05C65, 05C99

BULL. AUSTRAL. MATH. SOC. VOL. 26 (1982), 479-480.

DEGREE MULTISETS OF HYPERGRAPHS

DAVID BILLINGTON

A multiset is a "set" which may have repeated elements. If s is a positive integer then an s-uniform hypergraph is a hypergraph in which every block, or edge, contains exactly s points. A hypergraph in which every block contains at least s points is called an s^+ -hypergraph. Let $R(\Delta, s)$ denote the set of all s-uniform hypergraphs which have Δ as their multiset of degrees. Similarly $R(\Delta, s^+)$ denotes the set of all s^+ -hypergraphs which have Δ as their degree multiset. We make $R(\Delta, s)$ into a graph by defining two elements of $R(\Delta, s)$ to be adjacent if and only if one can be obtained from the other by a very simple operation called an exchange. By considering the components of $R(\Delta, s)$ we are able to make $R(\Delta, s^+)$ into a suitable graph.

In this thesis we investigate the structure of the graphs $R(\Delta, s)$ and $R(\Delta, s^{+})$ when Δ is countable. When Δ is finite we also consider the structure of two subgraphs of $R(\Delta, 2)$.

Necessary and sufficient conditions on Δ and s are found for both $R(\Delta, s)$ and $R(\Delta, s^+)$ to be non-empty. To find these conditions we first construct canonical elements of $R(\Delta, s)$ and $R(\Delta, s^+)$. If Δ is denumerable then we determine the number of components and the number of isolated vertices of both $R(\Delta, s)$ and $R(\Delta, s^+)$. When Δ is finite we show that $R(\Delta, s)$ is connected. The definition of $R(\Delta, s^+)$ makes it connected when Δ is finite. All the finite multisets, Δ , for which either $R(\Delta, s)$ or $R(\Delta, s^+)$ has exactly one element, are given explicitly. To conclude our study of $R(\Delta, s)$ for arbitrary s and

Received 2 September 1982. Thesis submitted to University of Melbourne, December 1981. Degree approved July 1982. Supervisor: Dr Derek A. Holton.

finite Δ we present some necessary conditions on Δ and s for $R(\Delta, s)$ to be a tree.

Finally we turn our attention to $R(\Delta, 2)$ when Δ is finite. The vertices of $R(\Delta, 2)$ are just the multigraphs which realise Δ . For any positive integer m, an m-graph is a multigraph which has at most m edges between any two points. By an exact m-graph we mean an m-graph in which there exist two points which have exactly m edges between them. The subgraph of $R(\Delta, 2)$ induced by the m-graphs is denoted by $R(\Delta, L(m))$, while $R(\Delta, E(m))$ denotes the subgraph of $R(\Delta, 2)$ induced by the exact

The proof we give that $R(\Delta, L(m))$ is connected provides best possible upper and lower bounds for the shortest distance between any two vertices of $R(\Delta, L(m))$. Although $R(\Delta, E(m))$ is in general not connected, very weak sufficient conditions on Δ and m are found which ensure that $R(\Delta, E(m))$ is connected.