/p]. Then η induces
an isomorphism of completions:

Ĥ(σ)my
∼=−→ ̂Rp(σ)[1/p]mx .

Proof. This can be proved by explicit computation, taking into account Corollary 2.8 and
Proposition 2.9.

We can also deduce it in more pure thought manner as follows: since H(σ) ∼= E[T, S±1] by
Proposition 2.5 and Rp(σ)[1/p] is a regular ring of dimension 2 as in the preceding proof, both
completions are regular rings of dimension 2. It follows from Lemma 2.12 that κ(y) = κ(x) and
the map induces a surjection on tangent spaces. Hence, the map is an isomorphism. 2

If 0 6 b 6 p − 1, then σa,b has a unique (up to homothety) K-invariant lattice σ◦a,b, which

is isomorphic to deta⊗ SymbO2 as a K-representation. We let σa,b be its reduction modulo $.
Then σa,b is the absolutely irreducible F-representation deta⊗ SymbF2 of GL2(Fp); note that
every (absolutely) irreducible F-representation of GL2(Fp) is of this form for some uniquely
determined a, b with 0 6 a < p− 1. We refer to such representations as Serre weights.

If σ = σa,b is a Serre weight with the property that r̄ has a lift r : GQp → GL2(Zp) that is
crystalline of Hodge type σ = σa,b, then we say that σ is a Serre weight of r̄.
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Again we consider σ = σa,b, with any a ∈ Z and b ∈ Z>0. Let

σ◦ := deta ⊗ SymbO2, σ := deta ⊗ SymbF2,

so that σ◦/$ = σ. We let

H(σ◦) := EndG(c-IndGK σ
◦), H(σ) := EndG(c-IndGK σ).

Note that H(σ◦) is p-torsion free, since c-IndGK σ
◦ is.

Lemma 2.14. (1) For any σ, there are a natural isomorphism H(σ) ∼= H(σ◦)[1/p] and a
natural inclusion H(σ◦)/$ ↪→ H(σ). Furthermore, the O-subalgebra O[S±1, T ] of H(σ) is
contained in H(σ◦).

(2) If, in addition, σ = σa,b, with 0 6 b 6 p − 1, then O[S±1, T ] = H(σ◦) and there is a
natural isomorphism H(σ◦)/$ ∼= H(σ).

Proof. The isomorphism of (1) follows immediately from the fact that c-IndGK σ
◦ is a finitely

generated O[G]-module. To see the claimed inclusion, apply HomG(c-IndGK σ
◦,−) to the exact

sequence
0→ c-IndGK σ

◦ $
→ c-IndGK σ

◦
→ c-IndGK σ→ 0

so as to obtain an injective map

H(σ◦)/$ ↪→ HomG(c-IndGK σ
◦, c-IndGK σ) ∼= H(σ).

To see the final claim of (1), we recall that from (2.4) and Frobenius reciprocity we have natural
isomorphisms

H(1) ' H(σ) ' HomK(σ, c-IndGK σ);

the image of φ ∈ H(1) under the composite map sends v ∈ σ to the function g 7→ φ(g−1)σ(g)v.
A direct computation of the actions of S, T on the standard basis of σ◦ then verifies that S±1

and T lie in the O-submodule HomK(σ◦, c-IndGK σ
◦) of H(σ).

To prove (2), we note that it follows from [Bre03b, § 2] and [BL94] that the composite
F[S±1, T ]→ H(σ◦)/$ → H(σ) is an isomorphism. Since the second of these maps is injective,
by (1), we conclude that each of these maps is in fact an isomorphism, confirming the second
claim of (2). Furthermore, this shows that the inclusion O[S±1, T ] ↪→ H(σ◦) of (1) becomes
an isomorphism both after reducing modulo $ as well as after inverting $ (because H(σ) is
generated by S±1 and T by Proposition 2.5). Thus, it is an isomorphism, completing the proof
of (2). 2

The following lemma is well known, but for lack of a convenient reference we sketch a proof.

Lemma 2.15. Assume that r̄ satisfies Assumption 2.2. Then r̄ has at most two Serre weights.
Furthermore, if we let σ = σa,b be a Serre weight of r̄, then the following hold.

(i) The deformation ring Rp(σ) is formally smooth of relative dimension 2 over O.

(ii) The morphism of E-algebras η : H(σ) → Rp(σ)[1/p] induces a morphism of O-algebras
H(σ◦)→ Rp(σ).

(iii) The character ω1−2a−b det r̄ is unramified and, if we let:

– µ = (ω1−2a−b det r̄)(Frobp); and

– if r̄ is irreducible, then λ = 0; and
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– if r̄ is reducible, then we can write r̄ ∼= ωa+b ⊗
(χ1 ∗

0 χ2ω
−b−1

)
for unramified characters

χ1, χ2 and let λ = χ1(Frobp),

then the composition

α : H(σ◦)→ Rp(σ)→ F

maps T 7→ λ and S 7→ µ.

(iv) Let Ĥ(σ◦) be the completion of H(σ◦) with respect to the kernel of α. Then the map

H(σ◦)→ Rp(σ) induces an isomorphism of localO-algebras Ĥ(σ◦)
∼=
→ Rp(σ). In coordinates,

we have Rp(σ) = O[[S − µ̃, T − λ̃]], where the tilde denotes the Teichmüller lift.

(v) If we set π := (c-IndGK σ)⊗H(σ),α F, then π is an absolutely irreducible representation of G
and is independent of the choice of Serre weight σ of r̄.

Proof. The claim that r̄ has at most two Serre weights is immediate from the proof of [BDJ10,
Theorem 3.17], which explicitly describes the Serre weights of r̄. Concretely, in the case at
hand these weights are as follows (see also the discussion of [Eme11, § 3.5], which uses the same
conventions as this paper). If r̄ is irreducible, then we may write

r̄|IQp ∼= ωm−1 ⊗
(
ωn+1

2 0

0 ω
p(n+1)
2

)
,

where ω2 is a fundamental character of niveau 2, and 0 6 m < p − 1, 0 6 n 6 p − 2. Then the
Serre weights of r̄ are σm,n and σm+n,p−1−n (with m+ n taken modulo p− 1). If r̄ is reducible,
then we may write

r̄|IQp ∼= ωm+n ⊗
(

1 ∗
0 ω−n−1

)
,

where 0 6 m < p − 1, 0 6 n < p − 1. Then (under Assumption 2.2), if n 6= 0, the unique Serre
weight of r̄ is σm,n, while, if n = 0, then σm,0 and σm,p−1 are the two Serre weights of r̄.

Part (2) follows from (1) by Lemma 2.14(2) and Corollary 2.11. We prove parts (1), (3)
and (4) simultaneously. If σ is not of the form σa,p−1, the claims about Rp(σ) are a standard
consequence of (unipotent) Fontaine–Laffaille theory; for example, the irreducible case with
O = Zp is [FM95, Theorem B2], and the reducible case follows in the same way. The key
point is that the corresponding weakly admissible modules are either reducible, or are uniquely
determined by the trace and determinant of ϕ, by Lemma 2.6. Concretely, if r̄ is irreducible, then
the crystalline lifts of r̄ of Hodge type σa,b correspond exactly to the weakly admissible modules

D(−(a+ b), 1− a, t, d), where vp(t) > −a− b and p2a+b−1d = µ. The claimed description of the
deformation ring then follows.

Similarly, if r̄ is reducible, then it follows from Fontaine–Laffaille theory (and Assumption 2.2)
that any crystalline lift of Hodge type σa,b is necessarily reducible and indecomposable, and one
finds that these crystalline lifts correspond precisely to those weakly admissible modules with
D(−(a+ b), 1− a, t, d), where vp(t) = −a− b, pa+bt = λ and p2a+b−1d = µ.

This leaves only the case that σ is of the form σa,p−1. In this case the result is immediate
from the main result of [BLZ04], which shows that the above description of the weakly admissible
modules continues to hold.

Finally, (5) is immediate from the main results of [BL94, Bre03a], together with the explicit
description of σ and λ, established above. More precisely, in the case that r̄ is irreducible, the
absolute irreducibility of π is [Bre03a, Theorem 1.1] and its independence of the choice of σ
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is [Bre03a, Theorem 1.3]. If r̄ is reducible and has only a single Serre weight, then the absolute
irreducibility of π is [BL94, Theorem 33(2)]. In the remaining case that r̄ is reducible and has
two Serre weights, then Assumption 2.2 together with the explicit description of λ, µ above
implies that λ2 6= µ, and the absolute irreducibility of π is again [BL94, Theorem 33(2)]. The
independence of π of the choice of σ is [BL94, Corollary 36(2)(b)]. 2

Remark 2.16. It follows from the explicit description of π that it is either a principal series
representation or supersingular, and neither one dimensional nor an element of the special series.
(This would no longer be the case if we allowed r̄ to be a twist of an extension of the trivial
character by the mod p cyclotomic character, when in fact π would be an extension of a one-
dimensional representation and a special representation, which would also depend on the Serre
weight if r̄ is peu ramifié.)

Remark 2.17. If π has central character ψ, then det r̄ = ψω−1.

3. Patched modules and arithmetic actions

We now introduce the notion of an arithmetic action of (a power series ring over) Rp on an
O[G]-module. It is not obvious from the definition that any examples exist, but we will explain
later in this section how to deduce the existence of an example from the results of [CEGGPS16]
(that is, from the Taylor–Wiles patching method). The rest of the paper is devoted to showing
a uniqueness result for such actions, and thus deducing that they encode the p-adic local
Langlands correspondence for GL2(Qp). We anticipate that the axiomatic approach taken here
will be useful in other contexts (for example, for proving local–global compatibility in the p-adic
Langlands correspondence for GL2(Qp) in global settings other than those considered in [Eme11]
or [CEGGPS16]).

3.1 Axioms
Fix an integer d > 0 and set R∞ := Rp ⊗̂O O[[x1, . . . , xd]]. Then an O[G]-module with an
arithmetic action of R∞ is by definition a non-zero R∞[G]-module M∞ satisfying the following
axioms.
(AA1) M∞ is a finitely generated R∞[[K]]-module.
(AA2) M∞ is projective in the category of pseudocompact O[[K]]-modules.
Let σ◦ be a K-stable O-lattice in σ = σa,b. Set

M∞(σ◦) := (Homcont
O[[K]](M∞, (σ

◦)d))d,

where we are considering continuous homomorphisms for the profinite topology on M∞ and the
p-adic topology on (σ◦)d. This is a finitely generated R∞-module by (AA1) and [Paš15, Corollary
2.5].
(AA3) For any σ, the action of R∞ on M∞(σ◦) factors through R∞(σ) := Rp(σ)[[x1, . . . , xd]].

Furthermore, M∞(σ◦) is maximal Cohen–Macaulay over R∞(σ), and the R∞(σ)[1/p]-
module M∞(σ◦)[1/p] is locally free of rank 1 over its support.

For each σ◦, we have a natural action of H(σ◦) on M∞(σ◦) and thus of H(σ) on M∞(σ◦)[1/p].
(AA4) For any σ, the action of H(σ) on M∞(σ◦)[1/p] is given by the composite

H(σ)
η
→ Rp(σ)[1/p]→ Rp(σ)[[x1, . . . , xd]][1/p],

where H(σ)
η
→ Rp(σ)[1/p] is defined in [CEGGPS16, Theorem 4.1].
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Remark 3.2. While these axioms may appear somewhat mysterious, as we will see in the

next subsection they arise very naturally in the constructions of [CEGGPS16]. (Indeed, those

constructions give modules M∞ satisfying obvious analogues of the above conditions for GLn(K)

for any finite extension K/Qp; however, our arguments in the rest of the paper will only apply

to the case of GL2(Qp).)

In these examples, axioms (AA1) and (AA2) essentially follow from the facts that spaces of

automorphic forms are finite dimensional, and that the cohomology of zero-dimensional Shimura

varieties is concentrated in a single degree (degree zero). Axioms (AA3) and (AA4) come from

the existence of Galois representations attached to automorphic forms on unitary groups, and

from local–global compatibility at p for automorphic forms of level prime to p.

The following remark explains how axiom (AA4) is related to Breuil’s original formulation of

the p-adic Langlands correspondence in terms of unitary completions of locally algebraic vectors;

see also the proof of Proposition 6.17 below.

Remark 3.3. Axiom (AA4) is, in the presence of axioms (AA1)–(AA3), equivalent to an

alternative axiom (AA4′), which expresses a pointwise compatibility with the classical local

Langlands correspondence, as we now explain. Write R∞(σ) := Rp(σ)[[x1, . . . , xd]]. If y is a

maximal ideal of R∞(σ)[1/p] which lies in the support of M∞(σ◦)[1/p], then we write

Πy := Homcont
O (M∞ ⊗R∞,y Oκ(y), E).

We write x for the corresponding maximal ideal of Rp(σ)[1/p], rx for the deformation of r̄

corresponding to x and set πsm(rx) := r−1
p (WD(rx)F−ss), which is the smooth representation of

G corresponding to the Weil–Deligne representation associated to rx by the classical Langlands

correspondence rp (normalized as in § 1.12). We write πalg(rx) for the algebraic representation

of G whose restriction to K is equal to σ.

(AA4′) For any σ and for any y and x as above, there is a non-zero G-equivariant map

πsm(rx)⊗ πalg(rx)→ Πl.alg
y .

That (AA1)–(AA4) imply (AA4′) is a straightforward consequence of the defining property of

the map η. Conversely, assume (AA1)–(AA3) and (AA4′), and write

R∞(σ) := R∞(σ)/Ann(M∞(σ◦)).

It follows from (AA3) that the natural map R∞(σ)[1/p] → EndR∞(σ)[1/p](M∞(σ◦)[1/p]) is an

isomorphism, as it is injective and the cokernel is not supported on any maximal ideal of

R∞(σ)[1/p]. In particular, the action of H(σ◦) on M∞(σ◦) induces a homomorphism η′ :H(σ)→

R∞(σ)[1/p]. We have to show that this agrees with the map induced by η.

