ON RINGS OF FRACTIONS

BY
T. M. K. DAVISON ${ }^{1}$)

1. Introduction and summary. Let R be a commutative Noetherian ring with identity, and let M be a fixed ideal of R. Then, trivially, ring multiplication is continuous in the M-adic topology. Let S be a multiplicative system in R, and let $j=j_{S}: R \rightarrow S^{-1} R$, be the natural map. One can then ask whether (cf. Warner [3, p. 165]) $S^{-1} R$ is a topological ring in the $j(M)$-adic topology. In Proposition 1, I prove this is the case if and only if $M \subset p(S)$, where

$$
p(S)=\bigcap\{P \mid P \text { prime ideal of } R \text { such that } P \supset \operatorname{ker} j, P \cap S \neq \phi\} .
$$

Hence $S^{-1} R$ is a topological ring for all S if and only if $M \subset p^{*}(R)$, where

$$
p^{*}(R)=\bigcap\{p(S) \mid S \text { a multiplicative system }\} .
$$

The ideal $p(S)$ occurs in another context: in Proposition 2, I prove that $S^{-1} R$ is an R-algebra of finite type (that is a ring finite extension of R) if and only if S $\cap p(S) \neq \phi$. To globalize this result I prove in Theorem 1 that the all quotient rings of R are of finite type if and only if R is semilocal of dimension at most 1 . (This generalizes an old result of Artin-Tate [1, Theorem 4].)

The remainder of the paper is taken up in evaluating $p^{*}(R)$, (in particular when R is a domain $p^{*}(R)$ is the pseudo-radical introduced by Gilmer [2]), and discussing the interrelationships with $\operatorname{Rad}(R)$, the Jacobson radical of R, and $\operatorname{rad}(R)$, the prime radical of R.
2. Notation and terminology. In general the notation and terminology is that of Zariski-Samuel [4]. T denotes the set of all nonzero divisors of R, a commutative Noetherian ring with identity. For a given multiplicative system we put

$$
S^{\perp}=\{x \in R \mid \exists s \in S \text { with } x s=0\} .
$$

Thus $S^{\perp}=\operatorname{ker} j_{s}$, as defined above. \mathscr{S} denotes the set of all multiplicative systems which do not contain 0 , hence

$$
\mathscr{S}=\left\{S \text { mult. system } \mid S \cap S^{\perp}=\phi\right\} .
$$

We say a prime ideal P of R is S-prime if and only if $P \supset S^{\perp}$ and $P \cap S \neq \phi$. Thus

$$
p(S)=\bigcap\{P \mid P \text { is an } S \text {-prime ideal }\} .
$$

R is not considered to be a prime ideal.

[^0]
3. Elementary results.

Lemma 1. Let A_{1}, \ldots, A_{n} be a set of pairwise incommensurable prime ideals in R. For each $i \in[1, n]$ there is an $x_{i} \in R$ such that $x_{i} \notin A_{i}$, but $x_{i} \in A_{j}$ all $j \neq i$.

Proof. Immediate.
Lemma 2. Let R_{1} be a commutative ring, and G a subgroup of R_{1} satisfying $G \supset G^{2} \supset G^{3} \supset \cdots$. Then the powers of G can be used for a base for a topology on R_{1} which gives it the structure of a topological group.
Then R_{1} is a topological ring if and only if given $x_{1} \in R_{1}$ there is a $k \geq 1$ such that $x_{1} G^{k} \subset G$.

Proof. Straightforward (or Bourbaki?).
Finally we have the following property of minimal prime ideals of R :
Lemma 3. Let P be a minimal prime ideal of R (i.e. isolated prime ideal of (0)). For all $S \in \mathscr{S}, P$ is not an S-prime ideal.

Proof. Let P_{1}, \ldots, P_{m} be the associated prime ideals of (0), and write (0) $=\bigcap Q_{i}$ in an obvious notation. Put $S_{i}=R \backslash P_{i}$.

Assume P is S-prime, then $P \supset S^{\perp}$. Hence [4, Vol. 1, Ch. IV, Theorem 18 (3)]

$$
P \supset \bigcap\left\{Q_{i} \mid i \text { such that } Q_{i} \cap S=\phi\right\}
$$

Thus $P \supset P_{i}$ for some i such that $P_{i} \cap S=\phi$. As P is minimal $P=P_{i}$, and so $P \cap S=\phi$; which contradicts our assumption that P is S-prime.
4. Local and global results for continuity of ring multiplication. Let R, M be as in §1.

