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DIFFERENTIAL OPERATORS WITH ABSTRACT 
BOUNDARY CONDITIONS 

R. C. BROWN 

1. Introduction. Suppose F is a topological vector space. Let ACm = 
ACm[ay b] be the absolutely continuous m-dimensional vector valued functions 
y on the compact interval [a, b] with essentially bounded components. Consider 
the boundary value problem 

(1.1) ly = A0y' + Ay =f, Uy = r, 

where Ao, A are respectively m X m continuously differentiate invertible, 
and continuous matrices on [a, 6], and U: ACm[a, b] —> F is a continuous linear 
operator with range in F. 

The main purpose of this article is to construct an adjoint for (1.1) as well 
as higher order generalizations of the problem when ly is viewed as an operator 
in various Lv spaces, and to show normal solvability. Thus we generalize the 
results of many recent papers (see the survey article [14] for a list) where F is 
finite dimensional and U is represented by a Stieltjes measure. Having done 
this, a secondary goal will be to show the remarkable applicability of this 
concept to questions of current interest in the theory of splines and inter
polation. 

To outline the paper in greater detail: notation and preliminary facts con
cerning the representation of U are developed in Section 2. This furnishes the 
tools by which reasoning valid when dim F < co can be generalized. The 
homogenous case r = 6 is studied in Section 3. We define "minimal" and 
''maximal" operators, and construct "parametric" adjoints. Fredholm alter
natives are stated and the operators are shown to be normally solvable. 
Furthermore significant and interesting differences between the structure of 
the adjoint in the finite and infinite dimensional cases arising from a classical 
and deep lemma of Grothendieck are pointed out. These differences make the 
material of this section a nontrivial generalization of previous work. Next (§ 4) 
the nonhomogenous case is considered. Here the system is viewed as an operator 
with range in Lv X F and the adjoint is obtained via the application of a 
generalized Green's formula. This leads to a criterion of solvability of the 
system (1.1) (Corollary 4.3). Section 5 extends the results of the previous 
sections to nth. order regular differential operators. Several examples including 
problems with boundary conditions at infinite sets of points are given in this 
section. Finally (§ 6) to indicate the applicability of our theory in the direction 
of splines we show that the "variational approach to splines" (i.e., the approach 
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defining splines as solutions to constrained variational problems) follows from 
a generalized Euler-LaGrange equation (Theorem 6.1) for a calculus of varia
tions problem under abstract constraints. Several rederivations of known re
sults are given to illustrate the generality of this approach. As a more chal
lenging exercise we conclude the paper by using a Fredholm Alternative 
technique to prove a Whitney-Golomb extension theorem (Theorem 6.3) for 
a problem with infinitely many integral boundary conditions and to obtain an 
upper bound for the norm of the derivative of a minimal extension in Lv, 
1 < p S oo. 

Let us close this section with the admission that the present paper by no 
means exhausts the subject of generalized boundary value problems. Notable 
omissions include interface conditions, differential boundary operators (i.e., 
systems like (1.1) where the differential expression involves a boundary con
dition) singular theory, characterizations of self-adjointness, Green's func
tions, and spectral theory. In the finite dimensional case, information con
cerning some or all of the above topics may be found in [4; 13; 15; 16] and 
many other papers cited in [14]. A full generalization of these results to the 
present context would be a challenging exercise which we hope to attempt 
later. 

2. Notation and preliminaries. Lm
p = Lm

p[a, b], 1 ^ p ^ oo , is the space 
of m-dimensional LP integrable functions y with norm 

iwi=-U.{sb ,4 d,\ • 
Similarly, Cm = Cm[a, b] is the space of m dimensional continuous functions 
on [a, b]. X* is the dual, adjoint, or conjugate transpose of X according to the 
context. Cm is complex w-dimensional Euclidian space, and [. , .] indicates 
the natural antisymmetric pairing on X X X* over C (that is, [x, y] = [y, x]). 
If S C X or X*, 5-1 and -kS represent respectively the annihilators of S in X* 
ovX. 

Suppose Fis a Banach space. Then since î / is bounded, it can be represented 
by an abstract regular countably additive regular measure on the Borel sets of 
[a, b] (cf. [7, p. 318, 492]). Such an approach would generalize earlier work 
(e.g., [3; 4]) in which the boundary conditions were represented by systems of 
ordinary Stieltjes integrals, and has been recently employed by Hônig in a 
monograph [11] discussing the existence and properties of Green's functions 
for problems like (1.1). 

In this paper, however, a different and simpler point of view is possible. 
Since in all important calculations the boundary operator U appears in the 
form [Uy, #] where 0 is a variable element in i7*, there exists a 1 X m vector 
valued measure d{4>, U) of bounded variation on [a, b] such that 

(2.1) fbd(<l>,U)y= [Uy,4>\. 
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The representation (2.1) beside avoiding tedious refinements of vector valued 
measure theory, allows F to be a topological vector space rather than a Banach 
space, a generalization which will be seen to have significant applications. 

The following specialized notation will be convenient throughout the paper. 
Set 

= - / : • (4>,U)(t):= I d(4>,U) 
J a 

S: = \(4>,U)*:<t>£ F*}. 

Clearly 5 C Lm
?forall 1 ^ q é °o. 

For some \p £ S (norm closure if 1 g p < co , weak* closure if p = oo ) define 

l+(z,t):= - (A0*z + W + AH, 

( 2 2 ) B[y, z](fT, a+]: = y*(A„*z + *) |£ - J y*'W, 

W[y,zW,a+): = y*Qr)(Ao*z(n - d(<j>, U)*[b]) 

- y*(a)(Ao*z(a+) + d(4>,U)*[a}), 

it being understood that y, z are functions at least of bounded variation so that 
the indicated operations make sense. 

2.1 LEMMA. If\//£S,y£ACm and z is of bounded variation, then 

B[y, 2](6-, a+) = W[y, z](b~, a+) + fa, Uy], 

Proof. Let ^ G S, i.e., ^ = (0, U). 

fby*>+dt = y*(6)<«, U)*QT) - y*{a)d{<t>, U)*[a] - P y*d(4>t U)* 

upon integrating by parts. Hence 

B\y, s ] ( r , a+) = W\y, z](b~, a+) + V y*d(4>, [/)*. 
J a 

The lemma follows from (2.1). 

3. Land its adjoint. We now construct*'maximal" and "minimal" operators 
L, LQ on Lm

v determined by (1.1) and study the adjoints L*, L0* of these 
operators. 

3.1. Definition. Let 

Dv': = b £ ACm:ly e Lw*}, 

A ) / : = {yeDp':y(a) = y(b) = 0}, 

for a fixed p, 1 ^ £ ^ co. 
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Then L is the restriction of ly to 

D: = {yeDp
f: Uy = 0}, 

and LQ is the restriction of L to 

Do: = {y e DnD0p'}. 

3.2. Definition. If 1/p + 1/g = 1, let 

D+: = {z: z + \p e ACmi l+(z, ^) exists for some \p £ S}} 

D+: = {z e D+:*e S], 

Do+: = {z G £>+: B[y, z](b~, a+) = 0 for all ^ Ç /)) , 

£>o+: = 1 ^ D+: W[y, z](b~, a+) = 0 for all y £ D], 

Do+': = {ze D+: *(a+) = - (0, tf>*M;*(&-) = <</>, £/>*[£>]). 

