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A translation plane of order 2 5

and its full collineation group

M.L. Narayana Rao and K. Kuppuswamy Rao

Ostrom proposed classifications of translation planes on the

basis of the action of the collineation group of the plane on the

ideal points. There are examples of translation planes in which

ideal points form a single orbit (flag transitive planes) and

also several orbits (Hall, Andre, Foulser, and so forth, planes).

In this paper the authors have constructed a translation plane in

which the ideal points are divided into two orbits of lengths 18

and 8 respectively. A few collineations are computed together

with their actions. The group of collineations G which is

transitive on the two sets of 18 and 8 lines separately is

calculated. All the collineations that fix L are also

calculated and they form a group ff . If G^ is the group of

translations then the full collineation group is shown to be

A translation plane of order 25 is constructed which has the

interesting property that its ideal points are divided into two orbits of

lengths 18 and 8 respectively. Its full collineation group is

computed.

1 .

Ostrom proposed classification of translation planes on the basis of

the action of the collineation group of the plane on the ideal points. The
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restriction of the collineation group of a plane to the ideal points may result

in a single orbit or several orbits. The two flag transitive planes of

order 25 by Foulser [3], the flag transitive plane of order 1*9 , and a

2
class of flag transitive planes of order q , q a prime power by one of

the authors [5], [6], the flag transitive plane of order 27 of Her ing

[4], and a new flag transitive plane of order 27 by the authors [9j are

some examples of planes in which all the ideal points form a single orbit.

The other known translation planes are such that the ideal points form

several orbits. Recently the authors constructed a new class of non-

desargusian planes of order q2 , q a. prime power with the property that

they all admit a collineation group of order [q -l) [S].

2.

Let F be the set of all ordered pairs (a, b) over GF(5) and C

the set of 2 x 2 matrices (Table l) forming a t-spread set so that they

satisfy:

(i) C contains (° °] and (j j

(ii) C contains 25 matrices; and

(iii) if M, N € C and M ± N , then \M-N\ / 0 where \X\

denotes the determinant of the" matrix X .

These conditions imply that corresponding to each ordered pair (a, b) in

P , there is exactly one matrix of the form a , which is denoted by

M(a, b) . Addition and multiplication in F are defined by

(a, b) + (a, d) = (O-KS, b-*d) ,

(a, b) • (a, d) = (a, d)M(a, b) .

The set F with addition and multiplication defined as above is a lef t

Veblen-Wedderburn system [ / ] .

The projective plane TT has (c ) , (a, d) , and (°°) as points and

[ k ] , lm,b] , and [°°] as l ines where a, b, c, d, m , and k € F , and
00 f F . Incidence in TT is defined by (x, y)I[m, b] , i f and only if

y = m x + b , (x, y)I[k] , i f and only if x = k .
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TABLE 1

r p Action of a Action of 3 Action of y Action of 6
I L. + L. L. + L L. •* L L. •* L.

v o ^ m in ^ k

h

L 13

(oo)
Lo lool Lo \ L6
\ " LX L2 L l l L5

S Lu '9 S

o°3)

h [Ikl Lik L, Lo L i

(t!)

1 3

23

? 2

1 2

(11) "6 Ll2

21) L21 L18

L 13

L2k L l 9
 L19

h

L9 ( s o ) £ i 7 L10 L 3

L10
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Table 1 (continued)

L.
^

ho

hi

hi

hk

L25

(

'o
3

\

2
2

3

1+

2

k
k

t)
1}
I)
s)

0)

0)

Action of a
L. •* L.

I 3

L 18

L 2 5

£ 1 9

hz
L 23

' £20

Action of g
L . •* L

1- m

ho

hi

hz

hi

hk

h,

Action of y
L. •* L^ n

ho

h3

hz

hi

h,

hk

Action of 6

h + h

hk

hz

hi

ho

h9

Alternatively IT may also be considered as a four dimensional vector

space over GF(5) , the points of u being quadruples over GF(5) and the

lines being two dimensional subspaces of V . The line corresponding to

the equation y = m'x with m in F is given by

Vm = {(a, b, c, d) I (a, b) i F and (a, d) = (a, b)M(m)} ,

where M{m) is the matrix from C corresponding to m . The line x = 0

corresponds to the subspace

Vm = {(0, 0, a, d) I (c, d) € F} .