Lemma 4. Let $S \in \mathscr{S}$. Then $S^{-1} R$ is a topological ring in the $j_{S}(M)$-adic topology if and only if given $s \in S$ there is a $k \geq 1$ such that

$$
M^{k} \subset M s+S^{\perp}
$$

Proof. Let $(x, s) \in S^{-1} R$ be given. By Lemma 2 we need only show there is a $k \geq 1$ such that $(x, s) j(M)^{k} \subset j(M)$. Since $(x, 1) j(M) \subset j(M)$ for all $x \in R$ it is necessary and sufficient to prove that given $s \in S$ there is a $k \geq 1$ such that $j(M)^{k} \subset j(M)(s, 1)$. The result now follows.

Corollary. $\left(S^{-1} R, j(M)\right)$ is a topological ring if and only if $M \subset \bigcap_{\mathrm{s} \in \mathrm{S}} \sqrt{R s+S^{\perp}}$.
Proof. If multiplication is continuous, then given $s, M \subset \sqrt{M s+S^{\perp}} \subset \sqrt{R s+S^{\perp}}$. But this is true for all s, whence the result.

Conversely assume the result. Let $s \in S$ be given, then $M \subset \sqrt{R s+S^{\perp}}$. As R is Noetherian,

$$
R s+S^{\perp} \supset\left(\sqrt{R s+S^{\perp}}\right)^{k} \supset M^{k} \quad \text { for some } k \geq 1,
$$

and so $M s+S^{\perp} \supset M^{k+1}$.

We now prove the intersection of the above corollary is identical with $p(S)$.
Lemma 5. $\bigcap_{s \in S} \sqrt{R s+S^{\perp}}=p(S)$.
Proof. Assume x belongs to the left-hand side. Let P be an S-prime ideal, and choose $s \in P \cap S$. Then as $x \in \sqrt{R s+s^{\perp}}$ there is a $k \geq 1, y \in R, z \in S^{\perp}$ such that $x^{k}=y s+z$. But this implies that $x \in P$ (as $s \in P$, and $z \in P$). Hence x belongs to the right-hand side.

Conversely assume $x \in p(S)$. Let $s \in S$ be given. Every prime ideal containing $\sqrt{R s+S^{\perp}}$ is S-prime, and so $x \in \sqrt{R s+S^{\perp}}$. Thus $x \in \bigcap_{s \in S} \sqrt{R s+S^{\perp}}$.

We combine this result, with the preceding corollary to obtain:
Proposition 1. A necessary and sufficient condition that $\left(S^{-1} R, j(M)\right)$ is a topological ring is

$$
M \subset p(S)
$$

Hence we deduce.
Corollary. $\left(S^{-1} R, j_{S}(M)\right)$ is a topological ring for all $S \in \mathscr{S}$ if and only if

$$
M \subset p^{*}(R)
$$

5. Local results for ring-finiteness. In the results that follow we will make use of the fact that the prime ideals of a Noetherian ring satisfy the d.c.c., and so, if there are S-prime ideals then there are minimal such.

Proposition 2. (cf. [2, Lemma 3]). Let $S \in \mathscr{S}$. The following conditions are equivalent
(i) $S^{-1} R$ is an R-algebra of finite type.
(ii) $S \cap p(S) \neq \phi$.
(iii) There are only finitely many minimal S-prime ideals.

Proof. (i) \Rightarrow (ii). Assume $\phi: R_{1}\left[x_{1}, \ldots, x_{n}\right] \rightarrow S^{-1} R$, with $R_{1}=R / A$ for some ideal A of R, is an isomorphism. Choose $\left(y_{i}, s_{i}\right) \in S^{-1} R$ such that $\phi\left(x_{i}\right)=\left(y_{i}, s_{i}\right)$. Put $s=s_{1} \ldots s_{n}$. Clearly $s \in S$. I claim $s \in p(S)$.

It is straightforward (but tedious) to prove using ϕ^{-1} that given $(y, t) \in S^{-1} R$ there is a $k \geq 0$, and $x \in R$ such that $\left(s^{k} y, t\right) \sim(x, 1)$ (in the case of domains this is trivial). Let P be an S-prime ideal, and choose $t \in P \cap S$. By the preceding remark we see that $s^{m}-x t \in S^{\perp}$ for some $m \geq 0, x \in R$. Thus $s^{m} \in x t+S^{\perp} \subset P+S^{\perp} \subset P$ and so $s \in P$. Whence $s \in p(S)$.
(ii) \Rightarrow (iii). Assume $s \in S \cap p(S)$, and put