Finally, let L+, L+, L0
+, £0

+ , £o+/ be the restrictions of l+(zf \p) to Z5+, D+, 
5o+ , £>o+ and £>Q+'. 

3.3. Remarks. (1) L+, L+, L+, L0
+, L0

+/ in general are linear relations in 
Lm

Q X Lm
Q rather than operators since l+(z, yp) depends on both z and \p. 

(2) The following inclusions are clear: L0 C L, L0
+ ' C L0

+ C L+ C £ + . 
Also from Lemma 2.1 and the definitions of D0

+, D0
+, L0

+ C Lo+. 
If F is finite dimensional the structure of L*, L0* is well understood when the 

boundary condition is given by a Stieltjes integral. The following theorem, 
whose proof may be found in [3], summarizes the situation. 

3.4. THEOREM. If dim F < oo, then for 1 < p ^ oo 

L0
+/* = L and L+* = L0. 

For 1 ^ £ < oo, 

L* = Lo+ = L0
+/ awd L0* = L+. 

3.5. Remark. If F is finite dimensional, S = S so that Z + = Z,+ and L0
+ = 

L0
+. Thus L0

+', ^o+ , £o+ and L+, L+ collapse into a pair of operators respec
tively adjoint to L and L0. 

In the infinite dimensional case, however, L0
+/, L0

+, L0
+, L+ and L+ play 

more complicated roles. We now state the appropriate generalization of 
Theorem 3.4. 

3.6. THEOREM. / / F is not finite dimensional, then for 1 < p ^ oo 

L0+'* = Lo+* = L0+* = i o«d L+* = Z+* = L. 

For 1 ^ p < oo, 

LQ* = Z+ arcd L* = U+. 

The proof of Theorem 3.5 will be clear from the next seven lemmas. 
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3.7. LEMMA. Let To: Lm
p —> Lm

v be defined by yf on DoP
f. Then for 1 ^ p < GO , 

R(TQ)* is isometrically isomorphic to LQ/K where K denotes the space of constant 
vectors. 

Proof. For m = 1 it is known (cf. [8, ch. V]) that TV = T, where T: L° -» L« 
is the maximal operator determined Iz = z' on DQ. Also To is normally solvable. 
The case m — 1 offers no complications. Since N(T) = K, R(TQ)-1 = K. The 
lemma now follows from standard facts about duality (cf. [19, p. 91]). 

3.8. LEMMA (Green's Relations). If y G Dv
f andz G D+, then 

(3.1) [ly, z] - [y, l+(z, *)] = B[yy z](b~, a+). 

Ifze D+, then 

(3.2) [ly, z] - [y, /+(*, *)] = W[y, z] (*r, a+) + [0, Uy] 

Proof. Suppose z G J 9 + and 3/ G W^1 ,p. Then 

I l+(z,t)*ydt = I {-[i4o*s+*]'+i4z*}*;yd' 

= -[Ao*z + t]*y\a~+ + fb [A0*z + Wy'dt + f (A*z)*ydt. 
J a J a 

= -{Ao*z + *}*y\l~+ + ] zHydt + j t*y' 
J a J a 

(3.2) now is an immediate consequence of (3.1) and Lemma 2.1. 

3.9. Remark. From Lemma 3.8 and Lemma 2.1, it is now clear that 

(3.3) L + C l + C Lo*, L0
+f C Lo+ C L0

+ C Lo*. 

3.10. LEMMA. Let <ï> fre a fundamental matrix of ly. Then 
(1) / G -R(£) i/ a?zd only if there exists a vector C G Gm 5^C/Ê that 

*<v'rt 

u\ $(x)yj Q-'A o~lfdt + cj 0; 

(2) / G -R (Lo) ^/ and only if the additional conditions 

C = 0, I ^Ao^fdt = 0 
•J a 

hold; 

(3) iV(L+) = {^o*-1^*"1^ J l $*d(<t>, UY + CJ ; </> G F*, C G C w | ; 

(4) s G iV(L0
+) C ^ ( ^ + ) if awd owZy if C = 0 and </> satisfies 

(3.4) y * ^ ) * * - 1 ^ ) I $*d<</>, Z7>* = 0 
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for all y in D. 

Proof. By variation of parameters, functions in D(L) can be written 

y = $(x)( J $rlf(x)dt + Cj. 

We derive (1) by requiring the boundary conditions to be satisfied. The 
additional conditions for (2) follow by requiring y to vanish at the end-points. 
Proceeding to (3): / £ R(L+) if and only if there exists z in D+ such that 
/+(*,*) = / ; i . e . , 

(3.5) ~{A,*z + (</>, U)*Y + A*z. 

Set Z: = $* Afz and substitute z = A^~l <$>*-lZ into (3.4). We obtain 

[$*-i $*' + A * A**-1] $*~lZ - $*~lZ' =f+(<p, U)*'. 

Since the first term vanishes 

Z' = - $*«</>, £/)*' + / ) . 

From the definition of D+ and Z 

z + $*<</>, c/>* e 4 c m . 

Therefore, 

- / : 
($*'«</>, t/>* + **/)* + C 

where C is a constant. Integrating <£*'(</>, £/)* by parts and tak ing/ = 0, we 
finally obtain 

Z = - / 3>*d<</>, £/>* + C. 
J a 

Equivalent! y 

z = Ao* •̂ •"M J *$*d<0, £/>* + cj . 

That C ranges over all of Cm follows from the fact (which is easy to verify) 
that N(L+) contains all functions of the form Ao*-1 <ï>*_1C, where Cis arbitrary. 

Finally, the representation (4) for N(L0
+) is obtained by forcing z G N(L+) 

to belong to Do+
f i.e., by making z satisfy W[y, z][b~, a+) = 0. The details are 

omitted. 

3.11. Remark. If F is finite dimensional, (4) is equivalent to the condition 

(3.6) I $*d<0, U)* = 0 
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on the parameter 0. To see this, note that 3 defines a functional rj on Dv' 
whose kernel contains "D" . Suppose F has finite dimension m. Then 

D = ^ye Dp'\ C\^i(Uy) = 0 | , 

where IT{ denotes the projection functional of Cm onto its ith coordinate. By 
the linear dependence principle (cf. [19, p. 62]), 77 is a linear combination of 
the functionals 7r< • Uj, i.e., 

(3.7) „(y) = [tfy, C] 

for some CG C and all y in D / . Since y(b) is «ow arbitrary, (3.6) follows at 
once from (3.4) and (3.7). 

3.12. LEMMA. For 1 < p g oo, R(L0) = N(L+)\ If p = I, then R(L0) = 

Proof. By (1) and (2) of Lemma 3.10,/ 6 R(L0) if and only if 

*(*) I $~lA<Tlfdt 
J a 

= 0 (3.8) U\ 

with 

(3.9) I $-U<f jftf* = 0. 

Now (3.8) holds if and only if 

for all </> 6 F*. This in turn becomes 

(3.10) J d<0, U[a,x])y$(pc) J ^Ao^fdtj = 0. 