It follows from (AA4′) and the defining property of η that η and η′ agree modulo every

maximal ideal of Rp(σ)[1/p] in the support of M∞(σ◦). It follows from (AA3) that R∞(σ)[1/p]

is a union of irreducible components of R∞(σ)[1/p]. Since R∞(σ)[1/p] is reduced, we conclude

that R∞(σ)[1/p] is reduced; thus, the intersection of all maximal ideals is equal to zero. Hence,

(AA4) holds.
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3.4 Existence of a patched module M∞
We now briefly recall some of the main results of [CEGGPS16], specialized to the case of two-
dimensional representations. We emphasize that these results use only the Taylor–Wiles–Kisin
patching method, and use nothing about the p-adic Langlands correspondence for GL2(Qp). (We
should perhaps remark, though, that we do make implicit use of the results of [B-LGGT14] in
the globalization part of the argument, and thus of the Taylor–Wiles–Kisin method for unitary
groups of rank 4, and not just for U(2).) We freely use the notation of [CEGGPS16].

Enlarging F if necessary, we see from [CEGGPS16, Lemma 2.2] that the hypotheses on r̄ at
the start of [CEGGPS16, § 2.1] are automatically satisfied. We fix the choice of weight ξ and
inertial type τ in [CEGGPS16, § 2.3] in the following way: we take τ to be trivial, and we take ξ
to be the weight corresponding to a Serre weight of r̄, as in Lemma 2.15.

With this choice, the modification of the Taylor–Wiles–Kisin method carried out
in [CEGGPS16, § 2.6] produces for some d > 0 an R∞-moduleM∞ with an action ofG. (Note that
for our choice of r̄, ξ and τ , the various framed deformation rings appearing in [CEGGPS16] are
formal power series rings overO, and the framed deformation ring of r̄ is formally smooth over Rp,
so all of these rings are absorbed into the power series ring O[[x1, . . . , xd]]. The module M∞ is
patched from the cohomology of a definite unitary group over some totally real field in which p
splits completely.)

This R∞[G]-module automatically satisfies the axioms (AA1)–(AA4) above. Indeed, (AA1)
and (AA2) follow from [CEGGPS16, Proposition 2.10] and (AA3) follows from [CEGGPS16,
Lemmas 4.17(1) and 4.18(1)]. Finally, (AA4) is [CEGGPS16, Theorem 4.19].

4. Existence and uniqueness of arithmetic actions

We fix an O[G]-module M∞ with an arithmetic action of R∞ in the sense of § 3.1.

4.1 Serre weights and cosocles
Now let σ = σa,b be a Serre weight and let σ◦ be a K-stable O-lattice in σa,b, so that
σ◦/$σ◦ = σ. We define M∞(σ) = Homcont

O[[K]](M∞, (σ)∨)∨, so that by (AA2) we have M∞(σ) =

M∞(σ◦)/$M∞(σ◦). By definition, the deformation ring Rp(σ) = Rp(σa,b) is non-zero if and only
if σ is a Serre weight of r̄. Set R∞(σ) = Rp(σ)[[x1, . . . , xd]].

We let π denote the absolutely irreducible smooth F-representation of G associated to r̄ via
Lemma 2.15(5).

Proposition 4.2. (i) We have M∞(σ◦) 6= 0 if and only if σ is a Serre weight of r̄, in which case
M∞(σ◦) is a free R∞(σ)-module of rank 1.

(ii) If σ is a Serre weight of r̄, then the action of H(σ) on M∞(σ) factors through the natural
map Rp(σ)/$→ R∞(σ)/$, and M∞(σ) is a flat H(σ)-module.

(iii) If π′ is an irreducible smooth F-representation of G, then we have

HomG(π′,M∨∞) 6= 0

if and only if π′ is isomorphic to π.

Proof. It follows from (AA3) that M∞(σ◦) 6= 0 only if Rp(σ)[1/p] 6= 0, which is equivalent to
σ being a Serre weight of r̄. In this case, since σ = σa,b with 0 6 b 6 p − 1, R∞(σ) is formally
smooth over O by Lemma 2.15, so it follows from (AA3) and the Auslander–Buchsbaum theorem
that M∞(σ◦) is a free R∞(σ)-module of finite rank and that M∞(σ◦)[1/p] is a locally free
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R∞(σ)[1/p]-module of rank 1. Thus, M∞(σ◦) is free of rank 1 over R∞(σ). This proves the ‘only
if’ direction of (1).

For (2), note that M∞(σ◦) 6= 0 if and only if M∞(σ) 6= 0, so we may assume that M∞(σ◦) 6= 0.
The first part of (2) follows from (AA4) together with Lemmas 2.15(2) and 2.14(2). For the
remaining part of (2), note that Rp(σ)/$ is flat over H(σ) by Lemmas 2.14 and 2.15, and
M∞(σ) is flat over Rp(σ)/$ by the only if part of (1), as required.

To prove (3), we first note that it is enough to prove the statement for absolutely irreducible
π′ as we may enlarge the field F. Let us assume that π′ is absolutely irreducible and let σ′ be an
irreducible representation of K contained in the socle of π′. It follows from [BL94, Bre03a] that
the surjection c-IndGK σ

′ � π′ factors through the map

(c-IndGK σ
′)⊗H(σ′),α′ F� π′, (4.3)

where α′ : H(σ′) → F is given by the action of H(σ′) on the one-dimensional F-vector space
HomK(σ′, π′). Moreover, (4.3) is an isomorphism unless π′ is a character or special series. Since

M∞(σ′) ∼= HomK(σ′,M∨∞)∨ ∼= HomG(c-IndGK σ
′,M∨∞)∨,

from (4.3) we obtain a surjection of R∞(σ′)-modules

M∞(σ′)⊗H(σ′),α′ F ∼= HomG(c-IndGK σ
′ ⊗H(σ′),α′ F,M∨∞)∨ � HomG(π′,M∨∞)∨,

which moreover is an isomorphism if π′ is not a character or special series. Thus, if HomG(π′,M∨∞)
is non-zero, then we deduce from the previous displayed expression that M∞(σ′)⊗H(σ′),α′ F 6= 0.
In particular, M∞(σ′) 6= 0 and hence σ′ is a Serre weight for r̄ by the only if part of (1).

We claim that α′ coincides with the morphism α of Lemma 2.15(3) (with σ′ in place of σ).
To see this, note that by the only if part of (1), we have that (Rp(σ

′)/$) ⊗H(σ′),α′ F 6= 0 and

hence by Lemma 2.15(4) we find that Ĥ(σ′)⊗H(σ′),α′ F 6= 0, where Ĥ(σ′) denotes the completion
of H(σ′) with respect to the kernel of the morphism α. This proves that α and α′ coincide.

Part (5) of Lemma 2.15 now implies that π ∼= (c-IndGK σ
′)⊗H(σ′),α′ F. Hence, (4.3) gives us a

G-equivariant surjection π � π′, which is an isomorphism as π is irreducible.
Conversely, it follows from (AA1) that there is an irreducible smooth F-representation π′ of G

such that HomG(π′,M∨∞) is non-zero; we have just seen that π ∼= π′, so that HomG(π,M∨∞) 6= 0,
as required.

Finally, suppose that σ is a Serre weight of r̄. Then as above we have an isomorphism of
R∞(σ)-modules

M∞(σ)⊗H(σ),α F ∼= HomG(π,M∨∞)∨ 6= 0,

so that M∞(σ) 6= 0. This completes the proof of the ‘if’ direction of (1). 2

4.4 Smooth and admissible representations
We record a few definitions, following [Paš13, § 2]. Let (R,m) be a complete local noetherian
O-algebra with residue field F. Then Modsm

G (R) is the full subcategory of the category of R[G]-
modules consisting of smooth objects. More precisely, these are objects V such that

V =
⋃
H,n

V H [mn],

where the union is taken over open compact subgroups H ⊂ G and over positive integers n.
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We say that an object V of Modsm
G (R) is admissible if V H [mn] is a finitely generated

R-module for every compact open subgroup H ⊂ G and every n > 1. Moreover, V is called locally
admissible if, for every v ∈ V , the smallest R[G]-submodule of V containing v is admissible.
We let Modl.adm

G (R) denote the full subcategory of Modsm
G (R) consisting of locally admissible

representations.
The categories Modsm

G (R) and Modl.adm
G (R) are abelian (see [Eme10] for the second one) and

have enough injectives.

Definition 4.5. (i) A monomorphism ι : N ↪→ M in an abelian category is called essential if,
for every non-zero subobject M ′ ⊂M , ι(N) ∩M ′ is non-zero.

(ii) An injective envelope of an object N of an abelian category is an essential monomorphism
ι : N ↪→ I with I an injective object of the abelian category.

If they exist, injective envelopes are unique up to (non-unique) isomorphism. By [Paš13,
Lemma 2.3], the category Modsm

G (R) admits injective envelopes. The category Modl.adm
G (R) also

admits injective envelopes. (This follows from [Paš10, Lemma 3.2] and the fact that the inclusion
of Modl.adm

G (R) into Modsm
G (R) has a right adjoint, namely the functor to which any smooth

G-representation associates its maximal locally admissible subrepresentation.)

Lemma 4.6. If V is a locally admissible representation of G, then the inclusion socG(V ) ↪→ V
is essential.

Proof. Any non-zero subrepresentation of V contains a non-zero finitely generated
subrepresentation. Thus, it suffices to show that any non-zero finitely generated subrepresentation
W of V has a non-zero intersection with socG(V ). Since socG(V ) ∩W = socG(W ), it suffices to
show that any such subrepresentation has a non-zero socle. This follows from the fact that every
finitely generated admissible representation ofG is of finite length by [Eme10, Theorem 2.3.8]. 2

Definition 4.7. (i) An epimorphism q : M � N in an abelian category is called essential if a
morphism s : M ′→M is an epimorphism whenever q ◦ s is an epimorphism.

(ii) A projective envelope of an object N of an abelian category is an essential epimorphism
q : P � N with P a projective object in the abelian category.

Pontryagin duality reverses arrows, so it exchanges injective and projective objects as well
as injective and projective envelopes.

4.8 Projectivity of M∞
Our first aim is to show that M∨∞ is an injective locally admissible representation of G.

Lemma 4.9. M∨∞ is an admissible object of Modsm
G (R∞) and thus lies in Modl.adm

G (O).

Proof. Dually, it is enough by [Eme10, Lemma 2.2.11] to show that M∞ is a finitely generated
R∞[[K]]-module, which is (AA1). 2

Lemma 4.10. Let m be a maximal ideal of H(σ) with residue field κ(m). Then

Tor
H(σ)
i (c-IndGK σ, κ(m)) = 0, ∀i > 0.
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Proof. Since the map F → F is faithfully flat, we can and do assume that F is algebraically
closed. Since H(σ) = F[S±1, T ], we have m = (S − µ, T − λ) for some µ ∈ F×, λ ∈ F. Since the
sequence S − µ, T − λ is regular in H(σ), the Koszul complex K• associated to it is a resolution
of κ(m) by free H(σ)-modules [Mat89, Theorem 16.5(i)]. Thus, the complex K• ⊗H(σ) c-IndGK σ
computes the Tor-groups we are after, and to verify the claim it is enough to show that the
sequence S − µ, T − λ is regular on c-IndGK σ.

If f ∈ c-IndGK σ, then (Sf)(g) = f(gz), where z =
(p 0

0 p

)
. Since such an f is supported only

on finitely many cosets K\G, we deduce that the map

c-IndGK σ
S−µ−→ c-IndGK σ

is injective. The quotient is isomorphic to c-IndGZK σ, where z acts on σ by µ. It follows from the
proof of [BL94, Theorem 19] that c-IndGZK σ is a free F[T ]-module. Thus, the map

c-IndGZK σ
T−λ−→ c-IndGZK σ

is injective and the sequence S − µ, T − λ is regular on c-IndGK σ, as required. 2

Lemma 4.11. Let m be a maximal ideal of H(σ). Then

ExtiG(κ(m)⊗H(σ) c-IndGK σ,M
∨
∞) = 0, ∀i > 1,

where the Ext-groups are computed in Modsm
G (O).

Proof. We first prove that ExtiG(c-IndGK σ,M
∨
∞) = 0 for all i > 1. Let M∨∞ ↪→ J• be an injective

resolution of M∨∞ in Modsm
G (O). Since

HomK(τ, J |K) ∼= HomG(c-IndGK τ, J)

and the functor c-IndGK is exact, the restriction of an injective object in Modsm
G (O) to K is

injective in Modsm
K (O). Thus, (J•)|K is an injective resolution of M∨∞|K in Modsm

K (O). Since
HomG(c-IndGK σ, J

•) ∼= HomK(σ, (J•)|K), we conclude that we have natural isomorphisms

ExtiG(c-IndGK σ,M
∨
∞) ∼= ExtiK(σ,M∨∞), ∀i > 0.

Since M∞ is a projective O[[K]]-module by (AA2), M∨∞ is injective in Modsm
K (O) and thus the

Ext-groups vanish, as claimed.
Let F•� κ(m) be a resolution of κ(m) by finite free H(σ)-modules. Lemma 4.10 implies that

the complex F• ⊗H(σ) c-IndGK σ is a resolution of κ(m)⊗H(σ) c-IndGK σ by acyclic objects for the
functor HomG(∗,M∨∞). We conclude that the cohomology of the complex

HomG(F• ⊗H(σ) c-IndGK σ,M
∨
∞)

computes the groups ExtiG(κ(m) ⊗H(σ) c-IndGK σ,M
∨
∞). We may think of the transition maps

in F• as matrices with entries in H(σ). The functor HomG(∗,M∨∞)∨ transposes these matrices
twice; thus, we get an isomorphism of complexes:

HomG(F• ⊗H(σ) c-IndGK σ,M
∨
∞)∨ ∼= F• ⊗H(σ) HomG(c-IndGK σ,M

∨
∞)∨ ∼= F• ⊗H(σ) M∞(σ).