$$
\sqrt{R s+S^{\perp}}=P^{(1)} \cap P^{(2)} \cap \cdots \cap P^{(k)}
$$

where all $P^{(j)}$ are prime, and in fact S-prime. Let P be an S-prime ideal. Clearly $P \supset R s+S^{\perp}$, and so $P \supset P^{(j)}$ for some j. Hence the minimal S-prime ideals are among the $P^{(j)}$, for $j=1,2, \ldots, k$.
(iii) \Rightarrow (i). If there are no S-prime ideals then in particular a maximal ideal is either disjoint from S or does not contain S^{\perp}. Thus the natural injection of R / S^{\perp} into $S^{-1} R$ is onto, and so an isomorphism.
Now assume $P^{(1)}, \ldots, P^{(k)}, k \geq 1$, are the minimal S-prime ideals of R. Take $s_{i} \in P^{(i)} \cap S$, and put $t=\prod_{i=1}^{k} s_{i}$. In the ring $\bar{R}=R / S^{\perp}$ we denote images by \bar{r}, etc., so $\left\{1, \bar{t}, \bar{t}^{2}, \ldots\right\}$ is a multiplicative system in \bar{R}. We denote the ring of fractions by $\bar{R}[1 / t]$. I claim $S^{-1} R \simeq \bar{R}[1 / t]$. The following three statements make this clear, using the universal property of $S^{-1} R$. Consider the natural map f obtained from composing $R \rightarrow \bar{R} \rightarrow \bar{R}[1 / t]$ namely $r \mapsto \bar{r} / 1$:
(a) $s \in S \Rightarrow f(s)$ is a unit in $\bar{R}[1 / t]$. For since $\sqrt{R s+S^{\perp}}$ is an intersection of S-prime ideals it must contain t, which is in each S-prime ideal. Thus $\exists x \in R, m \geq 0$ such that $x s-t^{m} \in S^{\perp}$; and so $\bar{x} \bar{s}=\bar{t}^{m}$, whence the result, as \bar{t} is a unit.
(b) $x \in R, f(x)=0 \Rightarrow x \in S^{\perp}$. This is clear as

$$
\begin{aligned}
\frac{\bar{x}}{\overline{1}}=\frac{\overline{0}}{1} & \Leftrightarrow \exists m \geq 0 & & \bar{t}^{m} \bar{x}=\overline{0} \\
& \Leftrightarrow \exists m \geq 0 & & x t^{m} \in S^{\perp} \\
& \Leftrightarrow x \in S^{\perp}, & & \text { as } t^{m} \in S .
\end{aligned}
$$

(c) Each element of $\bar{R}[1 / t]$ is of the form $f(x) f(s)^{-1}$ for some $x \in R, s \in S$. This is clear also, as in fact each element of $\bar{R}[1 / t]$ is of the form $f(x) f\left(t^{m}\right)^{-1}$ for some $x \in R, m \geq 0$; and $t^{m} \in S$.
6. Global results for ring-finiteness. The result of this section (Theorem 1) is a generalization of a theorem of Artin-Tate [1, Theorem 4], and also contains part of Gilmer's theorem 1 (see [2]).

Theorem 1. Let R be a commutative Noetherian ring. Then the following statements are equivalent.
(a) R is semilocal, and $\operatorname{dim} R \leq 1$.
(b) R has only finitely many prime ideals.
(c) $S^{-1} R / R$ is finite for all $S \in \mathscr{S}$.

Proof. (a) \Rightarrow (b) is trivial.
(b) \Rightarrow (c) is true by $\S 5$, Proposition 2(iii).
(c) \Rightarrow (a). Let $\left\{P_{1}, \ldots, P_{n}\right\}$ be all the prime ideals of R of height 0 ; since R is Noetherian these are finite in number. Put $T=R \backslash \bigcap_{i=1}^{n} P_{i}$. Clearly $T^{\perp} \subset \sqrt{(0)}$ $=\bigcap_{i=1}^{n} P_{i}$, so $P \supset T^{\perp}$ for all prime ideals P. Furthermore $P \cap T=\phi$ if and only if $P=P_{j}$ for some $j \in[1, n]$. Hence, by Lemma 3, P is T-prime if and only if ht $(P) \geq 1$. Let $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ be the minimal T-prime ideals (these are finite in number since $T^{-1} R$ is an R-algebra of finite type). Let $P_{k+1}^{\prime}, \ldots, P_{m}^{\prime}$ denote the prime ideals of height 0 which are not contained in any P_{j}^{1}, for $j \leq k$.