Applying Fubini's Theorem and taking congugate transposes, (3.10) is equi
valent to 

(3.11) I / W V " 1 f ' 3>*d(4>, U)* = 0. 
J a J a 

Also (3.9) holds if and only if 

C* I <rt0~ ^ / = 0 
J a 

where C is an arbitrary m vector, which is equivalent to 

(3.12) I /*^o*_1^*_1C = 0. 
J a 
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Combining (3.11) and (3.12),/ G R(LQ) if and only if it is orthogonal to every 
function in N(L+) as given in (3) of Lemma 3.10. The proof is complete. 

3.13. LEMMA. For 1 £ p < oo, R(Loy = N(l+). Thus N(L+) = N(L+). 

Proof. Note first that R(Lo)1 is the weak* closure of N(L+) for 1 ^ p < oo . 
The weak * closure of N(L+) furthermore equals its norm closure if 1 < p < oo . 
(As before—cf. (2.2)—we will use the notation N(L+) for either closure 
depending on the context.) 

If (zn) is a sequence in N(L+), it is not difficult to see that 

(3.13) *n = -Ao*Zn+ I A*Zn + Cn 
J a 

where cn £ K. Now suppose that z is in the weak * closure of N(L+). Set 

(3.13a) ^: = - 4 0 * s + I AH. 
J a 

Let a G Lm'. Integrating (3.13) by parts gives 

(3.136) [a, \[/n] = - yAoa + A J ads) , zn\ + [a, dn], 

where dn £ K. Obviously this identity holds with respect to \p, z and a constant 
d. 

It follows from the definition of the weak * topology that z belongs to the 
weak * closure of N(L+) if and only if for every finite set A C Lm

p there exists 
a sequence (zn) in N(L+) such that [a, zn] —> [a, z] for all a £ A. Similarly 
\p £ 5 if and only if there exists a sequence (^n) in 5 such that [a, \//n] —> [a, \p] 
for all a £ -4. Now given A C A / define 

4 : = S — yA0a + A I ads I : a f i | 

Clearly 4 is finite. Hence there exists a sequence (zn) in N(L+) such that 
[a, sn] —> [a, z] for all a in A. Choosing tyn and ^ according to (3.13) and (3.13a) 
it follows from (3.13b) that 

(3.13c) [a,*n-dn - d ] - > [ 0 | f l . 

Now (3.13c) implies that \p lies in the weak * closure of S + K. Because K is 
finite dimensional \p = \pi + & where i/̂ i G 5 and k £ K. Differentiation of 
(3.13a) shows that 2 Ç iV(I+). Hence ]Y(Z+) C iV(Z>). By Lemma 3.8 
7V(Z>) C R(Lo)-1. Since ^(Lo)1- = # ( L + ) , it follows that N(L+) C N(L+) 
and that R(L0)

+ = N(L+). The proof is complete. 

3.14. LEMMA. For 1 ^ p < 00, L0* = L+ and L* = Z0
+. 

Proof. Suppose (a, /3) G G(L0*). Note that 

L+ CL+ C U*. 
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(cf. Remark 3.9). Also L+ is onto since it contains the ordinary maximal opera
tor l+(z, 6) defined on Dq' C Lm

q. Hence 

(3.14) Z+(M) = 0 

for some z in Dq
r C D+. Therefore a — z Ç 7V(L0*). If Lo* is an operator it is 

true that ^ ( L o ) 1 = iV(L0*). The same, however, is true for mutually adjoint 
linear relations (cf. [1, Proposition 3.31]). We conclude that a — z Ç R(LQ)-1. 

By Lemma 3.13, ^(Lo)-1 = iV(L+). Further, since N(L+) C 5+, it follows that 
a Ç j9+. Hence there exists \p Ç 5 such that 

/+(« - z, ^) = 0. 

That is, 

(3.15) - (A0*(a -z)+ W + A*(a- z) = 0. 

Since AQ*z and ^40*(a — z) + ^ are absolutely continuous, so is A^a + yp. 
Adding (3.14) and (3.15), we find that 

-[A0*a + W + A*a = p = l+(a, * ) . 

This shows that (a, (3) £ G(L+) or equivalently that G(L+) C G(LQ*). Since 
the reverse inequality is true, we conclude that the relations are equal. 

Next, since L0 C L, L* C Lo*. From the previous part of the lemma it 
follows that G(L*) C G(L+). It is now a direct consequence of the Green's 
identity (3.2) that G(L*) consists of exactly those (a, 0) G G(L+) for which 
.Bfy, z] (6", a+) = 0 for all y in D. Hence L* = Z0

+. The proof is complete. 

3.15. LEMMA. For 1 < £ S oo, L+* = L+* = L0 awd L0
+ '* = L0+* = 

Io+* = L. 

Proof. Since L+ contains an ordinary maximal operator defined by l+z on 
[a, 6], it follows that L+*, is a restriction of the minimal operator defined by 
ly on [a, &]. Hence if (3/, ly) £ G(L+*) the Green's formula (3.1) gives ($, C/y) 
= 0. Since </> is arbitrary, Uy = 0. Thus L+* C Lo. On the other hand, (Re
mark 3.9) L0 C L+* C L+*. These inclusions yield the first statement of the 
lemma. In the same way the second statement of the lemma will follow from 
Remark 3.9 if we can show that L = L0

+/*. We first note that L0
+/* (the 

reasoning is the same as for L+*) is a restriction of the maximal operator deter
mined by ly on [a, b]. Let (y, ly) £ G(Lo+/*). Just as for L+*, Green's formula 
implies that (0, Uy) = 0. 

For any <£, there is an absolutely continuous function £ in the domain of the 
maximal operator ly on [a, b] satisfying the endpoint conditions 

£(^+) = 0 ; *(&-) = <«, C7[a,6]>*. 

Since £(/) — (0, f/fa, £])* Ç L>o+/, this shows that # is arbitrary over D0
+ 

(just as it is over D+). Hence Uy = 0; i.e., y ^ D and L0
+/* C L. Since the 
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reverse inclusion L C £o+ '* is immediate from Green's formula, we conclude 
that L0+'* = L. 

Lemma 3.15 completes the proof of Theorem 3.6. The next two corollaries 
follow from the ordinary theory of adjoints applied to Theorem 3.6. 

3.16. COROLLARY (Fredholm Alternatives). For 1 < p < oo, 
(1) R(L)± = N(L0+). 
(2) R(.L0)± = N(L+). 
(3) R{L) = JV(ZO+)-L = N(L0+y = N(L0+')\ 
(4) R(L0) = N(L+)± = N(L+)\ 

For p = 1, (1) a«d (2) hold. But N(L+) and N(L0
+) are weak* closed, and 

(5) R(L) = ±N(l*+) = ^CLo+) = ±iV(£o+')-
(6) 22 (Lo) = -LiV(2>) = xiV(Z+). 

For p = oo, (3) awd (4) AoM. i3w£ i? ( i ) and R(L0) are weak* closed, and 
(7) ±R(L) = N{U+) 
(8) ±R(Lo) = iV(L+). 

