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DECOMPOSITION OF THE STEINBERG GROUP OVER
LOCAL RINGS INTO INVOLUTIONS

Ji ZHU NAN

We consider the stable Steinberg group St(R) over local rings. An element x is
called an involution if x2 = 1. We prove that every element 6 in St(R) is the
product of at most 5 involutions.

1. INTRODUCTION

It is a classical problem in the research of classical groups to represent an element of
a matrix group as a product of a special nature (such as of involutions and commutators)
and to determine the smallest number of the factors in the representation [1, 2, 3,4].
It is known that every element of SLn{F) (= En(F)), the special linear group over
a field, can be written as a product of at most four involutions for n ^ 3 [5]. The
present note will consider the factorisation of stable Steinberg groups over local rings
into involutions. Now let us introduce some definitions and propositions that will be
used in our note [6, 7].

DEFINITION: An element x of a group is called an involution if x2 = 1.

The Steinberg group Stn(R) (n ^ 3) over an associative ring (with 1) R is the

group with generators xy(r) (r € R, 1 ̂  i,j' ^ n), and relations:

(1) Xij(r) • Xij(s) = Xii{r + s), (r,seR);

(2) fc,(r

Let ipn : Stn(R) —> En(R) (the elementary linear group) be the natural epimor-
phism mapping iy(r ) to ey(r). Denote K2,n(R) = keripn. By passing to the direct
limit as n -* oo, we obtain the stable Steinberg group St(R) and the epimorphism
<p : St(R) -+ E(R). Denote K2(R) = kerip. When m $s n, define /„,„,: Stn(R) -f
Stm(R) as the injective homomorphism. So /„ : Stn(R) -> St(R) is the injection of
Stn(R) into St(R). It is clear that /„ = fm • fn<m, fm(K2,m(R)) 2 fn{K2,n(R)), and
K2(R)= U K2,n(R).

For any u e R* (the set of units in R), define wy(u) = Xy(«)a;ji(—«-1)a;y(w),
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P R O P O S I T I O N 1 . 1 . [6, 7] Let w e Stn(R), <pn(w) = P ( J T ) d i a g ( u i , . . . ,vn).
If 7r(i) = k and w(j) - I . We have

(1) wxijir)™-1 = Xfci(virv'1) (reR),

(2) ttWj^u)™"1 = Wkiiviuvj1) (u e iT),

(3) whij{u)w-1 = hki(viuvjl) hki{viVjl)~l.

PROPOSITION 1.2. [6, 7] Let «, v e R*. We have

(1) Wy(u) = iu i i (-u-1) ,

(2) fc«(u)fci4(u) = l, M 1 ) " ! .
(3) [A^(tt), ft>fc(«)] = fcftMfcttW'/ittW"1.

DEFINITION: [8] GL(R) = (J GLn(R), EL(R) = (J ELn(R). For any element

A in GLn(/?), we can define an injective homomorphism GLn(R) -> GLm{R) by

Tn,m(A) = ( ) , where m ^ n.

For m^ n, define an injective homomorphism by

/n,m : Stn(i?) -)• 5tm(/Z)

Then /„ = fm- / n i m , and we have the commutative diagram

Stn(R) -5*=+ Stm(fl) -&-»• 5t(fl)

En(R) - ± ^ Em(R) -2S-> J5(Ji)

where Tn,m(>l) = ( ) , rn = rm • rn ,m. It is clear that Stm(R) D Stn(R)
\ Is *n—m /

as subgroups of St(R) and that St(R) = \J STn(R). It follows from the above

commutative diagram that for m > n, K2,m(R) 2 ^.nC-R) as subgroups of

Analogous to the situation above, we have ^(-R) = U K2,n(R). If R is a field,
n>3

then K2(F) 9i K2,n(F). Now let R be a local ring. For any u,v / 0 6 .R, define

{«,«} = AttCuwJAtfcCv)"1^*^)"1. By [7] we know that K2(R) is generated by the

symbols {u,v} and the symbols {u,v} are independent of the choice of indices i,k.