The above isomorphism induces a natural isomorphism

(ExtiG(κ(m)⊗H(σ) c-IndGK σ,M
∨
∞))∨ ∼= Tor

H(σ)
i (κ(m),M∞(σ)), ∀i > 0.

The isomorphism implies the assertion, as M∞(σ) is a flat H(σ)-module by Proposition 4.2(2).
2
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Lemma 4.12. Let y : H(σ) → F′ be a homomorphism of F-algebras, where F′ is a finite
field extension of F. Let λ′ := F′ ⊗H(σ),y c-IndGK σ and let λ be an absolutely irreducible
F-representation of G, which is either a principal series or supersingular. If λ is a subquotient of
λ′, then λ′ is isomorphic to a direct sum of finitely many copies of λ.

Proof. In the course of the proof we will use the following fact repeatedly: if A and B are
F-representations of G and A is finitely generated as an F[G]-module, then

HomG(A,B)⊗F F ∼= HomG(A⊗F F, B ⊗F F), (4.13)

where F denotes the algebraic closure of F; see [Paš13, Lemma 5.1]. Then

F⊗F λ
′ ∼= F⊗F F′ ⊗H(σ),y c-IndGK σ

∼=
⊕
ι:F′→F

F⊗H(σ),ι◦y c-IndGK σ, (4.14)

where the sum is taken over F-algebra homomorphisms ι : F′→ F. By the classification theorems
of Barthel and Livné [BL94] and Breuil [Bre03a], each representation F ⊗H(σ),ι◦y c-IndGK σ is
irreducible, an extension of a special series by a character or an extension of a character by a
special series. Since λ is a subquotient of λ′ by assumption, λ ⊗F F is a subquotient of λ′ ⊗F F
and, since λ is neither a special series nor a character, we deduce that

λ⊗F F ∼= F⊗H(σ),ι◦y c-IndGK σ

for some embedding ι : F′ ↪→ F. For every τ ∈ Gal(F/F), we have

F⊗H(σ),τ◦ι◦y c-IndGK σ
∼= F⊗F,τ (F⊗H(σ),ι◦y c-IndGK σ) ∼= F⊗F,τ (F⊗F λ) ∼= F⊗F λ.

Hence, all the summands in (4.14) are isomorphic to λ ⊗F F. It follows from (4.13) that λ′ is
isomorphic to a direct sum of copies of λ, as required. 2

Theorem 4.15. M∨∞ is an injective object in Modl.adm
G (O).

Proof. Let M∨∞ ↪→ J be an injective envelope of M∨∞ in Modl.adm
G (O). Lemma 4.6 shows that

the composition socGM
∨
∞ ↪→ M∨∞ ↪→ J is an essential monomorphism and thus induces an

isomorphism between socGM
∨
∞ and socG J . Proposition 4.2(3) shows that socGM

∨
∞, and thus

also socG J , is isomorphic to a direct sum of copies of the representation π associated to r̄ via
Lemma 2.15(5).

Let us assume that the quotient J/M∨∞ is non-zero; then there is a smooth irreducible
K-subrepresentation σ ⊂ J/M∨∞. Let κ be the G-subrepresentation of J/M∨∞ generated by σ.
Since J/M∨∞ is locally admissible, and σ is finitely generated as a K-representation, κ is an
admissible representation of G. Thus, HomG(c-IndGK σ, κ) ∼= HomK(σ, κ) is a finite-dimensional
F-vector space.

Let m be any irreducibleH(σ)-submodule of HomG(c-IndGK σ, κ). Since m is finite dimensional
over F, Schur’s lemma implies that F′ := EndH(σ)(m) is a finite-dimensional division algebra
over F. Since F is a finite field, we deduce that F′ is a finite field extension of F. Since H(σ) is
commutative, we further deduce that m is a one-dimensional F′-vector space and thus obtain a
surjective homomorphism of F-algebras y : H(σ) � F′. Moreover, by the construction of m, we
obtain a non-zero G-equivariant map:

π′ := F′ ⊗H(σ),y c-IndGK σ→ κ ⊂ J/M∨∞.
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Since Ext1
G(π′,M∨∞) = 0 by Lemma 4.11, by applying HomG(π′, ∗) to the exact sequence 0→

M∨∞→ J → J/M∨∞→ 0, we obtain a short exact sequence

0→ HomG(π′,M∨∞)→ HomG(π′, J)→ HomG(π′, J/M∨∞)→ 0.

Moreover, we know that HomG(π′, J/M∨∞) is non-zero. Hence, HomG(π′, J) is non-zero.
Fix a non-zero G-equivariant map ϕ : π′ → J ; then ϕ(π′) ∩ socG J 6= 0. Since socG J is

isomorphic to a direct sum of copies of π, we find that π is an irreducible subquotient of π′. It
follows from Lemma 4.12 that π′ is then isomorphic to a finite direct sum of copies of π and so in
particular is semisimple. As we have already noted, the map M∨∞ ↪→ J induces an isomorphism
socGM

∨
∞
∼= socG J and so the map HomG(π′,M∨∞) → HomG(π′, J) is an isomorphism. This

implies that HomG(π′, J/M∨∞) = 0, contradicting the assumption J/M∨∞ 6= 0. Hence, M∨∞ = J is
injective, as required. 2

4.16 Removing the patching variables
We now show that we can pass from M∞ to an arithmetic action of Rp on a projective envelope
of π∨, where as always π is the representation associated to r̄ via Lemma 2.15(5). Let (A,m) be
a complete local noetherian O-algebra. Let C(A) be the Pontryagin dual of Modl.adm

G (A), where,
for the moment, we allow G to be any p-adic analytic group. There is a forgetful functor from
C(A) to C(O). In this subsection we prove a structural result about objects P of C(A) that are
projective in C(O). We will apply this result to P = M∞ and G = GL2(Qp).

Lemma 4.17. Let (A,m) be a complete local noetherian F-algebra with residue field F. Let
P ∈ C(A) be such that P is projective in C(F) and the map P � cosocC(F) P is essential. Assume
that all irreducible subquotients of cosocC(F) P are isomorphic to some given object S, for which
EndC(F)(S) = F. If HomC(F)(P, S)∨ is a free A-module of rank 1, then there is an isomorphism

A ⊗̂F Proj(S) ∼= P in C(A), where Proj(S)� S is a projective envelope of S in C(F).

Proof. The assumption on the cosocle of P implies that (cosocP )∨ is isomorphic to a direct sum
of copies of λ := S∨. This means that we have natural isomorphisms:

(cosocP )∨ ∼= λ⊗F HomG(λ, (cosocP )∨) ∼= λ⊗F HomC(F)(cosocP, S).

Taking Pontryagin duals, we get a natural isomorphism in C(F):

HomC(F)(cosocP, S)∨ ⊗̂F S ∼= cosocP.

Since the isomorphism is natural, it is an isomorphism in C(A) with the trivial action of A
on S. Hence, we get a surjection in C(A):

P � HomC(F)(cosocP, S)∨ ⊗̂F S.

The surjection Proj(S)� S induces a surjection

HomC(F)(cosocP, S)∨ ⊗̂F Proj(S)� HomC(F)(cosocP, S)∨ ⊗̂F S,

with trivial A-action on Proj(S). The source of this surjection is projective in C(A), since in
general for a compact A-module m,

HomC(A)(m ⊗̂F Proj(S),−) ∼= HomA(m,HomC(F)(Proj(S),−)), (4.18)
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and HomC(F)(cosocP, S)∨ = HomC(F)(P, S)∨ is projective since it is a free A-module of rank 1.

Hence, there is a map HomC(F)(cosocP, S)∨ ⊗̂F Proj(S)→ P in C(A) such that the diagram

HomC(F)(cosocP, S)∨ ⊗̂F Proj(S)

����

//P

����
HomC(F)(cosocP, S)∨ ⊗̂F S

∼= //cosocP

commutes. If we forget the A-action, then we obtain a map in C(F) between projective objects,
which induces an isomorphism on their cosocles. Hence, the map is an isomorphism in C(F) and
hence also an isomorphism in C(A). 2

Proposition 4.19. Let A be a complete local noetherian O-algebra with residue field F, that
is O-flat. Let P in C(A) be such that P is projective in C(O) and the map P � cosocC(O) P
is essential. Assume that all the irreducible subquotients of cosocC(O) P are isomorphic to S,
and EndC(O)(S) = F. If HomC(O)(P, S)∨ is a free A/$A-module of rank 1, then there is an
isomorphism in C(A):

A ⊗̂O Proj(S) ∼= P,

where Proj(S)� S is a projective envelope of S in C(O).

Proof. A special case of Lemma 4.17 implies that the reductions of A ⊗̂O Proj(S) and P modulo
$ are isomorphic in C(F). Arguing as in (4.18), we deduce that A ⊗̂O Proj(S) is projective in
C(A). Thus, there is a map in C(A),

A ⊗̂O Proj(S)→ P,

which is an isomorphism modulo $. If V is a cokernel of this map, then V/$V = 0, and
Nakayama’s lemma for compact O-modules implies that V = 0. Since P is projective, this
surjection must split. Since the map is an isomorphism modulo $, if U is the kernel of this
map then the decomposition A ⊗̂O Proj(S) ∼= U ⊕ P implies that U/$U = 0 and so U = 0,
as required. 2

Corollary 4.20. Let A, P and S be as in Proposition 4.19. Then, for any O-algebra
homomorphism x : A→ O, P ⊗̂A,xO is a projective envelope of S in C(O).

Proof. It follows from Proposition 4.19 that

P ⊗̂A,xO ∼= (Proj(S) ⊗̂O A) ⊗̂A,xO ∼= Proj(S). 2

Remark 4.21. If we replace the assumption in Proposition 4.19 that HomC(O)(P, S)∨ is a free
A/$A-module of rank 1 with the assumption that it is free of rank n, then we have an
isomorphism A⊕n ⊗̂O Proj(S) ∼= P in C(A).

Indeed, a generalization of Lemma 4.17 to the rank n case gives an isomorphism in C(F) of
A⊕n ⊗̂O Proj(S) and P modulo $. (In fact, the statement of Lemma 4.17 can be strengthened
as follows: if HomC(F)(P, S)∨ is a projective object in the category of compact A-modules, then

we have an isomorphism HomC(F)(P, S)∨ ⊗̂F ProjS ' P . The key is again the projectivity of

the completed tensor product HomC(F)(P, S)∨ ⊗̂F ProjS, which follows from our assumption and
from (4.18).) We then upgrade the isomorphism modulo $ to an isomorphism in C(A) as in the
proof of Proposition 4.19, again relying on (4.18).
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We now apply the results above in the special case of P = M∞ and G = GL2(Qp).

Proposition 4.22. Let A = O[[x1, . . . , xd]] and choose a homomorphism of local O-algebras

A→ R∞ that induces an isomorphism Rp ⊗̂O A ∼= R∞. Then there is an isomorphism in C(A):

M∞ ∼= P̃ ⊗̂O A,

where P̃ � π∨ is a projective envelope of π∨ in C(O).

Proof. Theorem 4.15 implies that M∞ is projective in C(O). As we already noted in the proof of

that theorem, since M∨∞ is locally admissible, it follows from Lemma 4.6 that socGM
∨
∞ ↪→M∨∞

is essential and hence that M∞ � cosocC(O)M∞ is essential. Proposition 4.2(3) implies that all

the irreducible subquotients of cosocC(O)M∞ are isomorphic to π∨. It is therefore enough to

show that

M∞(π) := HomC(O)(M∞, π
∨)∨ ∼= HomG(π,M∨∞)∨

is a free A/$-module of rank 1, since the assertion then follows from Proposition 4.19.

As in the proof of Proposition 4.2, we have

M∞(π) ∼= F⊗H(σ) M∞(σ) ∼= F⊗H(σ◦) M∞(σ◦).

It follows from Proposition 4.2(1) that M∞(π) is a free F ⊗H(σ◦) R∞(σ)-module of rank 1.

Since R∞(σ) ∼= Rp(σ) ⊗̂O A and the map H(σ) → R∞(σ)/$ factors through Rp(σ)/$ by

Proposition 4.2(2), we conclude that the map A→ R∞ induces an isomorphism

A/$ ∼= F⊗H(σ◦) R∞(σ).

(Recall that F⊗H(σ◦) Rp(σ)/$ = F, by Lemma 2.15(4).) Thus, M∞(π) is a free A/$-module of

rank 1, as required. 2

Corollary 4.23. Let A→ R∞ be as in Proposition 4.22 and let x : A→O be a homomorphism

of local O-algebras. Then M∞ ⊗̂A,xO is a projective envelope of π∨ in C(O) with a continuous

Rp ∼= R∞ ⊗A,x O-action, which commutes with the action of G.

Proof. This follows from Corollary 4.20. 2

4.24 Uniqueness of arithmetic actions

As in the statement of Proposition 4.22, we let P̃ � π∨ be a projective envelope of π∨ in C(O).

Proposition 4.25. P̃ can be endowed with an arithmetic action of Rp (in the sense of § 3.1

when d = 0).

Proof. Making any choice of morphism x : A→O in Corollary 4.23, we obtain an action of Rp on

M∞ ⊗̂A,xO ∼= P̃ . Since the action of R∞ on M∞ is an arithmetic action, it follows immediately

from the definitions that this induced action of Rp on P̃ is also an arithmetic action. 2
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4.26 Recapping capture
We now very briefly recall the theory of capture from [CDP14, § 2.4], specialized to the case of
interest to us. We note that analogues of these results are valid for general choices of G, and in
particular do not use either Colmez’s functor or p-adic Langlands correspondence for GL2(Qp).

Let M be a compact linear-topological O[[K]]-module, and let {Vi}i∈I be a set of continuous
K-representations on finite-dimensional E-vector spaces.