3.17. COROLLARY. For 1 ^ ^ ^ oo L, L0, £ + , £o+ are normally solvable. 
Further, L+ = L+ and Lo+ = Lo+ = Z0

+/ . 

We have already noted that if F is finite dimensional, then L+ = L + and 
L0

+ = Z/o. We close this section with a converse result. 

3.18. THEOREM. Suppose Fis locally convex and R(U) = F. Then if L+ = L+ , 
F is finite dimensional. 

Proof. Since L+ = L+, S = S. By a classical and deep lemma of Grothendieck 
(cf. [19, p. I l l ] ) , S is finite dimensional. 

Next consider the adjoint boundary operator U* : F* —> Cw*. Then by (2.1) 
and the definition of [/*, 

[Uy,$]= fbd(^U)y= [y,U*4>]. 

If we restrict y to Dop' and integrate the last two expressions by parts, we obtain 

(3.16) [/, J ' [/**fc] = [/, (0, U)]. 

By Lemma 3.7 it follows that 

(3.17) S = \ j ' U*<j>ds:<j>£ F*t 

modulo the constant vectors. The finite dimensionality of 5 and (3.17) now 
imply that R(U*) is finite dimensional. Because, U is onto, N(U*) = {0}. 
Hence R(U*) 9Ë F* and F* is finite dimensional. Therefore F* ̂  F**. The 
local convexity of F implies (by the Hahn-Banach Theorem) that F* separates 
points. Thus the natural mapping 0: F—» F** defined by #(/) = [/,/*] for 
/* in F* is 1 — 1. Therefore F is finite dimensional. 
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3.19 COROLLARY. Suppose R(U) is a Banach space. Then the following are 
equivalent; 

(1) dim R(U) < o o . 
(2) L+ = L+. 
(3) The operator V: Lv —> F given by U o J«( • ) has a closed range. 

Proof. We have already noted that (1) => (2). Since a Banach space is 
locally convex, (2) =» (1) by Theorem 3.18. 

If y G 2 V , Vy' = Uy. Hence 

[Uy,4>] = [y\ V*4>]. 

By (3.16) of Theorem 3.18, R(V*) = S modulo the constant vectors. Since 
(2) =>5 is closed, (2) => R(V*) is closed. However, the closure of R(V) is 
equivalent to the closure of R(V*) by the closed range theorem, which proves 
(2) <=> (3). 

4. The non-homogeneous case. We now consider the adjoint theory of 
(1.1) when r ^ 0. In this case just as before the boundary value problem deter
mines a pair of "maximal" and ''minimal" operators with range in Lm

v X F. 

4.1. Definition. Let £: ACm[a, b]^-> Lv[a, b] X F and^£+: D+ X Fm* -> 
Lm

q[a, b] be given respectively by Ly: = (ly, Uy)1 and L+(z} </>): = l+(z, \p) 
where yp = (</>, U)* (i.e., f Ç S and 0 corresponds to s in £>+). 

Definitions of £0, £o+, are obvious and will be omitted. Note that £ + , L0
+ 

are automatically operators and that £ + is onto Lm
Q (since its image coincides 

with that of the operator L+ which was previously shown to be onto). 

For a = (x, y) G LP X F, 0 = {%', yf) f L ? X Fm*, define [a, 0] = [x, x'] 
+ [y, y ] . Using the inner product [•,•], and the operators L, L0, L+ , L0

+ 

Green's formula (Lemma 3.8) can be written in the alternative forms 

(4.1) [Ly,Z] = [y,U+Z\ 
[Uy,Z] = [y,L+Z], 

where Z = (z, 0) and z £ Do+ or D+. 

The main result of this section is the following: 

4.2. THEOREM. For 1 < p < oo, 

(4.2) £0+* = £, £+'* = U 

(4.3) £0* = £+', £* = £o+. 

-f/P = °° i (4.2) is true, andifp = 1, (4.3) is true. 

Proof. We need only show £0* C £ + / , £+ /* C £o, etc., since the reverse 
inclusions are obvious from (4.1). Suppose (z, 0) G D(LQ*). By Green's relation, 

(4.4) [Zy,z] + fo, t/y] = tv,£o* (*,*)] 
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for y Ç D0p. Since £0* £ + / , and £+' restricted to Dq' X {̂ } is onto Lm
Q, we can 

find z' e Dtt' such that /+(*', 0) = £0*(*, 0). Further 

(4.5) [ly,**] = [y,l+(z',t]. 

Hence, subtracting (4.5) from (4.4) gives 

(4.6) [ly, z-z'] + [0, Uy] = 0. 

Upon integrating (z — z')*A and [<£, Uy] by parts, (4.6) becomes 

/ ' ( S - S ' Î M ) : y(z - z')*Ao - <«, U) - J (z - z')*Ap'dt = 0 

for all y in Dp\ By Lemma 3.7 the term in parentheses is constant. Taking 
conjugate transposes and differentiating once, it follows that z — z' (and there
fore z) belongs to D+. Differentiating again gives 

/ + ( * - * ' , * ) = /+(*,*) - Z + ( M ) = 0 , 

thus l+{z, <t>) = £0*(s, 0), proving £0* C £ + / and that the two operators are 
equal. To show that £+ /* = £0, 1 < £ ^ oo, we prove that £0 is closed. Let 
yn —• y and £0^w —» (z, a) where 3>n G Z>' and (z, a) G Lm

p X i7. Since ly (i.e., 
' T o " on Dop is closed), we have at once that y £ ZV and Zy = z. Since Z7: .D' —> 
F is bounded, £/;y = a. 

The remaining adjoint relations £* = £Q+ , £O+* = £ are demonstrated in a 
similar way. We omit the details. 

4.3. COROLLARY. £, £0, £+, £ 0
+ are normally solvable. For 1 < p < co 

(1) *(£)->- = 7V(L0+), 
(2) i?(£) = 7V(L0+)±, 
(3) R(Lo)± = N(L+), 
(4) R(L») = N(L+)\ 

For p = 1, (1) awd (3) hold. But N(L+) and N(L0
+) are weak * closed, and 

(5) R(L) = N(L0+), 
(6) R(L0) = J-7V(L+). 

/7or p — QQ i (2) awd (4) /w/a7. i3i^ R(L) and R(L0) are weak * closed, and 
(7) J-J?(£) = N(L0+), 
(8) ^ ( £ 0 ) = N(U+). 

4.4. Remarks. (1) A short computation based on Corollary 4.3 and the defini
tion of the inner product gives: (/, r)' G R(L) if and only if 

(4.7) J ' f (d(4>, U^Aofdt) = tf>*r 

for all 0 G / * ; ( / , r) ' 6 -R(^o) if and only if in addition to (4.7), 

/ : 
$<rlA<rlfdt = o. 
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Solvability conditions similar to (4.7) have been given in the case of functional 
differential equations (see [10; 21]). Note that the adjoint theory for the non-
homogeneous case is much simpler than in § 3. In particular L+, L0

+ are always 
closed operators and analogues of L+ , L0

+ play no role. 

5. Extensions to higher order operators. In this section we show how the 
construction of adjoint relations for higher order operators under abstract 
boundary conditions can be generalized from the first order case. 