The line y = nfx + b corresponds to the appropriate translates of V
m

for m in F or m = » . The group G of all collineation fixing

(0, 0) of ir consists of all non-singular linear transformations of V

which permute the subspaces V for m in F or m = °° among

themselves.

Let R be a non-singular linear transformation partitioned as

'A B\
D\ where A, B, C, D are 2 x 2 matrices over GF(5) . It is known

that the non-singular linear transformation induces a collineation on v

if and only if for each M(m) there is a unique N € C such that

= B + MD and a unique T € C such that CT = D . It is further
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known that if R induces a collineation then the matrices A, B, C , and

D are zero matrices or non-singular.

3.

In this section we calculate some collineations of TT .

LEMMA 3.1 . A linear transformation of the form . induces a

oollineation in ir if and only if the set C is invariant under the

mapping M -* A~ MA for 11 i C . Further

(is)
Proof. Let 'T = be a non-singular transformation and let

M, N i C . The vector space {(xy, xyM) | (x, y) t F] is transformed into

the vector space i(xyA, xyliA) \ (x, y) € F] by T . This will be

identical with the vector space {{xy, xyN) | (a;, y) € F] if and only if

AN = MA or N = A~ MA . Hence the lemma. It may also be noted that under

T the line corresponding to the matrix M\L(M) is mapped onto the line

with matrix N\L{N) .

The set C contains exactly h matrices with determinant 3 and

trace 0 . These are {(13), (j 2)' \k k)' (l l)} • This subset of C

must be invariant under T . The action of T on ZA and

determines the action of T on the other two matrices because the other

two are scalar multiples of these two matrices. Thus we need to

consider A whose action on zA and L is as follows:

<"" *\i § - [I fr - 4 i 1
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(vui) A(il) = \II)A and A[ih)= (?
These eight equations give the forms of A to be

(a o] [a lw| [ a W| f a 0 ] [a ha] f a 0 ] f a 01 f a Ua]
[o a j ' [3a ha)' [ha ha)' [2a ha)' [0 ha)' [ha 2a)' [3a 3aJ' [2a ha) '

where a = 1, 2, 3 , and h .

Thus

[l 0)
A € MO 2 l ' U 2 j ' | 2 M / •

LEMMA 3 . 1 . l e t * = (3 3) md let a = (0 A) ' Let P= [l l )l l ) '

Z = [l i] J 5 = I ^ J , and Y = (2 5] • r;ze« t;ze actions of a j , and

Y are given by

a = ( 6 , ll», 9 , 1 7 ) ( 7 , 1 5 , 10 , 1 2 ) ( 8 , 16 , 1 1 , 1 3 ) ( l 8 , 2 1 , 25, 20)

(19 , 2U, 2 3 , 22) ,

6 = ( 0 , 1 , 2 , 3 , h, 5 ) ( $ , 7 , 8, 9 , 10, 11) (12 , 1 3 , Ik, 15 , 16, 17) ,

Y = ( 0 , 6 ) ( 1 , 1 1 ) ( 2 , i o ) ( 3 , 9){k, 8 ) ( 5 , 7 ) ( l 3 , 17)(l>», 16)
( 2 1 , 23)(2U, 25) ,

where (r, s, ) indicate that the ideal point corresponding to the line

L is mapped onto the ideal point corresponding to the line L .

Proof. The proof is clear from Table 1. Further the group <ct, 6, Y>

is transitive on lines L . , 0 < i < 17 and L . , 18 S j 5 25 ,
1 J

separately.
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4.