Definition 4.27. We say that {Vi}i∈I captures M if for any proper quotient M � Q, we have
Homcont

O[[K]](M,V ∗i ) 6= Homcont
O[[K]](Q,V

∗
i ) for some i ∈ I.

This definition is used only in the proof of the following result.

Proposition 4.28. Suppose that φ ∈ Endcont
O[[K]](P̃ ) kills each Homcont

O[[K]](P̃ , σ
∗
a,b) for a ∈ Z and

b ∈ Z>0. Then φ = 0.

Proof. Since P̃ is projective in C(O), it follows from [CDP14, Proposition 2.12] that the set
{σa,b} captures P̃ . The result follows from [CDP14, Lemma 2.9] (that is, from an application of
the definition of capture to the cokernel of φ). 2

Set M(σ◦) := (Homcont
O[[K]](P̃ , (σ

◦)d))d.

Lemma 4.29. Let σ = σa,b with a ∈ Z and b ∈ Z>0 and let my be a maximal ideal of H(σ). Then
κ(y)⊗H(σ)M(σ◦)[1/p] 6= 0 if and only if mx := η(my)Rp(σ)[1/p] is a maximal ideal of Rp(σ)[1/p]

in the support of M(σ◦)[1/p] for some (equivalently, any) arithmetic action of Rp on P̃ .

Proof. Since M(σ◦) is a finitely generated Rp(σ)-module and the action of H(σ) on M(σ◦)[1/p]
factors through the action of Rp(σ)[1/p] via η, we deduce that κ(y)⊗H(σ)M(σ◦)[1/p] is a finitely
generated κ(y) ⊗H(σ) Rp(σ)[1/p]-module. If κ(y) ⊗H(σ) M(σ◦)[1/p] 6= 0, then we deduce from
Lemma 2.12 that mx is a maximal ideal of Rp(σ)[1/p] in the support of M(σ◦). Conversely, if y
is the image of x then using Lemma 2.12 we obtain κ(x) = κ(y)⊗H(σ) Rp(σ)[1/p] and hence:

κ(x)⊗Rp(σ)[1/p] M(σ◦)[1/p] ∼= κ(y)⊗H(σ) M(σ◦)[1/p],

which implies that κ(y)⊗H(σ) M(σ◦)[1/p] is non-zero. 2

Theorem 4.30. There is a unique arithmetic action of Rp on P̃ .

Proof. The existence of such an action follows from Proposition 4.25.
Let σ = σa,b with a ∈ Z and b ∈ Z>0. Let y ∈ m-SpecH(σ) such that κ(y) ⊗H(σ) M(σ◦)

[1/p] 6= 0. Lemma 4.29 implies that y is the image of x ∈ m-SpecRp(σ)[1/p], which lies in the
support of M(σ◦). Proposition 2.13 implies that

̂M(σ◦)[1/p]my = ̂M(σ◦)[1/p]mx

as ̂Rp(σ)[1/p]mx-modules. Moreover, the action of ̂Rp(σ)[1/p]mx on ̂M(σ◦)[1/p]my does not depend

on a given arithmetic action of Rp on P̃ , as it acts via the isomorphism in Proposition 2.13. If
M is a finitely generated module over a noetherian ring R, then we have injections:

M ↪→
∏
m

Mm ↪→
∏
m

M̂m,
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where the product is taken over all the maximal ideals in R. In fact, it is enough to take the
product over finitely many maximal ideals: if p1, . . . , pn are minimal associated primes of M , just
pick any maximal ideals m1 ∈ V (p1), . . . ,mn ∈ V (pn). (The second injection follows from [Mat89,
Theorem 8.9].) This observation applied to R = Rp(σ)[1/p] and M = M(σ◦)[1/p] together with
Lemma 4.29 implies that we have an injection of Rp(σ)[1/p]-modules:

M(σ◦)[1/p] ↪→
∏

y∈m-SpecH(σ)

̂M(σ◦)[1/p]my .

Since the map and the action of Rp(σ)[1/p] on the right-hand side are independent of the

arithmetic action of Rp on P̃ , we deduce that the action of Rp(σ)[1/p] on M(σ◦)[1/p] is also

independent of the arithmetic action of Rp on P̃ .

If θ : Rp → EndC(O)(P̃ ) and θ′ : Rp → EndC(O)(P̃ ) are two arithmetic actions and r ∈ Rp,
then it follows from the above that θ(r)− θ′(r) will annihilate M(σ◦a,b) for all a ∈ Z and b ∈ Z>0.
Proposition 4.28 implies that θ(r) = θ′(r). 2

Remark 4.31. A different proof of the theorem could be given using [CDP14, Proposition 2.19].

Theorem 4.32. If P̃ � π∨ is a projective envelope of π∨ in C(O) equipped with an arithmetic
action of Rp, then there is an isomorphism in C(R∞)

P̃ ⊗̂Rp R∞ ∼= M∞.

Proof. Let A = O[[x1, . . . , xd]] and choose a homomorphism of local O-algebras A→ R∞ which
induces an isomorphism Rp ⊗̂O A ∼= R∞. Proposition 4.22 implies that there is an isomorphism

P̃ ⊗̂O A ∼= M∞ in C(A); it is therefore enough to show that this isomorphism is Rp-linear. Any

O-algebra homomorphism x : A→ O induces an isomorphism (P̃ ⊗̂O A) ⊗̂A,xO ∼= M∞ ⊗̂A,xO
in C(O). We get two actions of Rp on M∞ ⊗̂A,xO: one of them coming from the action of Rp
on M∞, the other transported by the isomorphism. Both actions are arithmetic: the first one
by Proposition 4.25, the second one by assumption. Theorem 4.30 implies that the two actions
coincide; thus, the isomorphism (P̃ ⊗̂O A) ⊗̂A,xO ∼= M∞ ⊗̂A,xO is Rp-linear.

We have a commutative diagram in C(A):

P̃ ⊗̂O A

��

∼= //M∞

��∏
x:A→O

(P̃ ⊗̂O A) ⊗̂A,xO
∼= //

∏
x:A→O

M∞ ⊗̂A,xO

where the product is taken over all O-algebra homomorphisms x : A→ O. We know that both
vertical and the lower horizontal arrows are Rp-linear. The map A →

∏
x:A→OO is injective

(see for example [Paš13, Lemma 9.22]). Since P̃ is O-torsion free, the functor P̃ ⊗̂O − is exact
and hence the first vertical arrow is injective, which implies that the top horizontal arrow is
Rp-linear. 2

Remark 4.33. The preceding result shows that, in particular, the construction of M∞ in
[CEGGPS16] is independent of the choices made in the case of GL2(Qp). More precisely, the
isomorphism

P̃ ⊗̂Rp R∞ ∼= M∞
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exhibits M∞ as the extension of scalars of P̃ , and this latter object, with its arithmetic Rp-action,
is independent of all choices by Theorem 4.30. Thus, the only ambiguity in the construction
of M∞ is in the number of power series variables in R∞, and in their precise action. As one
is free to choose as many Taylor–Wiles primes as one wishes in the patching construction, and
as the presentations of global deformation rings as quotients of power series rings over local
deformation rings are non-canonical, it is evident that this is the exact degree of ambiguity that
the construction of M∞ is forced to permit.

5. Unitary completions of principal series representations

In this section, we record some arguments related to the paper [BB10], which proves using (ϕ,Γ)-
module techniques that the locally algebraic representations associated to crystabelline Galois
representations admit a unique unitary completion. We will use the machinery developed in the
previous sections, namely the projective envelope P̃ and the purely local map Rp→ EndC(O)(P̃ ),
to independently deduce (without using (ϕ,Γ)-module techniques) that the locally algebraic
representations corresponding to crystalline types of regular weight admit at most one unitary
completion satisfying certain properties, and that such a completion comes from some P̃ .

We will use this result in § 7 below to show, assuming the existence results of [BB10],
that certain of these representations occur in completed cohomology. This gives an alternative
approach to proving modularity results in the crystalline case.

As in § 2, we write σ = σa,b = deta⊗ SymbE2. Let θ : H(σ)→ E be a homomorphism, and
set Ψ := (c-IndGK σ)⊗H(σ),θ E; so Ψ is a locally algebraic principal series representation of G.

Theorem 5.1. If Ψ is irreducible, then Ψ admits at most one non-zero admissible unitary
completion Ψ̂ with the following property: for an open bounded G-invariant lattice Θ in
Ψ̂, (Θ/$) ⊗F Fp contains no subquotient of the form (IndGB χ ⊗ χω−1)sm, for any character

χ : Q×p → F×p , and no special series or characters.
If a completion satisfying this property exists, then it is absolutely irreducible.

Proof. Let Π be a non-zero admissible unitary completion of Ψ that satisfies the property in
the statement of the theorem. We will first show that Π is absolutely irreducible (and, indeed,
most of the work of the proof will be in showing this). We note that in the course of the proof
we are allowed to replace E by a finite field extension E′, since if Π ⊗E E′ is an absolutely
irreducible E′-Banach space representation of G, then Π is an absolutely irreducible E-Banach
space representation of G.

Since Π is admissible, it will contain an irreducible closed sub-Banach space representation
Π1. If we let Π′ denote the quotient Π/Π1, then we must show that Π′ is zero. For the moment,
we note simply that if Π′ is non-zero, then since the composite Ψ→ Π→ Π′ has dense image,
we see that Π′ is another non-zero admissible unitary completion of Ψ.

Let Θ be an open bounded G-invariant lattice in Π and let Θ1 := Π1 ∩ Θ. Since Π1 is also
admissible, Θ1/$ will contain an irreducible subquotient π. Since we are allowed to enlarge
E, we may assume that π is absolutely irreducible. Let P̃ � π∨ be a projective envelope of
π∨ in C(O). By the assumption on the subquotients of Θ/$, there is a Galois representation
r̄ satisfying Assumption 2.2 that corresponds to π via Lemma 2.15(5). We equip P̃ with the
arithmetic action of Rp provided by Theorem 4.30.

We let (for any admissible unitary E-Banach space representation Π of G)

M(Π) := HomC(O)(P̃ ,Θ
d)d[1/p] ∼= Homcont

G (Π,Homcont
O (P̃ , E))d.
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The projectivity of P̃ implies that Π 7→M(Π) is an exact covariant functor from the category of
admissible unitary E-Banach space representations of G to the category of Rp[1/p]-modules. In

particular, we have an injection M(Π1) ↪→ M(Π). Since P̃ is projective and π is a subquotient
of Θ1/$, we have M(Π1) 6= 0 by [Paš13, Lemma 4.13] and hence M(Π) 6= 0.

Similarly, we let

M(Ψ) := HomG(Ψ,Homcont
O (P̃ , E))d ∼= M(σ◦)[1/p]⊗H(σ),θ E.

Recall that H(σ) acts on M(σ◦)[1/p] through the composite of the homomorphism H(σ)
η−→

Rp(σ)[1/p] and the Rp[1/p]-action on M(σ◦)[1/p] and that, by Lemma 4.29, either the fibre

module M(σ◦)[1/p]⊗H(σ),θ E vanishes or else θ extends to a homomorphism θ̂ : Rp(σ)[1/p]→ E

(so that then θ = θ̂ ◦ η), in which case there is a natural isomorphism

M(σ◦)[1/p]⊗H(σ),θ E
∼−→M(σ◦)[1/p]⊗

Rp(σ)[1/p],θ̂
E

of E-vector spaces of dimension at most 1.
The map Ψ→ Π induces a continuous homomorphism

Homcont
G (Π,Homcont

O (P̃ , E))→ HomG(Ψ,Homcont
O (P̃ , E)).

Since the image of Ψ in Π is dense, this map is injective and, by taking duals, we obtain a
surjection of Rp[1/p]-modules

M(Ψ)�M(Π).

Since the target is non-zero, and the source is an E-vector space of dimension at most 1, this must
be an isomorphism. Since M(Π1) is a non-zero subspace of M(Π), we therefore have induced
isomorphisms M(Π1)

∼−→ M(Π)
∼−→ M(Ψ). Since, as was noted above, M is an exact functor,

we find that M(Π′) = 0.
We digress for a moment in order to establish that Π1 is in fact absolutely irreducible. Since

it is irreducible and admissible, its endomorphism ring is a division algebra over E. On the other
hand, since M is a functor, and since M(Π1) is one dimensional over E, we see that this division
algebra admits a homomorphism to E. Thus, this division algebra is in fact equal to E and this
implies that Π1 is absolutely irreducible by [Paš13, Lemma 4.2].

Suppose now that Π′ 6= 0. We may then apply the above argument with Π′ in place of Π,
and find an absolutely irreducible subrepresentation Π2 of Π′, a GQp-representation r̄′ and an

associated irreducible GL2(Qp)-representation π′, for which the projective envelope P̃2 of (π′)∨

gives rise to an exact functor M ′ such that M ′(Ψ) = M ′(Π′) = M ′(Π2), with all three being one
dimensional.

Since both M(Ψ) and M ′(Ψ) are non-zero, we find that each of r̄ and r̄′ admits a lift that
is a lattice in a crystalline representation V of Hodge–Tate weights (1− a,−(a+ b)) determined
(via Lemma 2.6) by the homomorphism θ̂ : Rp[1/p] → E. (Strictly speaking, for this to make
sense we need to know that V is indecomposable; but this is automatic, since each of r̄ and r̄′ is
indecomposable and has non-scalar semisimplification.)

We note that V is reducible if and only if Ψ may be identified with the locally algebraic
subrepresentation of a continuous induction (IndGB χ)cont, for some unitary character χ : T → E×,
where T denotes the diagonal torus contained in the upper-triangular Borel subgroup B of G.
In this case it is well known that this continuous induction is the universal unitary completion
of Ψ, see [BE10, Proposition 2.2.1], and the theorem is true in this case. Thus, for the remainder
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of the argument, we suppose that V is irreducible or, equivalently, that Ψ does not admit an

embedding into the continuous parabolic induction of a unitary character.