Suppose 

(5.1) ly = £ aty
n-{ 

in an nth order regular scalar differential operator (i.e., a0 = 1, at £ Cn~i[a} b]) 
on [a, b]. Assume 

Uy = t W*), 

where Vf. C[a, b] —> F are bounded operators. 
Define D', D, L as in Definition 3.1. Let 

Dop': = {y G D':y{a) = y(b) = 0}, 

where 

y(a): = (y(a), Y'(a) y^{a)Y 

y(b): = (y(b),y'(b),...,y^(b))1. 

Also let L0 be the restriction of L to D0: = D C\ Z?0p'- Set 

5: = { E i-iy-'l^icf, Vt)*: 4> € F*}, 

where the notation IU) ( • ) stands for the j fold repeated integral. 

/

•« rtj-i 

. . . I ( • )dtj-i. . . dhdt. 
a J a 

Clearly S is a subspace of m X 1 vector valued functions of bounded varia
tion. (In particular, everything in S is LQ integrable). Likewise introduce the 
sequence of partial adjoints 

l0
+(z, i/0 = a0*z + x//, 

(5.2) Z2+(z,*) = -Z i+ ' ( s ,* ) +a2*z, 

ln+(z, $) = - ln-i
+{z, f) + an*z, 
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where ip Ç S, i = 1 n, and set 

W[y,z](b-,a+) = £ y(n-1}*(b-)(lj-i+(zJ)(b-)-d(t, V,)*[b]) 

(5-3) - y( '!-' ,*(a+) (/,_!+(*, 6)(a+) + d{<t>, V,)*[a]). 

B[y,z](b-,a+) = £ y<"- 'Vi+(*.*) |£+ f yw*idt. 

The next result generalizes Lemma 2.1. The proof is a formal calculation done 
by repeatedly integrating the integral term in B[y, z][b~, a+) by parts. 

5.1. LEMMA. Suppose lj+(z, \[/), j = 0, . . . , n — 1, exist for ip £ S and y £ ZV 
Then 

B[y, z](b~, a+) = Wty, 2](6-, a+) + [*, Uy]. 

5.2. Definition. 

D+: = {s: /,+ (*, *) 6 4C*; /»+(*, f) G V for some f 6 5}. 

5o+: = {z e B+;B[y,z](b-,a+) = O j Ç D | . 

I + : = l + ( ^ ) o n 5 + . 

Lo+: = 1+ on 50+. 

We construct L+, L0
+, L+/ , L0

+/ (as in the first order case) by restricting \f/ 
to S and substituting W[y} z\(b~, a+) for £[3/, z](b~, a+). 

With these new definitions Green's relations Lemma 3.8 hold as stated for 
the higher order case. The proofs which we omit amount to repeated integra
tion by parts. Similarly the inclusions 

L+CL+C U* and L0
+ ' C L0

+ C U+ C L0* 

hold as in the first order case (cf. Remark 3.9). 
We now show that Theorem 3.6 and its corollaries also extend to the higher 

order case. The only nontrivial step in the proof will be to generalize Lemmas 
3.12 and 3.13. For, once it is known that R(LQ)1- = N(L+), 1 ^ p < oo, we 
can retrace the proofs of the remaining lemmas almost verbatim. 

To this end associate with L0 the first order minimal operator jSf 0 with do
main and range in L/[a , b] determined (as in Definition 3.1) by 

ly = y + Ay, Vy = 0, 

where A is the n X n matrix 

[~0 - 1 0 . . . til 
0 0 - 1 . . . 0 

_ 1 
&n <V-1 # n - 2 . . . d\ 
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a n d f : Cn[a, b] -» F is given by 

^ y : = [7„,. . . , V1]y. 

By Lemma 3.12 (old version) 

(5.4) R(&0) = N(Jf+)\ 

where N(J£+) consists of all z G BV„[a, b] such that 

(5.5) -(z+ (<p,r)*y + A*Z = O 

(5.6) 2+ ( * 1 f ) * a Q a 1 J ] , ^ 5 . 

Now 

[~ 0 0 . . . 0 an 1 
- 1 0 . . . 0 fl„_i 

,* 0 - 1 . . . 0 a„_2 

I 0 0 - 1 oi J 

Further 

<*,*0* = «<*>> Vn) (<t>, V1))*. 

Now suppose/ G R(L0). This is the case if and only if (0, . . . , 0 , / ) l £ R(J^o). 
By (5.4) we conclude t h a t / £ i?(L0) if a n d o n ly i f / is orthogonal to 7rn NÇ&+) 
where irn is the projection operator of N(J^+) onto its nth component. More 
precisely: for 1 < p S oo , R(L0) = wn N(^+)±\ for p = 1, ^(Lo) = - ^ v 
(iV(oSf+). We now wish to characterize 7r„(iV(e£f+)). Set z = (zu . . . , zn) \ Then 
(5.5) is equivalent to the system of equations 

(5.7) - (zn-j + (</>, Vj+1)*Y - zn-U+D + aj+1*zn = 0, j = 0, . . . , n - 2, 

- (zi + (0, Fw>*)' + an*zn = 0, j = n-1. 

Furthermore (5.7) becomes 

(5.8) zn.3 + ($, F,+1>* £ AC, j = 1, . . . , n - 1. 

If we introduce the notation 

K0z: = z*z 

KlZ: = [K0z+ <0, Fi>*]' + ai*2 

(5.9) i£2s: = [2^*2 + (0, F2>*]' + a2*s 
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it is apparent from (5.7), (5.9) and the structure of the partial adjoints (5.2) 
that 

2 

(5.10) z„_2 = -K2zn = -h+(z, *) + £ ( - l ) ' " 2 / ^ 3 ( « , V,)* 

3 

21 = ~Kn^Zn = -InSiz, f) - (4>, Vn)*. 

Also (setting j = n — 1), i£nzn = /w
+(s, ^) = 0. Moreover, from (5.8) and 

(5.10), 

(5.11) - / / ( s n , *) - (0, 7,+i> + E ( - l ) w / w + 1 < * f Vt)* G AC. 
i+1 

This implies that lj+(zn, \p), j = 0, . . . , n — 1, are absolutely continuous. 
From the definition of L+, it follows that zn G N(L+). On the other hand, if 
s G N(L+), a similar computation shows that (K0z, . . . , i£n_i2;) exists and 
is in N(J?+). Thus N(L+) = ?rn N(J?+) and we have shown the following. 

5.3. LEMMA. For 1 <p ^ oo,R(L0) = N(L+)\Forp = 1,R(L0) = ±N(L+). 

We now generalize Lemma 3.13. 

5.4. LEMMA. For 1 £ p < oo, R(Lo)1- = iV(L+). 

The proof of Lemma 5.4 is exactly the same as that of Lemma 3.13 except 
that 

* * = £ ( - 1 ) ' + 1 / ( < W * * ] + *»-i, etc. 

where 7rn_i G i£(*-1}. 

As mentioned at the beginning of this section the generalization of Theorem 
3.6 and its corollaries is routine. First repeating the proof of Lemma 3.14 
verbatim yields the adjoint relations 

Lo* = I+ ; L* = I o + 1 ^ P < oo. 