For the symbols {u, v}, we have

(1) {U,*}-1 = {»,«},

(2) { « , 1 - U } = { « , - « } = 1 ( n # l ) ,

(3) {uiu2, v} = {ui, «}{u2, «}, {«, «i«2} = {u,vi}{u,V2}.
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2. DECOMPOSITION OF MATRICES OVER LOCAL RINGS

Let R denote a commutative local ring with maximal ideal M, R/M the residue
field and R* = R\M. As usual, Mn(R) denotes the set of n x n matrices over R. By
"—" we denote the natural ring morphism R -»• R/M and M(R) -t M(5) . Then it
is easy to prove that A € GLn(R) if and only if A = (5y) € GLn(R!).

In this section, we shall prove that every element <5 in SLn(R) is the product of
at most 5 involutions.

LEMMA 2 . 1 . [9] Every element of Sn, the group of permutations on n letters,
is the product of at most 2 involutions.

LEMMA 2 . 2 . Let A be a matrix of the form

/ * *
1 •

* 1

* -bo \
* -A
* —62

* e M. Tien A is similar to a matrix

\ * • • • • 1 — 6 n _ i /

/ 0 0 . . . 0 -a0 \
1 0 . . . 0 -01
0 1 . . . 0 - o 2

Vo 0 ... 1 -an-iJ

, where

PROOF: Without loss of generality, we prove it for n = 3. Let A — I 1 * a\ I .
V 1 aj

/I ' \ /O ' ao\
Conjugating A by Pi = I 1 I , we have

V 1/
/I \ /

let P2 1 I > then

I
\ • 1/

*\
1 * I , then

1/

sume that P4 =

( 0 0 ao\
1 0 Ol .
0 1 a2)

f1

O

= I 1
V *

. Now

X == I 1 • Further, if we let
0 1 + ' o2/
/O 0 o0\
1 ! ° a i I • Last> w e

\0 1 + * a2j

, then we have P4P3P2P1AP11 P^1 P^1 P+1 =

D
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LEMMA 2 . 3 . Assume that A e SLn+i(R), A = f j , where B e SLn(R)

and the characteristic polynomial of matrix B is irreducible. Then A can be written
as a product of at most 3 involutions and these involutions are in SLn+i(R).

PROOF: Without loss of generality, in the following discussion, we often write a
matrix in its normal form of similarity. Now we may assume that

0 - a 0 \ / * * . . . * -60/0 0
1 0
0 1

\ 0 0

0 -ax
0 - a 2 so B =

1
1 - b 2

where the element * is in the maximal ideal M. By Lemma 2.2, B is similar to a
matrix with the form

/ 0 0 . . . 0 -a0 \
1 0 . . . 0 - o t

0 1 . . . 0 - a 2

Thus we have

/ - 1 (

\ 0 0 . . .

, dn_i G R such that

\dn_l 0

0

/0 0
1 0
0 1

\0 0

-«o \ (0
1

0

0 ...
0 .. .
1 .. .

0
0
0

-ao^
0
0

\0 0

But

/ 0 0
1 0
0 1

Vo o

0 -
0 0
0 0

0 /

- a 0 0
0 0

V o i

1

0/

1 0 /

1 \

1

Hence B is the product of at most 3 involutions. Since B € SLn(R), we know
that the number of involutions with determinant —1 is even, in the representation
B = H\H2Hz (Hi are involutions). Otherwise, we obtain B & SLn(R). Thus

https://doi.org/10.1017/S000497270002205X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002205X


[5] Decomposition of the Steinberg group 101

When ( rr \ / rr \

I = I ' I and when detffj = 1, we
/jr. \ /ij. \ / zi. \

assume that ( * j = I ' 1. That is to say, ( ' _ • , ) &SLn+1(R). D
REMARK. Obviously, we can assume that the matrices which are used in the above two

lemmas to conjugate A are in SLn+\R. For example, if P = 1 1 e GLn(R), then

ft \ / » ' \
we can take P = I / e SLn+1(R); if P = I 1 0 j , then we can take

V r1/ \ / /

P = € 5Ln+i(ii); If P is the other elementary matrix, then we can

V - 1 /
/ p \

let P =

wiere B 6THEOREM 2 . 4 . Let A e 5Ln+i(fl). If A has the form ( j ,

SLn(R), then A is the product of at most 5 involutions and these involutions are in
SLn+1(R).

