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Abstract. 
Until recently, all study of stellar surface structure, except for the sun, 

has been limited to indirect methods. This state of affairs is rapidly chang-
ing. With the introduction of interferometric techniques to optical astron-
omy, direct imaging of stellar surfaces is finally possible. Within a few years 
we will have images with sub-milliarcsecond resolution and 10 or more res-
olution elements across the stellar surface. 

In this talk, I will describe the technique of optical interferometry and 
explain how it can be made to work through the earth's turbulent atmo-
sphere. I will show some actual data and describe what can be expected in 
the near future. 

1· Introduction 

The history of optical interferometry goes back more than a century, but 
only in the past decade has it become possible to compensate for atmo-
spheric turbulence well enough to generate the high quality and volume of 
data needed to make images with an interferometer. Figure 1 (taken from 
Quirrenbach et al. (1994)) indicates the imaging capabilities that are be-
coming available at optical wavelengths. The left panel of Figure 1 is an 
image of circumstellar gas surrounding ζ Tauri taken in Ha light with the 
Mark III Stellar Interferometer on Mt. Wilson. The resolution, shown by 
the beam profile in right panel, is about 2 milliarcseconds (mas) north-south 
and 4 mas east-west. 

There are many groups doing this type of work with many variants of the 
technique (Armstrong et al. (1995)); this talk is biased toward the project 
I am most familiar with, a collaboration between the US Naval Research 
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Image of Zeta Tauri taken with the Mark ΙΠ 

Image Beam profile 

Figure 1. This figure shows the hydrogen disk surrounding the Be star ζ Tauri. This 
image was made in Η α light. Images with similar resolution at optical wavelengths will 
soon be common. 

Laboratory and the US Naval Observatory. In collaboration with CfA and 
MIT, we built the Mark HI Optical Interferometer on Mount Wilson, CA, 
USA (Shao et al. (1988)). We operated that instrument from 1986 until 
1992, when it was decommissioned so that we could concentrate our efforts 
on its successor, the Navy Prototype Optical Interferometer (NPOI). The 
NPOI is being built in collaboration with Lowell Observatory and is located 
on Anderson Mesa, southeast of Flagstaff, AZ, USA. 

2. How optical interferometry works 

An interferometer coherently brings together two separated sections of the 
wavefront. A schematic layout of a simple, two-element interferometer is 
shown in Figure 2. The afocal telescopes intercept sections of the wave-
front and direct them toward the beam combiner. Because the light is not 
monochromatic, portions of the same wavefront intercepted by the tele-
scopes must arrive at the beam combiner simultaneously. In order to ac-
complish this, we must insert a variable delay into the path from at least 
one of the telescopes. The delay can be thought of either as a time or as 
the distance light travels during that time. I will switch between these two 
usages. The variable delay is added to the optical path with delay lines, 
which consist of retroreflectors mounted on tracks. The delay lines at the 
NPOI can track fringes moving at 2 cm/sec with a root mean square error 
of less then 20 nm. They have a range of 35 meters of optical path. 

Because we are using relatively narrow bandpasses centered on the fringe 
packet and are only concerned with small excursions in delay, we can assume 
the system response to a point source is a sinusoidal function of delay. 
The quantities that we measure are the amplitude and the phase of this 
interference fringe. To see how these are related to the intensity distribution 
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Schematic Layout of a Michelson Interferometer 

Figure 2. A two-element Michelson interferometer. The layout shown here is that of the 
Mark III Optical Interferometer on Mt. Wilson. 

of the source, consider Figure 3. The delay lines are set to remove the 
delay between telescopes for the direction of the solid lines. The portion of 
the source in the direction of the dotted lines gives rise to a fringe whose 
amplitude is proportional to the intensity in that direction and whose phase 
is delayed by Β±θ, where B± is the component of Β perpendicular to the 
direction of the star. We convert the delay to a phase by changing from 
units of length to units of radians of a fringe, and we integrate over all 
angles in the source to get the system response 

V is a complex number whose amplitude and phase are the amplitude 
and phase of the fringe. If V is normalized by the total flux, it is refered to 
as the visibility. This equation shows that V is also the Fourier transform of 
the source brightness distribution, 7(0), evaluated at the projected baseline 
vector B±/\. 

