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A translation plane of order 25
and its full collineation group

M.L. Narayana Rao and K. Kuppuswamy Rao

Ostrom proposed classifications of translation planes on the
basis of the action of the collineation group of the plane on the
ideal points. There are examples of translation planes in which
ideal points form a single orbit (flag transitive planes) and
also several orbits (Hall, André, Foulser, and so forth, planes).
In this paper the authors have constructed a translation plane in
which the ideal points are divided into two orbits of lengths 18
and 8 respectively. A few collineations are computed together

with their actions. The group of collineations Gl which is

transitive on the two sets of 18 and 8 lines separately is

calculated. All the collineations that fix L are also

0
calculated and they form a group G3 . If 02 is the group of
translations then the full collineation group is shown to be
(Gl, 62, 63)

A translation plane of order 25 1is constructed which has the
interesting property that its ideal points are divided into two orbits of
lengths 18 and 8 respectively. Its full collineation group is

computed.

1.

Ostrom proposed classification of translation planes on the basis of

the action of the collineation group of the plane on the ideal points. The
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restriction of the collineationgroup of a plane to the ideal points may result
in a single orbit or several orbits. The two flag transitive planes of

order 25 by Foulser [3], the flag transitive plane of order L9 , and a

class of flag transitive planes of order q2 s q & prime power by one of
the authors [5], [6], the flag transitive plane of order 27 of Hering
[4], and & new flag transitive plane of order 27 by the authors [?] are
some examples of planes in which all the ideal points form a single orbit.
The other known translation planes are such that the ideal points form
several orbits. Recently the authors constructed a new class of non-

2

desargusian planes of order ¢4 | ¢ a prime power with the property that

they all admit a collineation group of order (q2-l) [&].

2.

Let F be the set of all ordered pairs (a, b) over GF(5) and C
the set of 2 X 2 matrices (Table 1) forming a t-spread set so that they
satisfy:

{
. . 00 10
(i) C contains lo 0] and [0 l] :
(ii) C contains 25 matrices; and

(iii) if M, N € C and M # N, then [M-N| # O where |X|

denotes the determinant of the matrix X .
These conditions imply that corresponding to each ordered pair (a, b) in
F , there is exactly one matrix of the form [; 2] > which is denoted by

M{a, b) . Addition and multiplication in F are defined by

(a, b) + (e, d) = (a+e, bHd) ,

(@, b) » (e, d) = (c, d)(a, b) .

The set F with addition and multiplication defined as above is a left

Veblen-Wedderburn system [1].

The projective plane T has (c¢), (a, d) , and (») as points and
{k1, [, b] , and [*] as lines where a,b,c,d,m , and k € F , and
@ ¢ P . Incidence in T is defined by (x, y)I[m, b] , if and only if
y=mx+b , (xr,y)[k] , if and only if x =k
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TABLE 1

. C Action of & Action of B Action of Yy Action of §
i L, > L L, ~ L L, > L, + L,
Ly [8 8) L, Ly Lg Ly
L, ® Ly L, L, L
L2 g E) L, L3 Lo Ly
L3 é . Ly Ly Ly Lq
Ly g g Ly, Ls Lg Ly
L (3) (3’] L L, L, L
L [g ﬁ Ly, L, L, L,
L7 [i i) L1s Lg Ls Lg
Lg [i (l)] L L9 Ly, I
Ly g g) Lyq Lo L3 Lo
Lo ﬁ ﬂ Lo Iy L, Ly
1 [2 g) E Lg Ly Lg
L i g] Lq I3 Lo Lyq
Ly 12; ﬂ Lg Ly Ly L
Loy é ;) L9 LlS Lg Lis
[’15 [3 5] Lo L16 Lls Loy
L6 [i g} Ly Lyq Loy L3
I’17 [g l{] Lg L, L13 Lo
s [3 ﬂ Ly L1g Lg Los
L19 [g 134) Leh I’19 L19 L25
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Table 1 (continued)