The proof of Lemma 3.15 is also valid in the higher order case, provided we 
can show that 0 is arbitrary over DQ+I'. By standard theory there exists £ G DQ

f 

satisfying the two point boundary conditions 

Ka+) = o, s u ) ( n = i (-i)4-a+1);0+1,<</>„ vt)*(b) 
for any </> G F*. One easily checks that £ — iA G ^o + / where ^ corresponds to </>. 
Thus 0 is arbitrary. 
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Corollaries 3.16, 3.17, and 3.18 generalize without difficulty to the higher 
order case. This task is left to the reader. 

5.5. Examples. 

1. Operators with Stieltjes boundary conditions. Let 

iy=t, V 1 ' . «« € Cn~% l] 

Uy=t, JdV&in-j), 
i = l ^ 0 

where the dV\ are 1 X m vector valued real measures with components of 
bounded variation. Here F ~ Rm = F*. Since F is finite dimensional D0

+ = 
Do+ = Z)0

+/ and L* = L0
+/ . We now show that the characterization of L* 

read off from Definition 5.2 is equivalent to one obtained in an earlier paper [3] 
dealing with Stieltjes boundary value problems. We can assume for convenience 
that the measures dVh j = 1,. . . ,n — 1, are singular with respect to Lebesque 
measure. For if dVj has an absolutely continuous part Vjc, it satisfies 

PdVjcy
in~fi = V ^ - ^ l - fdVi/y^-1'. 

J o •> o 

By assuming that the Radon-Nikodym derivative is also of bounded variation, 
etc., repeated integration by parts results in singular measures on (0, 1) plus 
point mass measures at the endpoints. This means, in particular, that 

(5.12) /,+ (*,*) = /,+ (*, 0), j = 0 » - l . 

Moreover the requirement that lj+(z, \p) be absolutely conditinous (5.11) and 
(5.12) lead to the condition 

- / , + (*, 0) + (0, Vj+1) e AC, j = 0, . . . , n - 1. 

The endpoint conditions may be read off from (5.3). Up to a change of sign 
therefore the domain of the adjoint is the same as given in Theorem 5.1 of [3]. 

2. An operator with boundary conditions at infinitely many points. Let T C 
(0, 1) be the finite union of disjoint countable sets Tj = {ttj}, j = 1, . . . , m 
such that tij < tlk, i < l,j ^ k. We characterize the adjoint L* associated with 
the system 

(5.13) ly = Dny 

y (hi) = rtj, ttj e T 

To use the machinery of this paper it is necessary to construct a t.v.s. F such 
that 

Uy: = «y (*a )> , . . - , <y(hm))) 
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is bounded. Associate with each set Tj a copy F3 of Rw and set 

m 

F:= X Fj. 

For 1 ^ j ^ m, let (c{j) be an element of c0o, the subspace of Rœ having finitely 
many nonzero components. Let T be the ra-fold direct sum of c0o- Identify F 
with a total family of functionals on T via the pairing 

Endow F with the weak topology relative to T, and T with the weak * topology 
relative to F. Then F and T are locally convex topological vector spaces. 
Furthermore, F* = T and T* = F, and £/ is bounded. 

In this framework we define L and L0 as in § 5. 
Setting 

we can write 

(5.14) (4>, U){t) = £ K{ttj)\{t)Atj 

Hence 

(5.15) 5 = {/o'-^~_52)!2 2 *('«>X(5)A*A * e F*} 

(Note that all sums are finite because of the nature of F*). 
Now let K(t) be any step function with jumps on the points of T. From 

(5.14) and (5.15), it is readily seen that we can approximate In~l[K] as closely 
as we please in the L°° norm by a sequence of elements in S. On the other hand, 
because of the local finite dimensionality of 5, 5 œ = Sp, 1 ^ p < oo . Therefore 
if \f/ G S, yp can be uniformly approximated by a sequence \pt in 5. On every 
subinterval {tijy ti+ij)\l/i is a polynomial of degree n. Hence on this interval its 
uniform limit is also. Similarly, by considering the restriction of \pi to (ttj1 ti+2j), 
we find that \p inherits the smoothness of \p{ at t^ij. The above reasoning 
shows that 

S = [In~l[K]: K is a step function with jumps on 7"}. 

Direct inspection of Definition 5.2 shows that ln
+(z, \p) = ( — l)nz{n). Now, 

DQ+' — Do+ and consists of those functions satisfying 
(1) 2<»(0) = zc/)(i) = o, j = 0, . . . , n - 1. 
(2) z{n~2) ^ AC; z{n~l) has jump discontinuities at some finite subset of T. 
(3) *<"> € V. 

D0
+, besides satisfying (3), can have jump discontinuities in the n — 1st dériva-
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tive at every point of T. To determine the endpoint conditions on Z)0
+, note 

that the condition B[y, z](l~, 0+) = 0 for all y in D yields 

£ (-ly-vt-y1-^: = o. 

Since ;y is arbitrary at s ( ; )(0) = s ( ; )( l ) = 0, j = 0, . . . , n — 1. Thus Z30
+ also 

satisfies (1). 

To summarize, the adjoint L* of L consists of the operator ( — l)nz{n) such 
that z{n~2) is absolutely continuous, z(Jl~l) has an arbitrary discontinuity at 
each point in T, and z along with its first n — 1 derivatives vanishes at a and b. 
Further L0

+/ = L0
+ and is a proper restriction of L*. Note also that the null 

space of L* consists of polynomial splines of order n and knot of set T. 

3. Let ly be T, F, F* be the same as in the previous example. We consider 
the integral boundary conditions 

(5.16) I ydt = rij9 tu G T. 

The boundary operator [/corresponding to (5.16) is easily seen to be continu
ous. Further, if <£ £ F* 

<*, U)(t) = I E 4>tMs)Ai& 
*> 0 t j 

(5.17) = X ) <l>ij(ti+ij — tij)^(t)[ti+ij.ii 
a 

ij 

The reader may verify the following assertions directly from (5.17) and the 
definitions of l+(z, \p), S, S, Z50

+ etc. The reasoning is similar to the previous 
example: 

•S:-{(-1)""1/„,-^r^4' lg^°°' 
where K is an arbitrary piecewise constant function Lq with jumps on T. S is 
a subspace of 5 such that K has support on finitely many intervals Atj. 

(5.18) /+(*, *) = ( - l ) V n > + ( - l ) " - ^ ; D0
+' = I V = 5o + = £><>./ 

= {s: s**-1* G ^C;z ( n ) G Lfl;s('>(0) = s ( J )(l) = 0 , j = 1, . . . , n - 1}. 

Thus L* is a linear relation with graph (z, l+(z, \[/)) where z ranges over D0q' 
which is the same domain as the ordinary minimal operator of degree n on 
[0, 1]. Setting (5.18) equal to zero, N(L*) is evidently the set of splines of order 
n + 1 and knot of set T. 

We can also view the system as determining an operator L\Dv
r —> Lp X F. 
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In this case, by Theorem 4.2 we see that the adjoint is given by ( — 1)VW) on 

(5.19) {(*,0) :* G A)+'} CL< X F*. 