I claim $P_{1}^{\prime}, \ldots, P_{m}^{\prime}$ are maximal ideals. Let $\left\{a_{1}, \ldots, a_{m}\right\}$ be chosen (by Lemma 1)
so that $a_{i} \notin P_{i}^{\prime}, a_{i} \in \bigcap_{j \neq i} P_{j}^{\prime}$. Assume $a \notin P_{j}^{\prime}$. Consider $b=a+\Sigma^{\prime} a_{q}$, where Σ^{\prime} denotes the sum over all indices q such that $a \in P_{q}^{\prime}$. Clearly $b \notin \bigcup_{i=1}^{m} P_{i}^{\prime}$. If b is not a unit, let P^{\prime} be an isolated prime ideal of $R b$. By the principal ideal theorem [4, Vol. 1, p. 238], ht $P^{\prime} \leq 1$. If ht $P^{\prime}=1$ then P^{\prime} is a T-prime ideal, and so $P^{\prime} \supset P_{q}^{\prime}$ for some $q \leq k$. If $P^{\prime}>P_{q}^{\prime}$ then ht $\left(P_{q}^{\prime}\right)=0$, and so P_{q}^{\prime} is not T-prime, which is absurd. Thus $P^{\prime}=P_{q}^{\prime}$, and so $b \in P_{q}^{\prime}$ which is contrary to the construction of b. So we must have ht $P^{\prime}=0$. But then $P^{\prime} \subset \bigcup_{q=1}^{m} P_{q}^{\prime}$, by our choice of the set of ideals $\left\{P_{i}^{\prime}, \ldots, P_{m}^{\prime}\right\}$ which implies $b \in \bigcup_{q=1}^{m} P_{q}^{\prime}$; which is also absurd. Thus b is a unit, and so P_{j}^{\prime} is maximal.
There are no more maximal ideals, for if M is maximal either it is T-prime, and so belongs to $\left\{P_{1}^{\prime}, \ldots, P_{k}^{\prime}\right\}$ or it is not T-prime and so belongs to $\left\{P_{1}, \ldots, P_{n}\right\}$.
Finally each prime ideal has height ≤ 1. For if P is a prime ideal with ht $P \geq 2$ then P is T-prime, and so $P \supset P_{j}^{\prime}$ for some $j \leq k$. Since P_{j}^{\prime} is maximal $P=P_{j}^{\prime}$. Let $P>P^{\prime}>P^{\prime \prime}$ with $P^{\prime}, P^{\prime \prime}$ prime. Then P^{\prime} is a T-prime ideal, and $P_{j}^{\prime}>P^{\prime}$ contradicts the fact that P_{j}^{\prime} is a minimal T-prime ideal.
Compare the proof of $(\mathrm{c}) \Rightarrow(\mathrm{b})$ with Theorem 8 in [3].
7. Properties of $p^{*}(R)$. Let P_{1}, \ldots, P_{n} be the isolated prime ideals of (0). We find a more convenient description of $p^{*}(R)$ in the next result.

Proposition 3. $p^{*}(R)=\bigcap_{i=1}^{n} p\left(S_{i}\right)$.
Proof. It is clear that $p^{*}(R) \subset \bigcap_{i=1}^{n} p\left(S_{i}\right)$ directly from the definition. If $x \notin p^{*}(R)$ there is a prime P, and an $S \in \mathscr{S}$ such that P is S-prime and $x \notin P$. Now $P \supset P_{i}$ for some $i \leq n$. If $P>P_{i}$ then P is S_{i}-prime, and so $x \notin p\left(S_{i}\right)$. Hence $x \notin \bigcap_{i=1} p\left(S_{i}\right)$. If $P=P_{i}$ we contradict Lemma 3. Hence $x \notin p^{*}(R) \Rightarrow x \notin \bigcap_{i=1}^{n} p\left(S_{i}\right)$.

Corollary. For any pair of rings $R^{\prime}, R^{\prime \prime}$ we have

$$
p^{*}\left(R^{\prime} \times R^{\prime \prime}\right) \simeq p^{*}\left(R^{\prime}\right) \times p^{*}\left(R^{\prime \prime}\right)
$$

Proof. The minimal prime ideals of $R^{\prime} \times R^{\prime \prime}$ are easy to describe, given the minimal primes of R^{\prime} and $R^{\prime \prime}$. Now apply the proposition.

The next result in conjunction with the one following shows that p^{*} has the effect of indicating dimension.

Proposition 4. $p^{*}(R)=R$ if and only if $\operatorname{dim} R=(0)$. That is if and only if R is Artinian.