L. C Action of o Action of B Action of vy Action of §
A Li_)Lj Li-)Lm Li»[’n Li->Lk
L2O g i) L18 L20 L2O L2h
In 5 g] Las Loy Loy Lo
Lo [g ;] L) Lap Loo La
Lpg % g} Lop Los Loy Ig
Loy kg g) L23 Loy L25 Lao
Las [t cz)} Log L25 Loy L19

Alternatively T may also be considered as a four dimensional vector
space over GF(5) , the points of T being quadruples over GCF(5) and the
lines being two dimensional subspaces of V . The line corresponding to

the equation y = mex with m in F is given by

V.= {(a, b, e, d) | (a,b) €F and (e, d) = (a, b)M(m)} ,

where M(m) 1is the matrix from C corresponding to m . The line x = 0

corresponds to the subspace

v, =1{(0, 0,¢,d | (e, d) €F} .
The line y = m*x + b corresponds to the appropriate translates of Vm
for m in F or m = o ., The group GO of all collineation fixing

(0, 0) of T consists of all non-singular linear transformations of V
which permute the subspaces Vm for m in F or m = = among
themselves.

Let R be a non-singular linear transformation partitioned as
[21' g) wvhere A, B, C, D are 2 x 2 matrices over GF(5) . It is known

that the non-singular linear transformation induces a collineation on 7
if and only if for each M(m) +there is a unique ¥ € C such that
(A+C)N = B + MD and a unique T € C such that CT =D . It is further
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known that if R induces a collineation then the matrices A4, B, € , and

D are zero matrices or non-singular.

3.
In this section we calculate some collineations of 1w .

LEMMA 3.1. A linear transformation of the form [gg

collineation in 7w 1if and only if the set C <is invariant under the

) induces a

mapping M+ A7ta for M €C. Further

(59 (9 B))-

A0
Proof. Let T = [OA

M, N € C . The vector space {(xy, xy¥) | (x, y) € F} 1is transformed into

] be a non-singular transformation and let

the vector space {(xyd, xyMA) | (x, y) € F} by T . This will be
identical with the vector space {(ay, xy¥) | {(x, y) € F} if and only if

AN =MA or N = A—lMA . Hence the lemma. It may also be noted that under
T +the line corresponding to the matrix M|L(M) is mapped onto the line
with matrix IVIL(IV) .

The set C contains exactly U4 matrices with determinant 3 and

trace 0 . These are {[i g], [E g], & t], [l{ ﬂ} . This subset of C

must be invariant under 7 . The action of T on [i g] and {1;_ ﬂ

determines the action of 7T on the other two matricces because the other

two are scalar multiples of these two matrices. Thus we need to

consider A whose action on [2 3] and [h l] is as follows:

13 11
(1) A[i g] = [f g’)A and A& i:] = [i t)/l ;
o a3 =Y ma i) - (Y0 '
SHIPIE I E T (T Y
o) a2 = (Fa e a2 <[22
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) 4l 3= (i) wa afl) - e
SO I i T S R
i) a2 3= (13 ama afty) - B3
an) 423 < [ )a wna afil) - (e

These eight equations give the forms of A to be

ao a ha a la a 0 a ba a 0 a 0 a ka

0 a)® (3a 4aJ’ (ba baj? |2a ka)*® (0 baj’ |ba 2a)°’ {3a 3a)’ |2a ba] *
vhere a =1, 2, 3, and 4 .

Thus

20 10 1k
(33 (o) )y

% g] and let a = {g 2) . Let P [é g) R

, and B=[8§]. Let X=[i‘t), y=[§§’]

i

LEMMA 3.1. Let A=[
_f20 _(30
Q‘[oe]’ﬂ‘[oa

_Jj21 b1
Z = [1 h) > 5= [1 1) > and Y

Y are given by

Nt

[ﬁ EJ . Then the actions of o, B, and

o= (6, 14, 9, 17)(7, 15, 10, 12)(8, 16, 11, 13)(18, 21, 25, 20)

(19, 24, 23, 22) ,
B =(0,1,2, 3,54, 56, 7, 8,9, 10, 11}(12, 13, 14, 15, 16, 17) ,
y = (0, 6)(1, 11)(2, 10)(3, 9)(k, 8)(5, 7)(13, 17)(1L, 16)

(21, 23)(24, 25) ,
where (r, s, ...) indicate that the ideal point corresponding to the line
L, i8 mapped onto the ideal point corresponding to the line L, .