We now consider separately two cases, according to whether or not r̄ and r̄′ are themselves

isomorphic. If they are, then M and M ′ are isomorphic functors, and we obtain a contradiction

from the fact that M(Π′) = 0 while M ′(Π′) is one dimensional, implying that in fact Π′ = 0, as

required.

If r̄ and r̄′ are not isomorphic, but have isomorphic semisimplifications, then they must

each consist of an extension of the same two characters, but in opposite directions. In this case

π ∼= (IndGB ωχ1⊗χ2)sm, π′ ∼= (IndGB ωχ2⊗χ1)sm, for some smooth characters χ1, χ2 : Qp
×
→ F×.

In the terminology of [Col10b], π and π′ are the two constituents of an atome automorphe, which

by definition is the unique (up to isomorphism) non-split extension between π and π′.

We first show that Π2 = Π′. To this end, set Π′′ := Π′/Π2. If Π′′ 6= 0, then, running through

the above argument another time, we find r̄′′, etc, such that (r̄′′)ss ∼= (r̄′)ss ∼= r̄ss, and such that

M ′′(Π′′) 6= 0. But either r̄′′ ∼= r̄ or r̄′′ ∼= r̄′. Thus, the functor M ′′ is isomorphic to either M ′

or to M . On the other hand, M ′(Π′′) = 0 and also M(Π′′) = 0 (since Π′′ is a quotient of Π′

and M(Π′) = 0). This contradiction shows that Π′′ = 0 and thus that Π′ = Π2 is absolutely

irreducible.

Since M(Π′) = 0, we see that Θ′/$ does not contain a copy of π as a subquotient (here Θ′

denotes some choice of G-invariant lattice in Π′). Since (as we have just shown) Π′ is absolutely

irreducible, it follows from [Paš13, Corollary 8.9] that Π′ ∼= (IndGB χ)cont for some unitary

character χ : T → E×, where T denotes the diagonal torus contained in the upper-triangular

Borel subgroup B of G. (The proof of this result uses various Ext computations in Modl.adm
G (O),

but does not use either of Colmez’s functors. The basic idea is that the extension of π′ by π

given by the atome automorphe induces an embedding P̃ ↪→ P̃ ′ whose cokernel is dual to the

induction from B to G of a character; since M(Π′) = 0, we see that Θ′ embeds into this induction

and so is itself such an induction.) Thus, Ψ admits an embedding into the continuous parabolic

induction of a unitary character, contradicting our hypothesis that V is irreducible. Thus, we

conclude that in fact Π′ = 0, as required.

If Ψ were to admit two non-isomorphic admissible irreducible unitary completions Π1 and Π2

satisfying the assumptions of the theorem, the image of the diagonal map Ψ→ Π1 ⊕ Π2 would

be dense in Π1 ⊕Π2. This yields a contradiction to what we have already proved, as Π1 ⊕Π2 is

not irreducible. 2

Remark 5.2. It follows from the proof of Theorem 5.1 that if a completion Ψ̂ of the kind

considered there exists, then there is a Galois representation r̄ satisfying Assumption 2.2 such

that θ extends to a homomorphism θ̂ : Rp(σ)[1/p]→ E. Furthermore, for any M∞ as in § 3, we

have M∞(σ◦)[1/p]⊗H(σ),θ E 6= 0.

Conversely, if there is an r̄ satisfying Assumption 2.2 such that θ extends to a homomorphism

θ̂ : Rp(σ)[1/p]→ E, then the existence of a completion Ψ̂ is immediate from the main theorem

of [BB10] (which shows that some completion exists) together with the main theorem of [Ber10]

(which implies the required property of the subquotients).

Remark 5.3. As is true throughout this paper, the results of this section are equally valid for

crystabelline representations, but for simplicity of notation we have restricted ourselves to the

crystalline case.
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6. Comparison to the local approach

We now examine the compatibility of our constructions with those of [Paš13], which work with

fixed central characters. The arguments of [Paš13] make use of Colmez’s functor, and the results

of this section therefore also depend on this functor. In § 6.24 we briefly discuss how to prove

some of the more elementary statements in [Paš13] using the results of the previous section (and

in particular not using Colmez’s functor). We assume throughout this section that p > 5, as this

assumption is made in various of the results of [Paš13] that we cite.

There are two approaches that we could take to this comparison. One would be to note that

the axioms of § 3.1 and arguments of § 4 admit obvious analogues in the setting of a fixed central

character, and thus show that if we pass to a quotient of M∞ with fixed central character, we

obtain a uniquely determined p-adic Langlands correspondence. These axioms are satisfied by

the purely local object constructed in [Paš13] (which is a projective envelope of π∨ in a category

of representations with fixed central character), and this completes the comparison.

While this route would be shorter, we have preferred to take the second approach, and go

in the opposite direction: we promote the projective envelope from [Paš13] to a representation

with non-constant central character by tensoring with the universal deformation of the trivial

one-dimensional representation (which has a natural Galois action by local class field theory),

and show that this satisfies the axioms of § 3.1. This requires us to make a careful study of various

twisting constructions; the payoff is that we prove a stronger result than that which would follow

from the first approach.

6.1 Deformation rings and twisting

Let Λ be the universal deformation ring of the trivial one-dimensional representation of GQp and

let 1univ be the universal deformation. Then 1univ is a free Λ-module of rank 1 with a continuous

GQp-action. We let G act on 1univ via the inverse determinant (composed with the Artin map).

We let Λur be the quotient of Λ unramified deformations. We note that Λ and Λur are formally

smooth over O of relative dimensions 2 and 1, respectively, and in particular are O-torsion free.

Let ψ : GQp → O× be a continuous character such that ψε−1 is congruent to det r̄ modulo $.

(By Remark 2.17, this implies that ψ modulo $ considered as a character of Q×p coincides with

the central character of π.) We let Rψp denote the quotient of Rp parameterizing deformations with

determinant ψε−1. Let runiv,ψ be the tautological deformation of r̄ to Rψp . Then runiv,ψ ⊗̂O 1univ

is a deformation of r̄ to Rψp ⊗̂O Λ. Since p > 2, this induces an isomorphism of local O-algebras

Rp
∼=−→ Rψp ⊗̂O Λ. (6.2)

Let Rψp (σ) denote the quotient of Rp(σ) corresponding to deformations of determinant ψε−1;

note that Rψp (σ) = 0 unless ψ|Z×p is equal to the central character of σ. If ψ|Z×p is equal to the

central character of σ, then the isomorphism Rp
∼=−→ Rψp ⊗̂O Λ induces an isomorphism

Rp(σ)
∼=−→ Rψp (σ) ⊗̂O Λur. (6.3)

Let δ : GQp → O× be a character that is trivial modulo $. Twisting by δ induces

isomorphisms of O-algebras

twδ : Rp
∼−→ Rp, twδ : Rψδ

2

p
∼−→ Rψp .
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(In terms of the deformation functor Dr̄ pro-represented by Rp, and the deformation functors

Dψ
r̄ and Dψδ2

r̄ pro-represented by Rψp and Rψδ
2

p , these isomorphisms are induced by the natural
bijections

Dr̄(A)
∼−→ Dr̄(A), Dψ

r̄ (A)
∼−→ Dψδ2

r̄ (A)

defined by rA 7→ rA ⊗ δ.) Similarly, we obtain isomorphisms

twδ : Λ
∼−→ Λ, twδ : Λ(δ)ur ∼−→ Λur

and we have a commutative diagram

Rp

id

��

∼=
(6.2)

//Rψδ
2

p ⊗̂O Λ

twδ ⊗̂ twδ−1

��
Rp

∼=
(6.2)

//Rψp ⊗̂O Λ

(6.4)

6.5 Unfixing the central character

Let Modl.adm,ψ
G (O) be the full subcategory of Modl.adm

G (O), consisting of those representations

where Z acts by the central character ψ. Let Cψ(O) be the Pontryagin dual of Modl.adm,ψ
G (O), so

that we can identify Cψ(O) with a full subcategory of C(O) consisting of those objects on which
Z acts by ψ−1.

Let P̃ψ � π∨ be a projective envelope of π∨ in Cψ(O). By [Paš13, Proposition 6.3,
Corollary 8.7 and Theorem 10.71], there is a natural isomorphism

Rψp
∼−→ EndC(O)(P̃

ψ). (6.6)

In Corollary 6.23 below, we will prove a version of the isomorphism (6.6) for Rp.

Lemma 6.7. Let δ : GQp → O× be a character that is trivial modulo $. There is an isomorphism
in C(O):

ϕ : P̃ψδ
2 ∼−→ P̃ψ ⊗ δ−1 ◦ det.

Moreover, the following diagram commutes:

Rψδ
2

p

(6.6) ∼=
��

twδ
∼=

//Rψp

(6.6)∼=
��

EndC(O)(P̃
ψδ2)

∼= //EndC(O)(P̃
ψ)

where the lower horizontal arrow is given by α 7→ ϕ ◦ α ◦ ϕ−1.

Proof. The claimed isomorphism follows from the fact that twisting by δ−1 ◦ det induces an
equivalence of categories between Cψ(O) and Cψδ

2
(O), so that the twist of a projective envelope of

π∨ in Cψ(O) is a projective envelope of π∨ in Cψδ
2
(O). The commutativity of the diagram follows

from the compatibility of the constructions of [Paš13], and in particular of the isomorphism (6.6),
with twisting. (This comes down to the compatibility of the functor V̌, discussed below, with
twisting.) 2
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Let δ : GQp → O× be a character that is trivial modulo $. There is an evident isomorphism
of pseudocompact O[[GQp ]]-modules:

θ : 1univ ⊗ δ ∼−→ 1univ

and a commutative diagram

Λ

∼=
��

twδ−1

∼=
//Λ

∼=
��

Endcont
GQp

(1univ)
∼= //Endcont

GQp
(1univ)

(6.8)

where the lower horizontal arrow is given by α 7→ θ◦α◦θ−1. (In terms of the deformation functor
D1 pro-represented by Λ, the isomorphism twδ−1 is induced by the bijection D1(A)

∼−→ D1(A)
defined by χ 7→ χδ−1.)

Lemma 6.9. Let δ : Q×p → O× be a character that is trivial modulo $. Then there is an
isomorphism

P̃ψδ
2 ⊗̂O 1univ ∼−→ P̃ψ ⊗̂O 1univ

in the category C(Rp), where Rp acts on both sides by the isomorphism of (6.2).

Proof. Using Lemma 6.7 and (6.8), we obtain isomorphisms in C(O):

P̃ψδ
2 ⊗̂O 1univ ϕ ⊗̂ id−→ (P̃ψ ⊗ δ−1 ◦ det) ⊗̂O 1univ

∼−→ P̃ψ ⊗̂O(1univ ⊗ δ ◦ det)
id ⊗̂ θ−→ P̃ψ ⊗̂O 1univ.

The composition of these isomorphisms is equal to φ ⊗̂ θ : P̃ψδ
2 ⊗̂O 1univ ∼−→ P̃ψ ⊗̂O 1univ, which

is an isomorphism in C(O). It follows from Lemma 6.7 and (6.8) that the following diagram
commutes:

Rψδ
2

p ⊗̂O Λ

��

twδ ⊗̂ twδ−1

∼=
//Rψp ⊗̂O Λ

��
EndC(O)(P̃

ψδ2 ⊗̂O 1univ)
∼= //EndC(O)(P̃

ψ ⊗̂O 1univ)

where the lower horizontal arrow is given by α 7→ (ϕ ⊗̂ θ) ◦ α ◦ (ϕ ⊗̂ θ)−1. It follows from the
above diagram and (6.4) that ϕ ⊗̂ θ is an isomorphism in C(Rp). 2

Proposition 6.10. P̃ψ ⊗̂O 1univ is projective in the category of pseudocompact O[[K]]-modules.

Proof. Let I1 := {g ∈ K : g ≡
(

1 ∗
0 1

)
(mod $)}. Then I1 is a pro-p Sylow subgroup of K and it is

enough to show that P̃ψ ⊗̂O 1univ is projective in the category of pseudocompact O[[I1]]-modules.
Since I1 is a pro-p group, there is only one indecomposable projective object in the category,
namely O[[I1]], and thus a pseudocompact O[[I1]]-module is projective if and only if it is pro-free,
which means that it is isomorphic to

∏
j∈J O[[I1]] for some indexing set J .

Let Γ := 1 + pZp. We identify Γ with the image in Gab
Qp of the wild inertia subgroup of GQp .

We may identify Λ with the completed group algebra of the pro-p completion of Gab
Qp , which is
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isomorphic to Γ × Zp. There is an isomorphism of O-algebras Λ ∼= O[[Γ]][[x]], and in particular
1univ is a pro-free and hence projective O[[Γ]]-module.

The restriction of P̃ψ to K is projective in the category of pseudocompact O[[K]]-modules
on which Z ∩K acts by the central character ψ−1 [Paš15, Corollary 5.3]. By restricting further
to I1, we deduce that P̃ψ is projective in the category of pseudocompact O[[I1]]-modules, where
Z1 := I1 ∩ Z acts by the central character ψ−1.

Since p > 2, there is a character δ : Γ → O× such that δ2 = ψ. Twisting by characters
preserves projectivity, so that 1univ ⊗ δ is projective in the category of pseudocompact O[[Γ]]-
modules and P̃ψ ⊗ (δ ◦ det) is projective in the category of pseudocompact O[[I1]]-modules on
which Z1 acts trivially. We may identify this last category with the category of pseudocompact
O[[I1/Z1]]-modules.