PROOF: Without loss of generality, we can suppose that B has the form

/Si

BJ

/ 0 0
1 0

where Bi (1 <i < s) is a matrix with the form

.. 0 - a 0 \

. . 0 -oj

0 1 . . . 0 - a 2

\ 0 0 . . .
a diagonal matrix. Thus there is a matrix P such that

, or Bi is

• B 2 • • . ;

! ' . * . *

' .. • BJ
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where B< (1 ^ t ^ *) is equal to

•* * . . . * - a o \

* 1 ... • -a 2

• * ... 1 -am_i /

or
* 62

* . . . ' bm)

Of course, the element * is in M. Hence we have a permutation matrix H such that

/ *

HB =

a2

V * ...

. . . * <H\
* *

an

where, these elements * are in M. Then by Lemma 2.2, matrix HB is similar to a
matrix

/ 0 0 . . . 0 -a0 \
1 0 . . . 0 -ox
0 1 . . . 0 - o 2

\ 0 0 ... 1 - a r o _ j /

Now by Lemma 2.3, matrix HB can be written as a product of at most 3 involutions.
On the other hand, H is a product of at most 2 involutions by Lemma 2.1. Thus B
can be written as a product of at most 5 involutions.

Finally, using the same method as in Lemma 2.3 and Theorem 2.4, we can prove
that those involutions which are in the representation of B as above are in SLn+\ (R). D

3. DECOMPOSITION OF STEINBERG GROUPS

Since ip : St(R) -* E(R) is subjective, there is an element p £ ST(R) such that
ip(p) = P for any given matrix P. Now we have Kz(R) ~ ker^j and it is the centre of
the stable Steinberg group St(R) [7]. Thus for any x € ST(R), there exists n e Z such
that v>(a:) € En(R) = SLn(R) = rn+m,n(SLn(fl)) C SLn+m(R). Then by Theorem
2.4, we have

<p(x) = HXH2H3HAH^

where Hi is an involution in SLn+m(R), so of course, they are in SL(R) = E(R).
Hence if we find five involutions 6t (1 < i ^ 5) in St{R) such that <p(<5j) = Hi, then we
obtain

where w is in ker</> (the centre of St(R)).
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We know that H = is an involution in SL^R) C SL(R), but we
- 1 ,

easily obtain an element wi2(l)Ai3(—1) € St(R) such that <p(wi2(l)hi3(—1)) = H
and it is not an involution in St{R) [6]. So we must show that for those involutions
Hi (1 ̂  i sj 5) in SL(R) and HiH2H3HAH6, we can find involutions St (1 < » ^ 5)
such that they are in St(R) and they satisfy y>(#i<$2̂ 3<W5) = H1H2H3H4H5. On the
other hand, if we prove that w is a product of at most 5 involutions, of course, these
involutions must be in St(R). It we prove that these involutions which occur in the
representation of u> commute with Si, then we obtain our main result.

Here we shall show that we can find involutions di that satisfy the above condi-
tions. By the proof of Theorem 2.4, we know that those involutions that occur in the
representation of Theorem 2.4 occur in the decomposition of a permutation or in the

/ 0 0 . . . 0 -00 \
1 0 . . . 0 - a i

decomposition of a matrix with the form 0 1 0 - a 2 Now we con-

involutions are similar to the direct sum of involutions of the form 7i =

\0 0 . . . 1 -Om-i

sider the case of a permutation, written as the product of two involutions. In fact, a
permutation S with order n can be written as a product of two involutions and these

'0 1
1 0

0 1
1 0/

/0 1 X
and 72 = I 1 0 I . Hence we only need show the simple case, that is to say,

we can assume that

S = PhP'i.QhQ'1, or S = PhP~l.QhQ~l and 5 = PhP^QhQ'1.