Proof. If $p^{*}(R)=R$ then $p\left(S_{i}\right)=R$, each i, and so there are no prime ideals properly containing P_{i}, for any i. Hence each P_{i} is maximal and so the result follows. Conversely if R is Artinian then R is a finite product of primary rings. Now if R^{\prime} is primary $p^{*}\left(R^{\prime}\right)=R$, and so the result follows by applying the Corollary to Proposition 3.
As $p\left(S_{i}\right) \supset P_{i}$ for each i it is clear that $p^{*}(R)>\operatorname{rad}(R)$. With respect to $\operatorname{Rad}(R)$ the situation is a little more complex. First we need the following result.

2-С.м.в.

Lemma 7. Let R^{\prime} be an arbitrary ring. There exist rings $R^{\prime \prime}$ and $R^{\prime \prime \prime}$ such that (i) the minimal prime ideals of $R^{\prime \prime}$ have depth ≥ 1 (equivalently the maximal prime ideals have height ≥ 1). (ii) $R^{\prime \prime \prime}$ is Artinian, with the property that $R^{\prime} \simeq R^{\prime \prime} \times R^{\prime \prime \prime}$.

Note if R^{\prime} has property (i) or (ii) itself this representation is trivial, i.e. $R^{\prime} \simeq R^{\prime \prime}$ or $R^{\prime} \simeq R^{\prime \prime \prime}$.

Proof. Let $P_{1}^{\prime}, \ldots, P_{n}^{\prime}$ be the minimal prime ideals of (0) in R^{\prime}. Assume P_{k}^{\prime}, $P_{k+1}^{\prime}, \ldots, P_{n}^{\prime}$ are maximal ideals, and put $B=\bigcap_{j=k}^{n} Q_{j}^{\prime}$ where (0) $=\bigcap_{i=1}^{m} Q_{i}^{\prime}$ in an obvious notation. Then there is A such that $A \cap B=(0), A+B=R$, namely $\bigcap_{i=1}^{k-1} Q_{i}^{\prime} \cap \bigcap_{i=n+1}^{m} Q_{i}^{\prime}$. It is now standard [4, Vol. 1, Theorem 32, p. 178] that $R^{\prime} \simeq R^{\prime}\left|A \times R^{\prime}\right| B$. Take $R^{\prime \prime}=R^{\prime}\left|A, R^{\prime \prime \prime}=R^{\prime}\right| B$. These rings clearly have the desired property.

Proposition 5. $p^{*}(R) \subset \operatorname{Rad}(R)$ if and only if there is no minimal prime ideal of R which is also maximal.

Proof. Assume no minimal prime ideal of R is maximal. Let M be a maximal prime, then there is a minimal prime P_{i} properly contained in M, so $p\left(S_{i}\right) \subset M$. Thus $p^{*}(R) \subset \bigcap M=\operatorname{rad}(R)$.

Assume conversely that $p^{*}(R) \subset \operatorname{Rad}(R)$. Write $R=R^{\prime} \times R^{\prime \prime}$ using Lemma 7, with $R^{\prime \prime}$ Artinian. Then $p^{*}(R)=p^{*}\left(R^{\prime}\right) \times p^{*}\left(R^{\prime \prime}\right)$, whereas $\operatorname{Rad}(R)=\operatorname{Rad}\left(R^{\prime}\right) \times \operatorname{Rad}\left(R^{\prime \prime}\right)$ and so $p^{*}\left(R^{\prime \prime}\right) \subset \operatorname{Rad}\left(R^{\prime \prime}\right)-$ but this is absurd (apply Proposition 4), and so we must have $R^{\prime \prime}=(0)$. Thus R has no Artinian part, which implies that no minimal prime of R is maximal.

Corollary. $\left(R, p^{*}(R)\right)$ is a Zariski ring if and only if there is no minimal prime ideal of R which is also maximal.

In fact it is clear that more than Proposition 5 is true: $p^{*}(R) \subset \bigcap\{P \mid P$ prime of height $\geq 1\}$. One more result of the type is worth stating.

Proposition 6. $p^{*}(R)=\operatorname{rad}(R)$ if and only if $S_{i}^{-1} R$ is not ring-finite for any i.
Corollary. If R is semiprimary then $p^{*}(R)>\operatorname{rad}(R)$.

References

1. E. Artin and J. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74-77.
2. D. Gilmer, The pseudo-radical of a commutative ring, Pacific J. Math. 19 (1966), 275-284.
3. S. Warner, Compact noetherian rings, Math. Ann. 141 (1960), 161-170.
4. O. Zariski and P. Samuel, Commutative algebra I, II, Van Nostrand, Princeton, N.J., 1958.

McMaster University, Hamilton, Ontario

[^0]: Received by the editors, in revised form, December 5, 1969.
 ${ }^{(1)}$ The author wishes to acknowledge that the above paper was prepared while he was a National Research Council of Canada Postdoctorate Fellow.