We have an isomorphism of I1-representations

P̃ψ ⊗̂O 1univ ∼= (P̃ψ ⊗ δ ◦ det) ⊗̂O(1univ ⊗O δ),

where I1 acts on 1univ ⊗O δ via the homomorphism I1 → Γ, g 7→ (det g)−1. We may therefore
assume that ψ|Z1 is trivial, so that P̃ψ is projective in the category of pseudocompact O[[I1/Z1]]-
modules. Thus, there are indexing sets J1 and J2 such that

P̃ψ|I1 ∼=
∏
j1∈J
O[[I1/Z1]], 1univ ∼=

∏
j2∈J2

O[[Γ]],

where the first isomorphism is an isomorphism of pseudocompact O[[I1]]-modules, and the
second isomorphism is an isomorphism of pseudocompact O[[Γ]]-modules. Since completed tensor
products commute with products, we obtain an isomorphism of pseudocompact O[[I1]]-modules:

(P̃ψ ⊗̂O 1univ) ∼=
∏
j1∈J1

∏
j2∈J2

O[[I1/Z1]] ⊗̂OO[[Γ]].

Since p > 2, the determinant induces an isomorphism between Z1 and Γ. Thus, the map I1 →

I1/Z1×Γ, g 7→ (gZ1, (det g)−1) is an isomorphism of groups. The isomorphism induces a natural
isomorphism of O[[I1]]-modules, O[[I1]] ∼= O[[I1/Z1]] ⊗̂OO[[Γ]]. We conclude that P̃ψ ⊗̂O 1univ is
a pro-free and hence a projective O[[I1]]-module. 2

Remark 6.11. We will see in Theorem 6.18 below that in fact P̃ψ ⊗̂O 1univ is a projective object
of C(O). It is not so difficult to prove this directly, but we have found it more convenient to
deduce it as part of the general formalism of arithmetic actions.

Proposition 6.12. Let σ = σa,b, and let δ : Q×p → O× be a character that is trivial modulo
$, chosen so that ψδ2|Z×p is the central character of σ◦. Then there is a natural isomorphism of

Rp-modules

Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d
∼=−→ Homcont

O[[K]](P̃
ψδ2 , (σ◦)d)d ⊗̂O Λur,

where Rp acts on the left-hand side via the isomorphism Rp ∼= Rψp ⊗̂O Λ and on the right-hand

side via the isomorphism Rp ∼= Rψδ
2

p ⊗̂O Λ.

Proof. Using Lemma 6.9, we may assume that ψ|K∩Z is the central character of σ. We note
that 1univ ⊗Λ Λur is the largest quotient of 1univ on which K ∩ Z acts trivially. Since the
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central character of (σ◦)d is ψ−1|Z×p , and the central character of P̃ψ is ψ−1, we have a natural

isomorphism

Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d
∼=−→ Homcont

O[[K]](P̃
ψ ⊗̂O(1univ ⊗Λ Λur), (σ◦)d)d.

Since K acts trivially on 1univ ⊗Λ Λur, we have an isomorphism:

Homcont
O[[K]](P̃

ψ ⊗̂O(1univ ⊗Λ Λur), (σ◦)d)d ∼= Homcont
O[[K]](P̃

ψ ⊗̂O Λur, (σ◦)d)d,

where Λur carries a trivial K-action and Rp acts by the isomorphism Rp ∼= Rψp ⊗̂O Λ. To finish

the proof, we need to construct a natural isomorphism of Rψp ⊗̂O Λ-modules:

Homcont
O[[K]](P̃

ψ ⊗̂O Λur, (σ◦)d)d ∼= Homcont
O[[K]](P̃

ψ, (σ◦)d)d ⊗̂O Λur. (6.13)

Both sides of (6.13) are finitely generatedRψp ⊗̂O Λur-modules. The m-adic topology onRψp ⊗̂O Λur

induces a topology on them, and makes them into pseudocompact, O-torsion-free O-modules. It
is therefore enough to construct a natural isomorphism between the Schikhof duals of both sides
of (6.13). To ease the notation, we let A = P̃ψ, B = Λur, C = (σ◦)d. Since for a pseudocompact
O-module D, we have Dd = Homcont

O (D,O) ∼= lim
←−n Homcont

O (D,O/$n), using the adjointness

between ⊗̂O and Homcont
O (see [Bru66, Lemma 2.4]), we obtain natural isomorphisms

(Homcont
O (A,C)d ⊗̂O B)d ∼= Homcont

O (B, (Homcont
O (A,C)d)d)

∼= Homcont
O (B,Homcont

O (A,C)) ∼= Homcont
O (A ⊗̂O B,C)

and hence a natural isomorphism

Homcont
O (A ⊗̂O B,C)d ∼= Homcont

O (A,C)d ⊗̂O B.

Since the isomorphism is natural and K acts trivially on B, we obtain a natural isomorphism

Homcont
O[[K]](A ⊗̂O B,C)d ∼= Homcont

O[[K]](A,C)d ⊗̂O B.

Since the action of Rψp commutes with the action of K and the isomorphism is natural, we deduce
that (6.13) holds. 2

Proposition 6.14. For any σ, the action of Rp ∼= Rψp ⊗̂O Λ on

M ′(σ◦) := Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d

factors through Rp(σ). Moreover, M ′(σ◦) is a maximal Cohen–Macaulay Rp(σ)-module and
M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module of rank 1.

Remark 6.15. Recall that M(σ◦) was defined in the last section. Soon we will see from
Theorem 6.18 below that P̃

∼−→ P̃ψ ⊗̂O 1univ and thus also that M(σ◦) 'M ′(σ◦).

Proof. If the central character of σ is not congruent to ψ|Z×p modulo $, then both Rp(σ) and

M ′(σ◦) are zero. Otherwise, there is a character δ : Qp
×
→ O× trivial modulo $ such that

(ψδ2)|Z×p is equal to the central character of σ. Proposition 6.12 gives us an isomorphism of

Rp-modules

M ′(σ◦) ∼= Mψδ2(σ◦) ⊗̂O Λur, (6.16)
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where Mψδ2(σ◦) := Homcont
O[[K]](P̃

ψδ2 , (σ◦)d)d, and the action of Rp on the right-hand side is

given by Rp ∼= Rψδ
2

p ⊗̂O Λ. The action of Rψδ
2

p on Mψδ2(σ◦) factors through the action of

Rψδ
2

p (σ) and makes it into a maximal Cohen–Macaulay Rψδ
2

p (σ)-module [Paš15, Corollaries 6.4

and 6.5]. Since Λur ∼= O[[x]], we conclude that Mψδ2(σ◦) ⊗̂O Λur is a maximal Cohen–Macaulay

Rψδ
2

p (σ) ⊗̂O Λur-module. Using (6.3), we see that M ′(σ◦) is a maximal Cohen–Macaulay Rp(σ)-
module. Since Rp(σ)[1/p] is a regular ring, a standard argument using the Auslander–Buchsbaum
theorem shows that M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module. It follows from [Paš15,
Propositions 4.14 and 2.22] that

dimκ(x)M
ψδ2(σ◦)⊗

Rψδ
2

p
κ(x) = 1, ∀x ∈ m-SpecRψδ

2

p (σ)[1/p].

This together with (6.16) gives us

dimκ(x)M
′(σ◦)⊗Rp κ(x) = 1, ∀x ∈ m-SpecRp(σ)[1/p].

Hence, M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module of rank 1. 2

The natural action of H(σ◦) on M ′(σ◦) commutes with the action of Rp(σ) and hence induces
an action of H(σ) on M ′(σ◦)[1/p]. Since M ′(σ◦)[1/p] is locally free of rank 1 over Rp(σ)[1/p] by
Proposition 6.14, we obtain a homomorphism of E-algebras:

α : H(σ)→ EndRp(σ)[1/p](M
′(σ◦)[1/p]) ∼= Rp(σ)[1/p].

Proposition 6.17. The map α : H(σ) → Rp(σ)[1/p] coincides with the map η : H(σ) →
Rp(σ)[1/p] constructed in [CEGGPS16, Theorem 4.1].

Proof. It is enough to show that the specializations of α and η at x coincide for x in a Zariski
dense subset of m-SpecRp(σ)[1/p]. The isomorphism Rp ∼= Rψp ⊗̂O Λ maps x to a pair (y, z),

where y ∈ m-SpecRψp [1/p] and z ∈ m-Spec Λ[1/p], so that if runiv
x , runiv,ψ

y and 1univ
z are Galois

representations corresponding to x, y and z, respectively, then

runiv
x
∼= runiv,ψ

y ⊗ 1univ
z .

Let

Πx := Homcont
O ((P̃ψ ⊗̂O 1univ) ⊗̂Rp Oκ(x), E),

Πy := Homcont
O (P̃ψ ⊗̂

Rψp
Oκ(y), E).

Then both are unitary G-Banach space representations and we have

Πx
∼= Πy ⊗ (1univ

z ◦ det).

It follows from [Paš15, Proposition 2.22] that HomK(σ,Πx) is a one-dimensional κ(x)-vector
space, and the action of H(σ) on it coincides with the specialization of α at x, which can be
written as the composite

H(σ)→ Endκ(x)(M
′(σ◦)⊗Rp κ(x)) ∼= κ(x).

Since σ is an algebraic representation of K, we have

HomK(σ,Πx) ∼= HomK(σ,Πl.alg
x ),

where Πl.alg
x is the subspace of locally algebraic vectors in Πx.
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It follows from the main result of [Paš13] that the specialization Πx of P̃ψ coincides with the
Banach space representation attached to runiv

x via the p-adic local Langlands correspondence. It
is then a consequence of the construction of the appropriate cases of the p-adic local Langlands
correspondence (that is, the construction of Πx) that there is an embedding

πsm(runiv
x )⊗ πalg(runiv

x ) ↪→ Πl.alg
x ,

where πsm(runiv
x ) = r−1

p (WD(runiv
x )F−ss) is the smooth representation of G corresponding to the

Weil–Deligne representation associated to runiv
x by the classical Langlands correspondence rp

(normalized as in § 1.12), and πalg(runiv
x ) is the algebraic representation of G whose restriction

to K is equal to σ. Indeed, if the representation runiv
x is irreducible, then (for a Zariski dense

set of x) Πx is a completion of πsm(runiv
x ) ⊗ πalg(runiv

x ) by the main result of [BB10] (see in
particular [BB10, Theorem 4.3.1]), while in the case that runiv

x is reducible, the result follows
from the explicit description of Πx in [BE10].

Since we have already noted that HomK(σ,Πx) is one dimensional, we find that in fact

HomK(σ,Πx) ∼= HomK(σ, πsm(runiv
x )⊗ πalg(runiv

x )) ∼= πsm(runiv
x )K

and the right-hand side of this isomorphism is indeed a one-dimensional vector space on which
H(σ) acts via the specialization of η. 2

Let Rp act on P̃ψ ⊗̂O 1univ via the isomorphism Rp ∼= Rψp ⊗̂O Λ, where (as throughout this

section) the action of Rψp on P̃ψ is via the isomorphism Rψp ∼= EndCψ(O)(P̃
ψ) constructed in

[Paš13].

Theorem 6.18. P̃ψ ⊗̂O 1univ is a projective envelope of π∨ in C(O), and the action of Rp on

P̃ψ ⊗̂O 1univ is arithmetic.

Proof. We will show that the action of Rp on P̃ψ ⊗̂O 1univ satisfies the axioms (AA1)–(AA4)

with d = 0; then the action is arithmetic by definition, and P̃ψ ⊗̂O 1univ is a projective envelope
of π∨ in C(O) by Theorem 4.32 (applied with d = 0 and with M∞ taken to be P̃ψ ⊗̂O 1univ).

It is shown in [Paš15, Proposition 6.1] that F ⊗̂
Rψp

P̃ψ is a finitely generated O[[K]]-module,

so the topological version of Nakayama’s lemma implies that P̃ψ is a finitely generated Rψp [[K]]-

module. Since 1univ is a free Λ-module of rank 1, P̃ψ ⊗̂O 1univ is a finitely generated module over
(Rψp ⊗̂O Λ)[[K]] and so (AA1) holds. Proposition 6.10 implies that (AA2) holds. Proposition 6.14
implies that (AA3) holds (indeed, it shows that the support of M ′(σ◦) is all of Rp(σ)[1/p]).
Proposition 6.17 implies that (AA4) holds. 2

Recall that for each fixed central character ψ : Z → O×, there is an exact functor V̌ from
Cψ(O) to the category of continuous GQp-representations on compact O-modules. This is a
modification of the functor introduced by Colmez in [Col10b]; see [Paš13, § 5.7] for details (we
additionally have to twist the functor in [Paš13] by the inverse of the cyclotomic character
to get the desired relationship between the determinant of the Galois representations and the
central character of GL2(Qp)-representations.) If Π is an admissible unitary E-Banach space
representation of G with central character ψ, and Θ is an open bounded G-invariant lattice in
Π, then the Schikhof dual of Θ is an object of Cψ(O) and V̌(Π) := V̌(Θd)[1/p] does not depend
on the choice of Θ.
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The representation P̃ψ satisfies the conditions (N0), (N1) and (N2) of [Paš15, § 4] by [Paš15,

Proposition 6.1]. In particular, we have V̌(P̃ψ) ∼= runiv,ψ as Rψp [[GQp ]]-modules.
Let R∞ = Rp[[x1, . . . , xd]] and let M∞ be an R∞[G]-module satisfying the axioms (AA1)–

(AA4). To x ∈ m-SpecR∞[1/p] we associate a unitary κ(x)-Banach space representation of G,
Π∞,x := Homcont

O (M∞ ⊗̂R∞ Oκ(x), E). The map Rp→ R∞ induces a map Rp→ κ(x) and we let

runiv
x := runiv ⊗Rp κ(x).

Corollary 6.19. We have an isomorphism of Galois representations V̌(Π∞,x) ∼= runiv
x . In

particular, Π∞,x 6= 0 for all x ∈ m-SpecR∞[1/p].

Proof. Theorem 4.32 allows us to assume that R∞ = Rp and M∞ = P̃ is a projective envelope of

π∨ in C(O). Since an arithmetic action of Rp on P̃ is unique by Theorem 4.30, using Theorem 6.18

we may assume that R∞ = Rψp ⊗̂O Λ and M∞ = P̃ψ ⊗̂O 1univ. Then, with the notation introduced
in the course of the proof of Proposition 6.17, x corresponds to a pair (y, z), Π∞,x = Πx

∼=
Πy ⊗ (1univ

z ◦ det) as in the proof of Proposition 6.17. It follows from [Paš15, Lemma 4.3] that

V̌(Πy) ∼= runiv,ψ
y . Since V̌ is compatible with twisting by characters, we have V̌(Πx) ∼= V̌(Πy)⊗

1univ
z
∼= runiv

x , as required. 2

Corollary 6.20. R∞ acts faithfully on M∞.