If we do not measure enough Fourier components from one observation 
of the source to make an image, we can improve our coverage either by mov-
ing the telescopes or by waiting for the earth to rotate, changing the pro-
jected baseline. This later approach—called earth-rotation synthesis—has 
been successfully employed by astronomers using interferometers from ra-
dio to optical wavelengths. 

As an example of how this works in practice, we present the data from 
one night's observation of a Equulei, a previously unresolved spectroscopic 
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Total Base l ine 

Figure 3. A two-element interferometer observing flux coming from two directions on 
the sky (indicated by solid and dashed lines, respectively). 

binary star (Armstrong et al. (1992)). The left panel of Figure 4 shows the 
variation of fringe amplitude with time at three wavelengths. To interpret 
this data, we calculated the projected baseline for each observation (mea-
sured in wavelengths) and plotted those points in the right panel. North is 
up and east is to the right, so that time progresses from left to right across 
the top of the figure. Larger visibility amplitudes are plotted with larger 
circles. 

We have two more pieces of information. First, Equation 1 tells us that 
there is a maximum at the origin. Second, for a real (i.e. not complex) 
brightness distribution, the amplitudes of the Fourier transform are un-
changed on a reflection through the origin. This means we can plot each of 
the data points a second time, in the bottom half of the figure. 

We now see that all the maxima can be fit by assuming they lie on 
parallel, equally spaced lines. If we further assume that the amplitude varies 
sinusoidally between the lines, we get the fit to the data shown as the 
solid lines in left panel of figure 4. The fringe amplitude does not vary in 
the direction along the lines, so the source is unresolved in that direction, 
since the Fourier transform of a delta function is a constant. The fringe 
amplitude varies sinusoidally in the direction perpendicular to the lines, 
so we are observing a binary star, since the Fourier transform of a pair of 
delta functions is a sinusoid. The separation of the stars in radians is equal 
to the inverse of the spacing of the maxima. Measuring the separation of 
these lines gives a separation for the stars of 11 mas. 

3. Atmospheric limitations 

Atmospheric turbulence distorts and delays the wavefront arriving from a 
star. This distortion varies with time and position. In order for the interfer-
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Figure 4- Interferometric data of the spectroscopic binary a Equulei plotted as functions 

of time and projected baseline. 

ometer to work, a coherent integration time has to be chosen short enough 
to freeze the turbulence, and the aperture size has to be small enough so 
that the wavefront is locally flat. These limits are referred to as the coher-
ence time, to, and the coherence length, ro. The coherence time is typically 
a few milliseconds, and the coherence length, often referred to as Fried's 
parameter, is typically 5 to 20 cm. 

To carry out an interferometric observation under these conditions, we 
first intercept locally flat segments of the wavefront with two or more tele-
scopes. These segments must then be made parallel to one another and 
perpendicular to the optical axis of the instrument. This angle tracking is 
accomplished by superposing the images with a fast tip-tilt mirror at each 
telescope. Finally, after combining the beams, we measure the fringe phase 
to determine the difference in arrival time of the segments, and adjust the 
delay so that segments of subsequent wavefronts arrive simultaneously. As 
long as we do a reasonably good job of superposing the images and cor-
recting the delays, we obtain good fringe amplitude information on each 
baseline. Observing stars of small angular diameter allows us to calibrate 
the instrumental response and generate reliable calibrated amplitudes. 

The effect of the atmosphere on the fringe phases is more severe than 
on the amplitudes. A typical plot of atmospherically-induced delay versus 
time is shown in Figure 5. The peak-to-peak fringe motion is roughly 10 
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Figure 5. Delay variations due to atmospheric turbulence plotted vs. time. These data 

were taken with the NPOI. 

/im, or 40π radians at a wavelength of 0.5 μπι. Clearly, even if we have 
succeeded in tracking this motion, we have lost any information carried by 
the phases. 

To get around this problem, we note that even though the individual 
phases are corrupted by the atmosphere, there are combinations of the 
observed phases that are not affected by the atmosphere. These phase-like 
quantities are formed by summing the phases around closed loops and are 
therefore called "closure phases". For example, consider three elements of 
an interferometer labeled A, Β and C. The delay measured on baseline (A-
B) is defined as the time of arrival of the wavefront at element Β minus 
the time of arrival at element A. We observe fringes simultaneously on 
baselines (Α-B), (B-C), and (C-A). The closure phase formed by adding 
these three phases is independent of the atmosphere. When atmosphere is 
added over element B, for instance, the arrival of the wavefront at element 
Β is delayed. The delay measured on baseline (Α-B) is increased by exactly 
the same amount as the delay on baseline (B-C) is decreased, leaving the 
closure phase unaffected. 