In this section we wish to investigate all the collineations that fix

LEMMA 4.1. 6 = L j • J is a aollineation fixing L . Further, the

action of 6 is given by

, 5)(2, »0(6, 7)(8, 11)(9, 1O)(12, 17)(13, 16)
(lit, 15)( l8 , 23)(19, 25)(20, 210(21, 22) .

Proof. If 6 maps L. with a matrix M onto L. with matrix ff
*• 3

then tf = (J+3W)~ »UAf . The proof of the lemma follows from Table 1.

LEMMA 4.2. 4ni/ oollineation that fixes L and L fixes L , L ,

L, , and L also.

Proof. Any c o l l i n e a t i o n f i x ing L . and L i s of t h e form

T = \Q g\ where A and B a r e non-s ingu la r 2 x 2 m a t r i c e s . I f T

maps the l i n e wi th mat r ix onto a l i n e with mat r ix M. then

B = AMX , so t h a t 2" = IQ ̂  where M± (. C . S imi l a r l y i f iVg, M , and= IQ ̂  where M± (. C . Similarly if iVg, M ,

are the images of the lines with matrices KT ° , Q 3 , and it ?

respectively under 2" , then AM. = £AAf , £ = 1 , 2 , 3 , 1 * . This implies

that iH for £ = 1 , 2, 3, k are matrices in C . But from the table,

Mi = y J ' V = 1, 2, 3, »» . Then r = [Q ̂ j » P = 1, 2, 3, 1* . Further,

if T maps L(M) onto L(N) , then 4iV = yMA or iV = vul"1^ . Then

\N\ = \i \M\ . If p is either 2 or 3 then a line with a matrix whose

determinant is a is mapped onto a line with determinant ho . This is

not possible since there are 8 matrices with determinant 2 and k

matrices with determinant 3 . If p = k then the line with matrix jM

will be mapped onto a line with matrix M where AMA = _ {f C . Thus
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Thus P = 1 and T = A which fixes L L L, , and L .

LEMMA 4.3. T = ^ °J is a collineation only if either

(a) A = o , B = I , or

(b) A # o , A = -if1 , B = -N~XM where N, M € C .

In that case N + M - I .

Proof. Let T = L # l e a collineation. If A = 0 , then B = I

follows from Lemma k.2. So let A # 0 . Then there exist matrices M and

N in C such that a line with a matrix # is mapped onto L-. which in

turn is mapped onto a line with a matrix M . Then I + NA = 0 and

AM = B . Therefore A = -IT1 and B = -N~XM . Then T = I J, °, I .

Suppose 21. = L r is a collineation with A = -N for some N Z C

and I = (_A/"1)(-JI/) implies Ui7 € C . Thus if T = f ° is a

collineation, then N and W? € C . Let T , T?, 2"| map 1|/V onto lines

with matrices /</„, M , and /</• , respectively. Then

(l+kN[-N~1))M2 = lt/i/ =* M2 = 2N ,

[ [ ) ) M 3 = 2N ~ M3 = 3N ,

and

( j + ^ t - W 1 ) ) ^ = 3tf =* Mk = N .

Thus iV, 2ff, 3N , and U# a l l belong to C . Then T± = K . ° where

M = 1, 2, 3, h . Then we can find an integer k such that

1 = J J = ^ a n ( i s o m e integer m such that £> = T . Then T is a

collineation if and only if S i s . But 5 is not a collineation. For,

i f 5 maps L ° ^J Q n t o £(/ifj ^ t h e n ^ _ 1 3
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If T = J ° I is a collineation, so is 1 X = \ J ° .
LA?-1 _ A T V

 l-w -M~ V

Since \-T • rl is a collineation so must be

[ J o U i o ) [ i o ] [ i o )
[31 hi) { N-l _N-1M) [31 hi] [_!fl M-1NJ •

But this is | _n = T . Thus T is a collineation only if
+3/l/~ M I'

T is. But this is possible only when 3-Z" + 2N'1 + yT^-fd = 0 ; that is

M + N = I .