By Corollaries 4.3 and 4.4 it follows that (/, r) G R(L) H and only if 

• / o 
(5.20) I /s<ft = [0, r] 

J o 

for all (z, (j>) in the set (5.19). In the next section it will be seen how this fact 
leads to a nontrivial Whitney extension theorem for histosplines. 

6. Some applications to splines. In this section we show how theory of 
adjoints developed in the previous sections can be applied to problems in 
interpolation. First the variational approach to splines will be reinterpreted 
from the point of view of generalized boundary value problems. Secondly, we 
will prove a new result concerning the existence of quadratic histospline exten
sions of minimum Lp norm. 

We begin by discussing a generalized calculus of variations problem of 
interest in its own right. Let 

J(y)' = I g(y,h,t)dt 

Dr: = {y.y^e AC;yneLp;Uy = r], 

where r 6 F and U is bounded. We seek an extremal in Dr maximizing or 
minimizing / . Our solution to this problem yields a striking application of the 
adjoint LQ+ constructed in the previous sections. 

Assume that g is continuous in y, ly, and t, and has continuous partial deriva
tives with respect to y and ly. Denote these derivatives evaluated at a fixed y 
by g?and glv. 

We have the following result. 

6.1. THEOREM, y is an extremal for J only if (gVl — giv) G G(L0
+), where L0

+ 

is the Lq adjoint of the operator L; Lv —> LP determined by ly and Hy = 0. In other 
words, gy G Ôo+ and there exists \p £ S such that l+(gy, \p) = gir 

Proof. If y is an extremal, the Gateaux differential 8J(y; h) must vanish for 
all h in D (cf. [17, Theorem 1, p. 178]). Together with our assumptions on g, 
this implies 

bJ(y; h): = ~ fg(y(t) + ah{t), l(y(t) + ah(t)), t)dt 

S. (Sih + gi,lh)dt 

= {h,gy]+[lh,gl,} 

= 0. 
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Because the last relation is true for all h £ D, 

(g* -gi,) € G(L*). 

Since G(L*) = G(Z0
+), the theorem is immediate. 

To illustrate the preceeding theorem we consider the problem of minimizing 
|\ly\12 over Dr. In this case g(t, y, ly) = (ly)2. Theorem 6.1 immediately gives 
the following necessary conditions on the minimizing solution or "spline" 
y£Dr 

(6.1) ly 6 £o + 

U+(ly) = 0. 

Just how (6.1) yields a concrete characterization of both known and un
known spline functions will be shown shortly by example. 

The significance of Theorem 6.1 lies in the demonstration that highly 
peculiar variational problems can still be handled by "ordinary" calculus of 
variations. Even for "splines" the Euler equation exists! There is however a 
more powerful functional analytic approach which we now develop. What 
follows owes much to the analysis of DeBoor [6]. Our generalized boundary 
value problem approach, however, gives greater generality. 

First let us give a simple derivation of (6.1) using Hilbert space methods: 
by definition ly is an element of minimum norm in the flat 

R(Lr): = {ly,yeDr}. 

Since R(L) is closed, ly exists and is orthogonal to R(L). Hence 

ly e N(L*) = N(L0+) 

which is equivalent to (6.1). (Note that this argument gives sufficiency as well 
as necessity.) 

A similar idea may be used for the more difficult problem of minimizing 
||i?(L r)||P for 1 S P S °° • By a standard lemma in approximation theory 
(cf. [17, pp. 119-121]) 

(6.2) inf | |b> | | P = inf \\ls + R(L)\\P = sup [ls,z] 
y£Dr (s f ixed in D r ) l U I l ç ^ l z <E N(LQ + ) 

(Note that (6.2) is a special case of the isometric isomorphism X*/M1- ~ M* 
with N(L0

+) = M.) 
If p > 1, a solution y exists since Lv = (L5)*. Moreover, if the supremum 

on the right is attained by an actual z* (certainly the case if dim F < oo), 
ly must be "aligned" with z*. In other words equality in Holder's equality 
holds yielding 

(6.3) ly = Klz*]*-1 sgn z*(J), 1 < p < oo, 

(6.4) ly = Ksgn z*(t), p = oo , 
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where K: = sup [Is, z\. Note that (6.4) characterizes y completely only if 
z*(t) does not vanish on a set of positive measure. Also, if p = 2, (6.3) easily 
implies (6.1). Up — \,y may not exist since L1 is not the dual of any normed 
space. In fact it is easily seen from (6.4) that y cannot exist if N(L*) consists 
of continuous functions vanishing at the endpoints (cf. Examples 2, 3 § 5) 
except in the degenerate case K = 0. 

6.2 Examples. 

1. Polynomial splines with infinitely many knots. Let ly = y(n\ p = 2. Let 
the constraints be given by 

y (tu) = nj, tu e T. 

In this case L is as in Example 2, § 5, and (6.1) implies that y is a natural 
polynomial spline of degree 2n — 1 (order 2n) with knot set T. 

2. Polynomial Lg-splines. We modify the previous example only by intro
ducing the constraints 

Z) "ihttij) = rtJ
k, tij e T, k = 1, . . . , m. 

a 
The homogenous operator U in this case is obviously an extension of L. 
Hence Lf* C L*. By the Fredholm Alternative we conclude that y is also a 
natural polynomial spline of degree 2n — 1. 

3. Histosplines. Keeping ly, etc., as before we introduce the integral con
straints 

/

'ti+ij 

ydt = rijt tij Ç T. 
ta 

Then L is the operator constructed in Example 3, § 5. Since N(L*) consists of 
polynomial splines of order n + 1 (degree n) and knot set T such that the 
first n — 1 derivatives vanish at 0 and 1, (6.2) implies that y is a polynomial 
spline of degree 2n. Thus if n — 2, the solution is a quartic spline, or "histo-
spline" a fact demonstrated by I. J. Schoenberg [20, p. 117] in his discussion of 
the smoothing of histograms by splines. 

The reader may readily supply further examples of his own. Obvious ones 
would include the plg/lg splines of Jerome and Schumaker [12], (their struc
tural properties follow at once from Example 1, § 5), "perfect splines", mini
mization under inequality constraints, etc. However since what has already 
been done demonstrates that a general class of constrained minimization 
problems yielding spline solutions can be handled in a unified way, we will not 
pursue these matters further. Instead we close the paper with a hopefully 
deeper application of our theory to splines. (An interesting anticipation of the 
method developed in this paper may be found in Reid [18]. Reid studied mini
mum norm solutions of boundary value problems under two point conditions, 
using functional analytic ideas similar to (6.2)-(6.4).) 
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In what follows we shall prove a Whitney or "Hn'p" extension theorem ap
propriate to an infinite set of integral interpolation conditions. Our results are 
analogous to a recent theorem of DeBoor [5] giving necessary and sufficient 
conditions for the existence of such extensions for point evaluation data. More 
interesting, perhaps, than the result, however, is the technique which shows 
the close relation of this and similar problems to the Fredholm Alternatives for 
nonhomogenous generalized boundary value problems developed in Section 4. 

To simplify notation we will assume T C (0, 1) to be a set with at most one 
limit point $ T at sup T < 1. Otherwise the formalism of Examples 2, 3, 
§ 5 is retained. As will be seen, no generality is lost by this assumption. 