Proof. The proof is clear from Table 1. Further the group (a, B, Y}
is transitive on lines Li , 0=41 =17 and Lj , 18 =g4=25,

separately.
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4.

In this section we wish to investigate all the collineations that fix

LEMMA 4.1, § = [?’II 1?_[] 18 a collineation fixing L0 . Further, the

action of & is given by

§ = (0)(3)(1, 5)(2, b)(6, T)(8, 11)(9, 10)(12, 17)(13, 16)
(1%, 15)(18, 23)(19, 25)(20, 2k)(21, 22)

Proof. If & maps Li with a2 matrix M onto Lj with matrix W

then N = (I+3M)_l-hM . The proof of the lemma follows from Table 1.

LEMMA 4.2. Any collineation that fixes L0 and Ll fixes L,, L3,

Lh , and LS also.

Proof. Any collineation fixing L, and Ll is of the form

0

T= [‘(‘; (1)3] where A and B are non-singular 2 x 2 matrices. If T

maps the line with matrix [é ]0_) onto a line with matrix Ml then

B =AM so that T=[A 0

1 (0 A‘MlJ where Ml € C . Similarly if M2, M3 , and

02

M, are the images of the lines with matrices 20 s 30 , and ko
L 03 Ok
respectively under T , then AMi =AM, , 1 =1,2, 3,4

. This implies
that iMl for 7 =1, 2, 3, b are matrices in C . But from the table,

4 0
M.,=ul, p=1,2,3,4 . Then T = [o A

7 ] » uw=1,2, 3, k. Further,
if T maps L(M) onto L(N) , then AN = y#4 or N=uA-lM4 . Then

¥} = ualMl . If p is either 2 or 3 then a line with a matrix whose
determinant is o is mapped onto a line with determinant Mo . This is

not possible since there are 8 matrices with determinant 2 and &

matrices with determinant 3 . If u =4 then the line with matrix [g i)

will be mapped onto a line with matrix M where Am-l = [g ﬂ ¥ C . Thus
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] which fixes L

o> Lo Ly , and I

b Y]

Th =1 ana T= |4
us | = an = 1o 5 -
Io

LEMMA 4.3, T [A B) is a collineation only if either

[}

(a) A=0, B=1I, or

W) Ato0, A=-NY, B=_w*u where W, M €C

In that case N + M = I

Proof., Tet T

I
(A %] be a collineation. If A =0 , then B8= I

follows from Lemma L4.2. So let 4 # 0 . Then there exist matrices M and

N in C such that a line with a matrix N is mapped onto Ll which in

turn is mapped onto a line with a matrix M . Then I + N4 =0 and

AM = B, Therefore A = -NY and B= -NIM . Then 7 = [ I o0 )
vt vy

o} ., . . .
Suppose Tl = (4 7| 1is a collineation with A

-Nl for some N € C

I0 .
4 1] isa

and 1= (-¥71)(-w) implies W €C . Thus ir T,

collineation, then N and W € C . Let Tl’ Ti, Ti map 4N onto lines
with matrices M2, M3 , and Mh , respectively. Then

(zen (0 ))m, = 4 =y = 2w,

(zean (™)), = 20 = uy = 3w,
and

(Zeaw (1)), = W= m = w0 .

Thus N, 2V, 3N , and 4N all belong to C . Then T, = [uII 2] where
M=1,2, 3, 4 ., Then we can find an integer %k such that

#~_lLo . .
1= [I I} = 5§ and some integer m such that g = Tl . Then Tl is a

collineation if and only if S is. But S 1is not a collineation. For,

. 03 _ 113
if S maps L{l ’4) onto L(M) , then M = {3 3) 4C
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I 0

If T:[
_N'l

_ I
N ] is a collineation, so is T 1. [ 1 ?l )
NTM =~ M N

I
Since [31 hOI] is a collineation so must be

[I o][ I 0 ][I o][ I 0 ]
3I LI _N-l _N-lM 3 4I _M—l -M'llv

I
But this is [ 1 0) =T . Thus T is a collineation only if
3I+2N “+3N M I-
T is. But this is possible only when 3I + 2N_l + 31V_1M = 0 ; that is
M+ N=1I,
I . . . .
COROLLARY 4.4, [A g] is a collineation only if A = 3I and

B= LT .