Proof. It follows from Corollary 6.19 that M∞⊗R∞ κ(x) is non-zero for all x ∈ m-SpecR∞[1/p].
Since Rp and hence R∞ are reduced, we deduce that the action is faithful. 2

We now use the results of [Paš13] to describe F ⊗̂Rp P̃ . We will use this result in Corollary 7.5
below to describe the m-torsion in the completed cohomology of a modular curve, where m is a
maximal ideal in a Hecke algebra.

Proposition 6.21. The representation π∨ occurs as a subquotient of F ⊗̂Rp P̃ with multiplicity

one. More precisely, if we let κ(r̄) := (F ⊗̂Rp P̃ )∨, then the G-socle filtration of κ(r̄) is described
as follows.

(i) If r̄ is irreducible, then κ(r̄) ∼= π.

(ii) If r̄ is a generic non-split extension of characters (so the ratio of the two characters is not
1, ω±1), the G-socle filtration of κ(r̄) has length two, with graded pieces consisting of π and
of the other principal series representation in the block of π.

(iii) If r̄ ∼=
(

1 ∗
0 ω

)
⊗χ, then the G-socle filtration of κ(r̄) has length three and the graded pieces are

π, the twist by χ◦det of the Steinberg representation and two copies of the one-dimensional
representation χ ◦ det.

Proof. We choose any continuous character ψ such that ψε−1 lifts det r̄. It follows from
Theorem 6.18 that F ⊗̂Rp P̃ ∼= F ⊗̂

Rψp
P̃ψ. Since we can identify the endomorphism ring of P̃ψ

with Rψp , see (6.6), it follows from [Paš13, Lemma 3.7] applied with S = π∨ that any Q in Cψ(O)

satisfying the hypotheses (H1)–(H4) of [Paš13, § 3] is isomorphic to F ⊗̂
Rψp

P̃ψ, so that κ(r̄) ∼= Q∨.

(We leave the reader to check that (H5) is not used to prove this part of [Paš13, Lemma 3.7].) In all
the cases Q has been constructed explicitly in [Paš13] and it is immediate from the construction
of Q that the assertions about the socle filtration hold; see [Paš13, Propositions 6.1 and 8.3 and
Remark 10.33]. 2
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Remark 6.22. In the first two cases of Proposition 6.21, κ(r̄) coincides with what Colmez calls
the atome automorphe in [Col10b, §VII.4]. In the last case, κ(r̄) has an extra copy of χ ◦ det.
This has to do with the fact that Colmez requires that his atome automorphe lift to irreducible
unitary Banach space representations of G.

Corollary 6.23. There is a natural isomorphism Rp
∼−→ EndC(O)(P̃ ).

Proof. Theorems 4.30 and 6.18 yield an isomorphism P̃
∼−→ P̃ψ ⊗̂O 1univ as Rp[G]-modules via

the isomorphism Rp
∼−→ Rψp ⊗̂O Λ given by (6.2). Now Endcont

G (1univ) = Λ, while (6.6) gives

a natural isomorphism Rψp
∼−→ EndC(O)(P̃

ψ). Thus, the corollary amounts to proving that the
natural homomorphism

EndC(O)(P̃
ψ) ⊗̂O Endcont

G (1univ)→ EndC(O)(P̃
ψ ⊗̂O 1univ)

is an isomorphism. The map is an injection of pseudocompact O-algebras. This makes the ring
EndC(O)(P̃ ) into a compact Rp-module. By the topological version of Nakayama’s lemma, in

order to show that the map is surjective it is enough to show that F ⊗̂Rp EndC(O)(P̃ ) is a one-

dimensional F-vector space. Since P̃ is projective, we have an isomorphism:

F ⊗̂Rp EndC(O)(P̃ ) ∼= HomC(O)(P̃ ,F ⊗̂Rp P̃ ).

By Proposition 6.21, π∨ occurs as a subquotient of F ⊗̂Rp P̃ with multiplicity one. Since P̃

is a projective envelope of π∨ and EndC(O)(π
∨) = F, this implies that HomC(O)(P̃ ,F ⊗̂Rp P̃ ) is a

one-dimensional F-vector space, as required. 2

6.24 Endomorphism rings and deformation rings

We maintain the notation of the previous sections; in particular, P̃ denotes a projective envelope
of π∨ in C(O). If we write R̃ := EndC(O)(P̃ ), then the arithmetic action of Rp on P̃ provided by

Theorem 4.30 gives a morphism Rp → R̃, which Corollary 6.23 shows is an isomorphism. The
proof of that corollary uses the analogous statement proved in [Paš13] (when the central character
is fixed), a key input to the proof of which is Colmez’s functor from GL2(Qp)-representations to
Galois representations. It is natural to ask (especially in light of possible generalizations) whether
this isomorphism can be proved using just the methods of the present paper, without appealing
to Colmez’s results. In this subsection we address this question, to the extent that we can.

We begin by noting that since P̃ is a projective envelope of the absolutely irreducible
representation π∨, the ring R̃ is a local ring. We will furthermore give a proof that it is
commutative, from the perspective of this paper. As already noted, this result is not new. Indeed,
in addition to being a consequence of Corollary 6.23 (and thus, essentially, of the results of
[Paš13]), another proof is given in [CDP14] (see Corollary 2.22 of that paper). This latter proof
uses the capturing techniques that we are also employing in the present paper and (since it is
easy to do so) we present a slightly rephrased version of the argument here, in order to illustrate
how it fits naturally into our present perspective.

Proposition 6.25. The ring R̃ is commutative.

Proof. We first prove that the image of Rp in R̃ lies in the centre of R̃. To see this, suppose

that φ ∈ R̃. By Proposition 4.28, to show that φ commutes with the action of Rp, it suffices to
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show that φ commutes with the action of Rp(σ)[1/p] on M(σ◦)[1/p] for each σ. Since the action

of H(σ) on M(σ◦)[1/p] depends only on the G-action on P̃ , we see that φ commutes with the
H(σ)-action on M(σ◦)[1/p]. The desired result then follows from Proposition 2.13.

To see that R̃ is commutative, we again apply Proposition 4.28, by which it suffices to show
that R̃ acts on each M(σ◦)[1/p] through a commutative quotient. This follows from the fact that
each M(σ◦)[1/p] is locally free of rank 1 over its support in SpecRp(σ)[1/p], and the fact that

(by the result of the previous paragraph) the R̃-action commutes with the Rp-action. 2

Remark 6.26. As for proving the stronger result that the canonical map Rp → R̃ is an
isomorphism, in a forthcoming paper two of us (M.E. and V.P.) will establish the injectivity of the
morphism Rp→ R̃. (In fact, we will prove a result in the more general context of [CEGGPS16];
in particular, our arguments will not rely on any special aspects of the GL2(Qp) situation, such as
the existence of Colmez’s functors.) However, proving the surjectivity of this morphism seems to
be more difficult, and we currently do not know a proof of this surjectivity that avoids appealing
to the theory of Colmez’s functor from GL2(Qp)-representations to GQp-representations.

6.27 Speculations in the residually scalar semisimplification case
Suppose for the rest of this section that r̄ ∼=

(χ ∗
0 χ

)
for some χ; so in particular r̄ does not satisfy

Assumption 2.2. It is natural to ask what the modules M∞ constructed in [CEGGPS16] look
like in this case; we give a speculative answer below. By twisting, we may assume that χ is the
trivial character. Let π = (IndGB ω⊗ 1)sm and let P̃ be a projective envelope of π∨. We first give
a conjectural description of EndC(O)(P̃ ), under the assumption p > 2.

LetDps be a functor from the category A of complete local noetherianO-algebras with residue
field F to the category of sets, that assigns to A ∈ A the set of pairs of functions (t, d) : GQp → A,
where:

– d : GQp → A× is a continuous group homomorphism, congruent to det r̄ modulo mA;

– t : GQp → A is a continuous function with t(1) = 2; and,

– for all g, h ∈ GQp , we have:

(i) t(g) ≡ tr r̄(g) (mod mA);

(ii) t(gh) = t(hg);

(iii) d(g)t(g−1h)− t(g)t(h) + t(gh) = 0.

(The ‘ps’ is for ‘pseudocharacter’. By [Che14, Lemma 1.9], Dps(A) is the set of pseudocharacters
deforming the pseudocharacter (tr r̄,det r̄) associated to r̄.) This functor is representable by a
complete local noetherian O-algebra Rps. Let (tuniv, duniv) : GQp → Rps be the universal object.
We expect that there is a natural isomorphism of O-algebras

Ẽ := EndC(O)(P̃ ) ∼= (Rps[[GQp ]]/J)op, (6.28)

where J is the closed two-sided ideal of Rps[[GQp ]] generated by all the elements of the form
g2 − tuniv(g)g + duniv(g) for all g ∈ GQp , and the superscript ‘op’ indicates the opposite algebra.
We note that such an isomorphism has been established in [Paš13, § 9], when the central character
is fixed, and we expect that one can deduce (6.28) from this using the twisting techniques of the
previous subsection.

Let R�p be the framed deformation ring of r̄, let M∞ be the patched module constructed in
[CEGGPS16] (or the variant for the completed cohomology of modular curves that we briefly
discuss in § 7 below) and let R∞ be the patched ring. Then R∞ is an R�p -algebra, and the
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map R�p → R∞ gives rise to a Galois representation r∞ : GQp → GL2(R∞) lifting r̄. The pair
(tr r∞, det r∞) gives us a point in Dps(R∞) and hence a map Rps

→ R∞. Hence, we obtain a
homomorphism of Rps-algebras Rps[[GQp ]]→M2×2(R∞).

The Cayley–Hamilton theorem implies that this map is zero on J , so we obtain a left action
of Rps[[GQp ]]/J on the standard module R∞⊕R∞. If we admit (6.28), then we get a right action

of Ẽ on R∞ ⊕R∞. We expect that there are isomorphisms in C(R∞):

M∞ ∼= (R∞ ⊕R∞) ⊗̂
Ẽ
P̃ ∼= R∞ ⊗̂R�

p
(R�p ⊕R�p ) ⊗̂

Ẽ
P̃ . (6.29)

We note that the representation appearing on the right-hand side of this equation has been
studied by Sander in his thesis [San16], in the setting where the central character is fixed.
Motivated by [San16, Theorem 2], we expect (R∞ ⊕R∞) ⊗̂

Ẽ
P̃ to be projective in the category

of pseudocompact O[[K]]-modules. We do not expect (R∞⊕R∞) ⊗̂
Ẽ
P̃ to be projective in C(O),

so the methods of § 4 cannot directly be applied to this case. However, it might be possible to
prove (6.29) using Colmez’s functor. This would show that M∞ does not depend on the choices
made in the patching process.

7. Local–global compatibility

In this final section, we briefly explain how the results of this paper give a simple new proof of the
local–global compatibility theorem of [Eme11] (under the hypotheses that we have imposed in this
paper, which differ a little from those of [Eme11]: locally at p, we have excluded the case of split
r̄, and have allowed a slightly different collection of indecomposable reducible representations
r̄; and in the global context we consider below, we exclude the possibility of so-called vexing
primes). Applying these considerations to the patched modules constructed in [CEGGPS16]
allows us to prove a local–global compatibility result for the completed cohomology of a compact
unitary group, but, for ease of comparison to [Eme11], we instead briefly discuss the output of
Taylor–Wiles patching for modular curves.

Patching in this context goes back to [TW95], but the precise construction we need is not
in the literature. It is, however, essentially identical to that of [CEGGPS16] (or the variant for
Shimura curves presented in [Sch15]), so to keep this paper at a reasonable length we simply
recall the output of the construction here.

Let ρ : GQ → GL2(F) be an absolutely irreducible odd (so modular, by Serre’s conjecture)
representation and assume that p> 5 and that ρ|GQ(ζp)

is irreducible. Write r̄ := ρ|GQp and assume

that r̄ satisfies Assumption 2.2. Write runiv : GQp → GL2(Rp) for the universal deformation of r̄.
Let N(ρ) be the prime-to-p conductor of ρ; that is, the level of ρ in the sense of [Ser87]. We
assume that if q|N(ρ) with q ≡ −1 (mod p) and ρ|GQq is irreducible, then ρ|IQq is also irreducible.

Remark 7.1. The last condition we have imposed excludes the so-called vexing primes q. The
assumption that there are no vexing primes means that the Galois representations associated to
modular forms of level N(ρ) are necessarily minimally ramified. This assumption can be removed
by considering inertial types at such primes as in [CDT99]. Since the arguments using types are
standard and are orthogonal to the main concerns of this paper, we restrict ourselves to this
simple case.

We caution the reader that while the use of types would also allow us to work at certain
non-minimal levels, the most naive analogues of Theorem 7.4 fail to hold at arbitrary tame levels.
It seems that to formulate a clean statement, one should pass to infinite level at a finite set of
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primes, and formulate the compatibility statement in terms of the local Langlands correspondence

in families of [EH14], as is done in [Eme11].

However, it does not seem to be easy to prove this full local–global compatibility statement

using only the methods of the present paper; indeed, the proof in [Eme11] ultimately makes use of

mod p multiplicity one theorems that rely on q-expansions, whereas, in our approach, we are only

using multiplicity one theorems that result from our patched modules being Cohen–Macaulay,

and certain of our local deformation rings being regular (namely the minimal deformation rings

at places not dividing p, and the deformation rings considered in Lemma 2.15). Note that in

general the (non-minimal) local deformation rings at places away from p need not be regular

(even after inverting p), so that carrying out the patching construction below would result in a

ring R∞ that was no longer formally smooth over Rp, to which the results of § 4 would not apply.