But we can send SLn(R) to SLm(R) under rn>m. So in SLn+2[R), we have

' P
• = (

—^2x2 hx2

\ 72x2/ \ —hxlj \ hx2/

or S =
—72x2

(Q ) ^ ) ( ^ ) .
\ ^2x2/ \ —72X2/ \ 72x2/
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and S =

(Q ) ^

But by Propositon 1.1 and Proposition 1.2, we have

<p(w12(l)h14(-l)W34(l)h56(-l)) = J

where u>i2(l)fti4(-l)w34(l)/i56(-l) and t«i2(l)'ii3(-l)'»45(-l) are involutions in St(R).
0 0 . . . 0 -a0 \
1 0 . . . 0 -Oi

Next, we consider the case A = 0 1 . . . 0 - o 2

\0 0 . . . 1 -dm-i
involutions. As in the proof of Theorem 2.4, we can assume

as a product of three

A =

/ - 1 0
d\ 1

!»-i 0

0 \

1 /

-a0 0 ... 0\
0 0 ... 1

0 1 ... 0/
\ 1

( —^3x3 \ / — ^3x3 \ / — -̂ 3x3 \

1 \

Thus we can use the same method, analogous to the situation above, to find two

involutions «5i and S2 in St(R) such that v(<M2) = ( ^ v ) ( ~/3><3
 x ) "

Hence we only need show that we can also find an involution 6 in St(R) such

that

/-I

= ( / 3 x 3 j . Without loss of generality, we let ( / 3 x 3 „ ) =

- 1

X
\

-1
a \)

and consider our problem. By Proposition 1.1 and Propo-
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sition 1.2, we have

/ - I
- 1

- 1

- 1
o 1 /

where hi2(—1)/«34(—1)̂ 45(0) is an involution in St(R).
So far, we have shown that there are involutions Si (1 < i ^ 5) in St(R) such that

Now we want to prove that w is a product of at most 5 involutions; of course, these
involutions must be in St(R). At the same time, we shall prove that these involutions
occurring in the representation of w commute with Si. In order to complete the proof
of the main result, let us prove the following lemma.

LEMMA 3 . 1 . Let R be a local ring. Then every element of K2{R) can be written
as a product of at most four involutions.

PROOF: 1. At first, let us consider the spacial case, the generator {u, v}. By
definition

{u,v} = /ii2(w^)/»i2(w)~1'ii2(f)~1 = hi2(uv)h2i(u)h2i(v)

= Wu(uv)h13(-l)h4!i{-l)h54(-l)h31(-l)w12(-l).

Since hi3(-l)wi2(u)hi3(—l)~l = wu(—«), we have

That is, Wi2(u)hi3(—1)/HS(—1) is an involution in St(R). Similarly,
^54(-l)^3i(—I)wi2(—1) and /i54(—l)/»i3(—I)w2i(—I)w2i(v)ty2i(—1) are involutions in
St(R).

h
2. General case. Every element o> of K2(R) can be written as u f\ {ut,Vi}. Since

i=l
the definition of {ui,Vi} is independent of the indices of hu, we can write {ui,«j} =
T^T^T}3^, where

T{ = ^5(

Ti = u;5(i_1)+2,5(i-l)+l(««)'»5(i-l)+3,5(t-l)+l(-l)''5(i-l)+4,5(i-l)+5(-l)

T = 'l5(
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are all involutions in St(R). Note that when j ^ t, the involutary factors in the
factorisation of {UJ,VJ} and {ui,t>i} are respectively exchangeable. So w is a product
of 4 involutions. D

THEOREM 3 . 2 . Let R be a local ring, then every element of St(R) can be
written as a product of at most 5 involutions.

PROOF: We assume that £ e St(R). If £ € faiR), then the conclusion
of the theorem can be obtained by Lemma 3.1. Now suppose that £ £ K-i (R).
Then by the definition of St(R) there are a positive integer n ^ 4 and 5 involu-
tions Hi,H2,H3,H4,H5 € En(R) = SLn(R) such that there are five involutions
5i,62, S3, S4, <55 e Stn(R) such that Ht = <fi(8i), tp(£) = HiH2H3H4H&. Thus we have

that is , f = a>.<

where u> e
t

Let u> = Y\{di,bi}. Since the symbol {ai,bi} is independent of the index of hrk
i=l

occurring in the resresentation of {OJ, &<}, we can choose sufficient large r, k (all larger
than 2n) such that

)

By Lemma 3.1, u> is a product of 4 involutions T\, T%, T3, T4, but the indices r, fc of
hrk-, Wrt occurring in the representations of Ti are larger than 2n. Thus T< commutes
with Si. So we have

is a product of five involutions, and also we have that these involutions are in St(R). D
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