Proof. 1In view of Lemma 4.3, there exist matrices ¥ and M in C

such that 4 = <N, B=-N1# ,and W +# =1 . An inspection of Table

1 reveals that the only matrices for N such that ¥ + ¥ = I are when

I
N =2I, 3 , or 4TI . Then the possible collineations are U = [ 0] s

2I 3T

v

I o0 I o . .
I21] and W= 3T LI - However U and V are not collineations.

For let L(M) be the image of L[g i] under U . Then

[I+2[g ll‘])M = 3[2 i] . This gives M = [é g] £ C. A similar argument

shows that V is not a collineation. That W is a collineation follows

from Lemma 4.1.

LEMMA 4.5, If ['2 g] 18 a collineation, then A + B=C .

A
Proof. Let [B g] and fA 0] be two distinct collineations, and

B4
-1 -1
let the inverse of [; C?] be AB C(‘) . Then [/; g) AB C? is a
171 2 2 2 72

collineation and different from the identity, and hence must be of the forr

-1

I o . AT olfao I o

[31 hI] . Similarly B C [B C'J = [31 hI] . Further [“; g] commutes
2 72
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. I 0 A 0 _ A 0 _
with [31 hI) . Therefore [3A+hB hc) = [B+3C hC) . Thus A + B=(C.

LEMMA 4.6. [‘2 A?—B] ig a collineation only if B= 34 .

A O

Proof. 1If [B A+B) is a collineation, then there is a matrix N € C

such that B = -N YA . If this collineation maps L(M) onto L, , then

M=1I-a1tma . Inspection of Table 1 reveals that N = Al ,
A=1,2, 3, L. If A=DL then T is singular. Therefore N = \I

where A =1, 2, 3 . Then the possible collineations are Tl = [j 2?4] .

A O A 0 . . .
T2 = [2A 34] , and T3 = [34 hA] . If Tl igs a collineation, then
2 2
I
Ti = 4 5 02 = [3I 1?1] 4 02 must also be a collineation. But since
347 44 0 4
I o) . o . N . 4% o
is a collineation, 7. is a collineation if and only if
3T LI 1 o 42

is. But the possible matrices for A2 are
20 10 14 a [* N
b 3)c |24 {2k > B Jou

(i) Let 4 = [Z Z] such that 4° = [i g] . This gives b =0 or

-

a+d=0. If a+d=0,then cla+d) = 0 = ba, which is not possible.

If b =0, then a2 = 2, and this also is not true. The other cases can

similarly be disposed of.

(ii) sSimilarly if T2 = [2/34 3?4) is a collineation, then

T

2 (I o}|4® o
= should also be a collineation, and a similar argument

273 bl 2
as in (i) can be used to show that T2 can not be a collineation. Thus if

A
[B ASB) is a collineation, then B = 34 .

CONCLUSION. The collineations that fix LO belong to the group
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10 00 14 o0 10 00
42 00 24 00 01 00
00 10 00 1k 30 Lo
00 L2j, |00 24/, |03 Ok

The order of this group is 64 .

5.
The group Gl ={a, B, Y) is transitive on the lines 0 < L, = 17
and 18 = Lj = 25 , separately. Further there is no collineation that maps
a line of the first set onto a line of the second. For, if there is a

collineation T +that maps L18 onto L_ (say) , then T_lBT fixes L

0 0
and has 3 cycles of length six each, and hence its order is a multiple of
6 . Since the order of the group of collineations that fix LO is 64 ,
it can not possibly have an element of order 6 . If &z 1is a collineation

that fixes L18 and maps LO onto Lr , 0=»r =17 , then there is a
collineation Y such that xy-l fixes L18 and LO . Thus it suffices
to consider only those collineations that fix both LO and L18 . These

are all contained in Gl . Let 02 be the group of translations and G3

the group of all collineations that fix I Then the full collineation

0"

i (
group is Gl’ 62, G3)
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