Let T be the usual Hecke algebra acting on (completed) homology and cohomology of modular

curves with (tame) level Γ1(N(ρ)) and O-coefficients; so T is an O-algebra, generated by the

operators Tl, Sl with l - Np. Let m(ρ) be the maximal ideal of T corresponding to ρ (so that

Tl − tr ρ(Frobl) and lSl − det ρ(Frobl) are both zero in T/m(ρ)). Let RQ,N(ρ) be the universal

deformation ring for deformations of ρ that are minimally ramified at primes l 6= p, in the sense

that they have the same conductor as ρ|GQl
(and in particular are unramified if l - N(ρ)). Let

ρuniv
Q,N(ρ) : GQ→ GL2(RQ,N(ρ)) denote the corresponding universal deformation of ρ.

We now use the notation introduced in § 3, so that in particular we write R∞ := Rp ⊗̂O O[[x1,

. . . , xd]] for some d > 0. Patching the completed étale homology of the modular curves Y1(N(ρ))

(and using an argument of Carayol [Car94], as in [Eme11, § 5.5] and [EGS15, §§ 6.2 and 6.3], to

factor out the Galois action on the completed cohomology; see also [Sch15, § 9] for the analogous

patching construction for Shimura curves), we obtain (for some d > 0) an R∞[G]-module M∞
with an arithmetic action, with the further property that there are an ideal a∞ of R∞, an

isomorphism of local O-algebras R∞/a∞
∼−→ RQ,N(ρ) and an isomorphism of RQ,N(ρ)[G×GQ]-

modules

(M∞/a∞)⊗RQ,N(ρ)
(ρuniv

Q,N(ρ))
∗ ∼−→ H̃1,ét(Y1(N(ρ)),O)m(ρ). (7.2)

Here H̃1,ét(Y1(N(ρ)),O) denotes completed étale homology, as described for example in [CE12].

The action of GQ on the left-hand side is via its action on (ρuniv
Q,N(ρ))

∗, which as in (1.12.3) denotes

the RQ,N(ρ)-linear dual of ρuniv
Q,N(ρ).

Remark 7.3. Here we have used implicitly that the minimally ramified local (framed)

deformation rings are all smooth, which follows for example from [CHT08, Lemma 2.4.19];

this ensures that the ring R∞ occurring in the patching argument is formally smooth over Rp.

Theorem 7.4. Let p > 3 be a prime, and let ρ : GQ→ GL2(F) be an absolutely irreducible odd

representation, with the property that ρ|GQ(ζp)
is irreducible, N(ρ) is not divisible by any vexing

primes and ρ|GQp satisfies Assumption 2.2. Then there is an isomorphism of RQ,N(ρ)[G × GQ]-

modules

H̃1,ét(Y1(N(ρ)),O)m(ρ)
∼−→ P̃ ⊗̂Rp (ρuniv

Q,N(ρ))
∗,

where the completed tensor product on the right-hand side is computed by regarding (ρuniv
Q,N(ρ))

∗

as a GQ-representation on an Rp-module via the natural morphism Rp→ RQ,N(ρ).
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Proof. As noted before Remark 7.1, ρ is modular by Serre’s conjecture, so in particular M∞ is
not zero. By Theorem 4.32, there is an isomorphism of R∞[G]-modules

M∞ ∼= P̃ ⊗̂OO[[x1, . . . , xd]] ∼= P̃ ⊗̂Rp R∞.

Quotienting out by a∞ yields an isomorphism

M∞/a∞ ∼= P̃ ⊗̂Rp RQ,N(ρ).

The result now follows by tensoring both sides with (ρuniv
Q,N(ρ))

∗ and applying (7.2). 2

We now show how to compute the m(ρ)-torsion in the completed étale cohomology of modular
curves H̃1

ét(Y1(N(ρ)),O) as a GL2(Qp)-representation.

Corollary 7.5. Under the assumptions of Theorem 7.4, we have an isomorphism of F[G×GQ]-
modules

H̃1
ét(Y1(N(ρ)),F)[m(ρ)] ' κ(ρ|GQp )⊗F ρ,

where κ(ρ|GQp ) is the representation defined in Proposition 6.21.

Proof. The Pontryagin dual of the left-hand side is H̃1,ét(Y1(N(ρ)),O) ⊗̂RQ,N(ρ)
F. By

Theorem 7.4, we have an isomorphism of F[G×GQ]-modules

H̃1,ét(Y1(N(ρ)),O) ⊗̂RQ,N(ρ)
F ' (F ⊗̂Rp P̃ ) ⊗̂F ρ

∗ ∼= κ(ρ|GQp )∨ ⊗̂F ρ
∗,

the last isomorphism following from the definition of κ(ρ|GQp ). Passing to Pontryagin duals (and

noting that since ρ is an F-representation, we have ρ∗ = ρ∨) gives the result. 2

Remark 7.6. Corollary 7.5 together with Proposition 6.21 gives a description of the G-socle
filtration of H̃1

ét(Y1(N(ρ)),F)[m(ρ)]. Even more is true.

Since in Corollary 6.23 we have identified the endomorphism ring of P̃ with Rp and κ(r̄) is

by definition F ⊗̂Rp P̃ , a completely formal argument (see the proof of [Paš16, Proposition 2.8])

shows that κ(r̄) is up to isomorphism the unique representation in Modl.adm
G (O) that is maximal

with respect to the following two properties:

(i) the socle of κ(r̄) is π;

(ii) π occurs as a subquotient of κ(r̄) with multiplicity one.

(It is maximal in the sense that it cannot be embedded into any other strictly larger
representation in Modl.adm

G (O) satisfying these two properties.)
Corollary 7.5 shows that (after factoring out the GQ-action) the same characterization carries

over to H̃1
ét(Y1(N(ρ)),F)[m(ρ)]. However, we warn the reader that a simple-minded application

of this recipe will not work in general, and in particular it fails if ρ|GQp
∼=
(
ω ∗
0 1

)
⊗ χ.

More precisely, if Assumption 2.2 is in force, then r̄ is determined up to isomorphism by
the data of its determinant and its unique irreducible subrepresentation. This information can
be recovered from π, which in turn determines κ(r̄). If on the other hand r̄ ∼=

(
ω ∗
0 1

)
⊗ χ and

EndGQp (r̄) = F, then the G-socle of the atome automorphe associated by Colmez in [Col10b,

§VII.4] to r̄, which we still call π, is the Steinberg representation twisted by χ ◦ det. This
representation still carries the information about the irreducible subrepresentation of r̄ and
the determinant of r̄ but it does not determine r̄ up to isomorphism, as it does not carry
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the information about the extension class in Ext1
GQp

(χ, χω) corresponding to r̄. The maximal

representation satisfying (1) and (2) above will contain the atome automorphe corresponding
to r̄ as a subrepresentation, but it will be strictly bigger. In fact, it can be shown that it is
the smallest representation that contains all the atomes automorphes corresponding to different
non-zero extensions in Ext1

GQp
(χ, χω).

Remark 7.7. Theorem 7.4 and Corollary 7.5, when combined with Theorems 6.18 and 4.32 (which
together show that P̃ realizes the usual p-adic local Langlands correspondence for GL2(Qp)),
prove a local–global compatibility result for completed cohomology. They are new in the case
that ρ|GQp

∼=
(

1 ∗
0 ω

)
⊗ χ. In particular, they answer a question raised in Remark 1.2.9 in [Eme11]

by confirming the expectation of Remark 6.1.23 of [Eme11]. In the other cases, Theorem 7.4 can

be deduced from Theorem 6.4.6 in [Eme11] with P̃ replaced by a deformation of κ(r̄)∨ to Rp,
such that one obtains the universal deformation of r̄ after applying Colmez’s functor V̌ to it. If
ρ|GQp

∼=
(

1 ∗
0 ω

)
⊗χ, then it can be shown that P̃ is not flat over Rp, and that is why the approach

of [Eme11] does not work in this case.

Remark 7.8. Theorem 7.4 and Corollary 7.5 have analogues in more general settings when the
group at p is essentially GL2(Qp) (or a product of copies of GL2(Qp)). For example, taking M∞ to
be the patched module of § 3.4 (as constructed in [CEGGPS16] for n = 2), we obtain statements
about the completed cohomology of unitary groups that are compact at infinity.

Perhaps a case of greater interest is that of the completed cohomology of definite quaternion
algebras over totally real fields. (One reason for this case to be of interest is its relationship
to the cohomology of the Lubin–Tate tower as in [Sch15, Theorem 6.2].) We expect that our
results can be extended to this setting, although there is one wrinkle: in order to carry out
Taylor–Wiles patching, we need to fix a central character and, as a consequence, our patched
module has a fixed central character, and no longer satisfies the axioms of § 3. One approach to
this difficulty would be to formulate analogues of those axioms with an arbitrary fixed central
character, making use of the twisting constructions of § 6 and ‘capture’ arguments of [Paš16,
§ 2.1], but this leads to ugly statements.

Instead, we content ourselves with considering the case that the fixed central character is the
trivial character. In this case we can think of our patched modules as modules for PGL2(Qp), and
natural analogues of our axioms can be formulated in this setting; this is carried out in [GN16,
§ 5], where an analogue of the results of § 4 is proved. In fact, the arguments there allow us to
consider modules for a product of copies of PGL2(Qp), which is convenient when there is more
than one place lying over p; accordingly, we work below with cohomology that is completed at all
primes above p. (Of course, the case of cohomology that is completed at a single prime above p
can be deduced from this by returning to finite level via taking appropriate locally algebraic
vectors.)

As explained in Remark 7.1, one has to take some care with ramification at places away
from p, and we therefore content ourselves with considering quaternion algebras that split at all
finite places. The reader wishing to prove extensions of these results to more general quaternion
algebras is advised to examine the patching arguments of [GK14, § 4], which work in this setting.
We further caution the reader that we have not attempted to check every detail of the expected
result explained below.

Let F be a totally real field in which p > 5 splits completely, and let D be a quaternion
algebra over F that is split at all finite places and definite at all infinite places (note that in
particular this requires [F : Q] to be even).
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Let ρ : GF → GL2(F) be absolutely irreducible and assume that ρ|GF (ζp)
is irreducible and

that det ρ = ω−1. Suppose that ρ has no vexing primes; that is, if v - p is a finite place at which ρ
is ramified and Nv ≡ −1 (mod p), and ρ|GFv is irreducible, then ρ|IFv is also irreducible. Finally,
suppose that for each place v|p, ρ|GFv satisfies Assumption 2.2.

Since D splits at all finite places, we can consider the tame level subgroup U1(N(ρ)) ⊂
PGL1(D ⊗ A∞,pF ) ' PGL2(A∞,pF ) given by the image of those matrices in GL2(A∞,pF ) that are

unipotent and upper triangular modulo N(ρ). Let H̃0(U1(N(ρ)),O) (respectively H̃0(U1(N(ρ)),
O)) denote the completed homology (respectively cohomology) of the tower of locally symmetric
spaces associated to PGL1(D) with tame level U1(N(ρ)). (Note that at finite level, the locally
symmetric spaces are just finite sets of points.)

We assume that ρ is modular, in the following sense: ρ determines a maximal ideal m(ρ) in
the spherical Hecke algebra (generated by Hecke operators at places not dividing p at which ρ
is unramified) acting on H̃0(U1(N(ρ)),O) and we assume that H̃0(U1(N(ρ)),O)m(ρ) 6= 0.

Let Rρ be the universal deformation ring for deformations of ρ that are minimally ramified at
places not dividing p, and which have determinant ε−1. For each place v|p, let Rv be the universal
deformation ring for deformations of ρ|GFv with determinant ε−1, and set Rp := ⊗̂v|pRv.

Set G =
∏
v|p PGL1(Dv), which we identify with

∏
v|p PGL2(Qp) via a fixed isomorphism.

By patching the completed homology H̃0(U1(N(ρ)),O)m(ρ) (with a variation of the argument
in [Sch15, § 9]), we obtain3 a ring R∞ which is a power series ring over Rp, and an R∞[G]-module
M∞ with an arithmetic action in the sense of [GN16, § 5.2], together with an ideal a∞ ⊂ R∞ such
that R∞/a∞ ∼= Rρ as local O-algebras and M∞/a∞ ∼= H̃0(U1(N(ρ)),O)m(ρ) as Rρ[G]-modules.
(Note that we can ensure the smoothness of R∞ over Rp since we are assuming that D splits at
all finite places and that there are no vexing primes.)

Applying [GN16, Proposition 5.2.2] now gives a G-equivariant isomorphism

H̃0(U1(N(ρ)),O)m(ρ) ' (⊗̂v|p P̃ 1(ρ|GFv )) ⊗̂Rp Rρ,

where P̃ 1(ρ|GFv ) denotes the projective envelope considered in § 6 in the case that r̄ = ρ|GFv and
ψ = 1. Arguing as in the proof of Corollary 7.5, we obtain a G-equivariant isomorphism

H̃0(U1(N(ρ)),F)[m(ρ)] ' ⊗̂v|p κ(ρ|GFv ),

where κ(ρ|GFv ) denotes the representation defined in Proposition 6.21.
One can obtain analogous results in the case where [F : Q] is odd and D is split at one

infinite place of F and ramified at all the others. In this case, one works with a tower of Shimura
curves. The main difference to the argument is to note that ρ only contributes to completed
homology (or cohomology) in degree 1 (since the D×(A∞)-action factors through the reduced
norm in degree 0), and the GF -action can be factored out by the same argument as for modular
curves.
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546

https://doi.org/10.1112/S0010437X17007606 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007606


Patching and the p-adic Langlands program for GL2(Qp)

Col10b P. Colmez, Représentations de GL2(Qp) et (φ,Γ)-modules, Astérisque 330 (2010), 281–509.
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Paš15 V. Paškūnas, On the Breuil–Mézard conjecture, Duke Math. J. 164 (2015), 297–359.
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