COROLLARY 4.4. f °] is a collineation only if A = 31 and

B = hi .

Proof. In view of Lemma k.3, there exist matrices N and M in C

such that A = -N~ , B = -N~ M , and N + M = I . An inspection of Table

1 reveals that the only matrices for N such that N + M = I are when

# = 2J, 31 , or *+J . Then the possible collineations are U = ? j -J ,

V = j pj , and Af = L-j ,. . However U and y are not collineations.

For let L{M) be the image of L\ , under U . Then

11+2 ° HjM = 3 ° Jj . This gives « = [2 2 I
 C • A similar argument

shows that V is not a collineation. That W is a collineation follows

from Lemma U.I.

LEMMA 4.5. If ° is a collineation, then A + B = C .

Proof. Let \g Q\ an(i 'g C \ ^ e t w o d i s t i n c t collineations, and

let the inverse of L „ be v r • Then D „ '
^ 1 1-* 2 2 !• •"

U"1 0 .
is a

collineation and different from the identity, and hence must be of the fon

[31 hi] •
s i D l i l a r l y \[) ( i

2 2
c\[Bc) = ( i hi commutes
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[31 hi) • ^ ^ f o r e ^ ^ ^ J = [ ^ ^ j .

4.6. J is a collineation only if B = 34 .

with ^3J ĵ l . Therefore U,.,. D ,,„! = I D ? ™ ,X,I • Thus A + B = C .

LEMMA

Proof. If is a collineation, then there is a matrix N € C

such that B = -N A . If this collineation maps L(A/) onto L , then

M = I - A~XNA . Inspection of Table 1 reveals that N = \I ,

X = l,2, 3,1*. If X = 1» then T is singular. Therefore N = \I

'A 0
where A = 1, 2, 3 . Then the possible collineations are 2" = 1 „.

f4 Ol (A Oi
T2 = [24 341 ' and T 3 = [34 hAJ • If Tl is a c o l l i n e a t i o n > then

1
34

42 0
o o = I -3 r ) A o must also be a collineation. But since

I 0
3-Z" hi

0 4

is a collineation, T is a collineation if and only if
p

A 0

0 4

2
is. But the possible matrices for 4 are

2
It

Ol f l 0] f l Itl . f l Ul
3j ' (.2 UJ - [2 k) ' a n d [0 Uj *

(i) Let A = a *] such that 4 2 = f °] . This gives b = 0 or

a + d = 0 . If a + d = 0 , then o(a+d) = 0 = ^a , which is not possible.

2
If b = 0 , then a = 2 > and this also is not true. The other cases can

similarly be disposed of.

(ii) Similarly if y
2
 = 24 34 is a c o l l i n e a t i o n> t h e n

T = I L o should also be a collineation, and a similar argument

as in (i) can be used to show that T can not be a collineation. Thus if

\B A+Bl *S a c o l line a t i o n> then B = 34 .

CONCLUSION. The collineations that fix L belong to the group
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10
1*2
00
00

00
00
10
1*2

lit
2U
00
00

00
00
ik
2U 9

10
01
30
03

00
00
1*0
01*

The order of this group is 6U

5.

The group G = <a, (3, y) is transitive on the lines 0 £ L. £ IT

and 18 £ L . £ 25 , separately. Further there is no collineation that maps
3

a line of the first set onto a line of the second. For, if there is a

collineation T that maps L _ onto L (say) , then T~ $T fixes L

and has 3 cycles of length six each, and hence its order is a multiple of

6 . Since the order of the group of collineations that fix L is 6k ,

it can not possibly have an element of order 6 . If i is a collineation

that fixes L „ and maps L onto L , 0 £ r £ 1 7 , then there is a

collineation y such that xy~ fixes L ~ and L . Thus it suffices

to consider only those collineations that fix both L and L _ . These

are all contained in G . Let G be the group of translations and G-

the group of all collineations that fix L . Then the full collineation

group is <G1, G2, GJ .
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