6.3. THEOREM. A sufficient condition that an absolutely continuous function y 
exists on [0, 1] such that 

y' G L\ 1 S P < co, 

and 

ru+i 
(6.5) ydt = rit U G T, 

is that 

(6.6) (A^tr^rWiAt+i-1]) € F, 

where A* denotes the length of (tu ti+i) and [ • , • ] is the divided difference 

(r i+i Ai+r1 - rf Af 1 ) Af1. 

Proof. Consider both the homogenous and nonhomogenous operators L and 
£ determined by y' and the boundary conditions (6.5). Recall from Example 3, 
§ 4 that if n = 1, iV(L0

+/) is the set of piecewise linear functions with corners 
on T vanishing on [0, tk] [tm, 1] for integers k, m. Furthermore, 

z(t) = (ti+i - t) 4>i + z(t1+l). 

Define^: A^(L0
+/) -> F by 

Hz) = <*('<+i) &iUq)-

Since \[/(z) has finitely many non zero terms, \p maps into lq. We now investigate 
the continuity of \p. Let ZA{ be the restriction of z Ç N(L0

+') to Af. Consider 
the following sequence of maps 

Clearly <j>t considered as map from Lq to LQ(Atj) has norm 1. Further 

\Wi\U = sup ,- _,7—, zeN{U ). 

We estimate \\$i\\q first in the case a = 1 (corresponding to p = oo ) and then 
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use Holder's inequality to consider the case q > 1. Finally we use this bound, 
which is independent of i, to bound \p. 

Case 1. z(ti) z(ti+i) > 0. In this case it is clear that ||^*||i = 2. The proof is 
left to the reader. 

Case 2. z(t{) z(ti+i) S 0. Assume that z(ti) z(li+i) < 0. Let X, 6 be as in the 
figure below. 

z(li+1) 

Then 

(6.7) 
|z(<<+i)|A( 

11̂ 11 
2XA, 2A* 

\" + (At -xy x + (A, - x)7x " 
By the derivative test this function has a maximum on [0, A J at X = A</2, 
and we find 

||*«||i = 1 / ( V 2 - 1) =2.414. 

Since the limit of (6.7) is 0 if X —> 0 and 2 if X —• Ai} we can dispose of the case 
z(tf) z(ti+i) = 0. Suppose now oo > q > 1. By Holder's inequality, 

WU^IMLA,!-!». 
Hence 

and 

Since 

\z(t^)\'At< (\z(ti+1)\A(V 

| | * A , | | / = I \\zAi\U I ' 

<ii^(vr=i) n * 

lhK*)ll/ = E Mh)\^i^ E ll^ll/ltall/ 
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we obtain 

^ 1 / ( V 2 - 1 ) . 

Thus for any 1 ^ q < oo, we conclude that \f/ is bounded independently of A* 
and q. Now suppose the condition (6.5) holds. Set 

r: = (AWnAc1, r ^ i A ^ r 1 ] ) . 

Then f induces a continuous functional on R(\f/) and thus on N(LQ
+f) via the 

natural pairing on lv X lq. Further, the norm of f on iV(L0
+/) is less than or 

equal to | | r | | p / ( \ /2 — 1). By the Hahn-Banach theorem, this functional has a 
norm preserving extension to all of LQ. L e t / G Lp = (L2)* be the Riesz repre
sentor of this functional. Thus restricted to N(LQ

+f) 

(6.8) I zfdt = rot(z). 
J o 

But 

?o*(z) = £ A / z ^ r . A ^ n + x A ^ r ^ a ^ A , 1 ^ 

oo 

= £ (^A" 1 - ri+1Ai+i~1)z(ti+1) 

oo 

= £ r^iA^-i - 1 (2(^+2) ~ 2(^+1)) + ^iAr1s(/2) 
i= l 

= Z ^0,. 
f = l 

So 

(6.9) f \ / < « = [r, </>], z£N(LQ
+f). 

J 0 

From what has been shown in § 4, (6.9) says t h a t / is orthogonal to N(L*). 
Hence by the Fredholm Alternative (Corollary 4.3), (/, r)1 £ R(L). In other 
words, there exists y £ AC such that (6.5) is satisfied and y' £ Lv. The proof 
of the theorem is complete. 

6.4. COROLLARY. Condition (6.6) is necessary if 

(6.10) sup A,.!-1 A, = TV < 00. 

Proof. We begin by reversing the reasoning of Theorem 6.3. If (/, r)l £ R(L) 
then (6.9) holds and yf induces a continuous functional yf on N(LQ+/). Moreover 

k <£] = Z y(U)4>t+i 

= Z y(ti)*r\z(ti+1) - z(tt)) 

(6.11) = Z (y(^)Ar 1 - y ^ + O A ^ r V i + i ) 
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It is clear that ^ - 1 exists. Also (6.9) and (6.11) imply the commuting diagram 

N(LQ+' 

where 77 represents the action of 

on R(\l/) C lQ> Since 77 o \p = yf, we can conclude that y\ is continuous, i.e., (6.6) 
holds provided \p~l is continuous. Suppose, therefore, that c £ Coo and z: = 
\j/~l c. Then 

z(*<): = CtAt-r1", 
and 

llA 11/= sup. -M 1/2 E 
(Iç^il'Ai-r1 + |c<|'Ar1)A< . M + l 

M M ? M M ? 

6.4. Discussion. 1. As previously mentioned the assumption that T contains 
only one limit point at 1 was made only to simplify notation. Our results extend 
without difficulty to a general set T of the first species considered in § 5. This 
is done by repeating the proofs verbatim on each T,} and taking direct sums 
where necessary. Thus (6.6) should be replaced by 

i/j»r I,. _ Aif'^rijAij tTi+ijAi+ij K _ 

2. The proof of Theorem 6.3 gives both an extension of minimum norm and 
an upper bound on this norm. To see this, suppose (6.6) holds so that an exten
sion exists. We know (cf. 6.2) 

(6T2) inf 11/ + R(L)\\V = sup [/, z] \\z\\ = 1, s G 7V(I0
+) 

and the minimum is attained (because Lp = (L?)*, 1 ^ q < 00). However 
since iV(L0

+/) = 7V(L0
+) it follows from (6.12) that the supremum on the 

right is just 

11/11,: = I'll 11*11. = 1 

(If p = 2, one can obtain the sharper bound \\\p\\2 S 2 by a direct argument 
similar to the one for p = 1.) In any event these bounds yield the important 
practical result that one obtains information about the norm of the derivative 
of a minimizing histospline in terms of the histogram without having to 
actually compute the histospline. 
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3. For point evaluation, the condition analogous to (6.6) for n ^ 1 is 

(A,1» [ '< , . . . , *<+n]> € V. 

In this case necessity is easy (cf. [20, p. 59]). However, until [5] (e.g. [9]) a 
mesh ratio requirement similar to (6.10) was required to prove sufficiency. In 
this paper, on the other hand, the order of difficulty is reversed! Whether or not 
(6.10) is required for necessity and our technique can be extended to the case 
n > 1 and/or more general functionals are interesting questions we hope to 
consider elsewhere. 
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