The use of closure phases, pioneered by radio VLBI observers, allows us 
to recover a substantial amount of the lost fringe phase information. With 
Ν interferometer array elements, we have N(N — l ) /2 baselines, each with 
a measured delay. These delays have been corrupted by the atmosphere, 
which introduces unknown retardations of the wavefront at each of the Ν 
telescopes. We are free to subtract a constant delay (e.g., the mean value) 
from each individual delay, which corresponds to a shift of the image on the 
sky. Thus, there are only (Ν — 1) quantities that distort the image. This 
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leaves N(N - l ) /2 - (N - 1) = (N - 1)(N- 2)/2 "good phases" -quantities 
that retain information about the image structure. The ratio of the number 
of "good phases" to the N(N - l ) /2 phases available in the absence of the 
atmosphere quickly reaches a reasonable fraction as Ν increases. 

With these techniques, the atmosphere does not limit the quality of 
the fringe data. Good angle and delay tracking gives good amplitude mea-
surements, and using several telescopes simultaneously recovers most of the 
phase information. So the main effect of the atmosphere on an interferometer-
aside from increasing its complexity-is that the combination of ίο and τ υ 

puts a limit on its sensitivity: we must gather enough photons to make it 
possible to detect the fringe within to with two apertures of size ro. 

4. Limits of resolution 

The resolution of an optical interferometer is determined by the maximum 
baseline length, which is limited by the available real estate and the cost of 
the delay lines. To date, the longest baseline planned is 600 m at the Sydney 
University Stellar Interferometer, located near Narrabri, NSW, Australia. 
The resulting resolution ( λ / ß , where Β is the baseline length) is about 
0.15 mas at optical wavelengths. Interferometers built on mountaintops, 
where the seeing is expected to be better, will have shorter baselines whose 
lengths are limited by the topography. 

However, unlike the case of radio interferometers, there is also a limit to 
the number of resolution elements across the image. We have to know the 
delay of the fringe in order to measure the fringe parameters. For bright 
stars observed on short baselines, this is not a problem. We simply detect 
the fringe using an integration time shorter than the atmospheric coherence 
time. The signal to noise goes as NV2, where Ν is the number of photons 
detected during the coherent integration time. Ν is fixed by the choice 
of star and the size of the telescopes. As the baseline is lengthened the 
star becomes resolved and the visibility amplitude drops. The resolution is 
limited to that obtained from the longest baseline with a signal to noise 
above the fringe tracking threshold. Using a single baseline, we can get only 
a few resolution elements across the star. 

This is not a fundamental limit. The number of resolution elements 
can be increased by observing objects that have very small, bright spots 
embeded in a much larger structure. The emission region surrounding a 
Be star, like ζ Tauri, is a good example of this type of object. Another 
possibility is to build up a long baseline out of several shorter ones. The 
fringe delay on each of the short baselines determines the delay on the 
long baseline. This approach was built into the NPOI design. Finally, we 
can build larger telescopes with adaptive optics to increase the number of 
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photons detected per coherence time. Note that although adaptive optics 
can be used to increase the resolution of an optical interferometer, it is of 
limited use for improving the sensitivity since an unresolved star that is 
bright enough for an adaptive optics system is also bright enough for the 
fringe detector. 

With the interferometers currently built or under construction, we will 
be limited to about 10 resolution elements across the diameter of a feature-
less star. Even so, the interferometric images will be comparable to much 
of what is being presented at this conference. 

Finally, the capabilities of the NPOI are presented in Table 2. The 
first column presents what is either currently available. The second column 
shows what we expect a few years down the road. 

T A B L E 1. Current and projected capabilities of the NPOI. 

Current Near future 

Sensitivity mv = 6.0 mv = 8.0 - 10.0 

Resolution 3 mas 0.2 mas 

Wavelength coverage 450 - 850 nm also 2 μιη 

Resolution elements across star 3 15 
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