Degree multisets of hypergraphs

David Billington

A multiset is a "set" which may have repeated elements. If s is a positive integer then an s-uniform hypergraph is a hypergraph in which every block, or edge, contains exactly s points. A hypergraph in which every block contains at least s points is called an \boldsymbol{s}^{+}-hypergraph. Let $R(\Delta, s)$ denote the set of all s-uniform hypergraphs which have Δ as their multiset of degrees. Similarly $R\left(\Delta, s^{+}\right)$denotes the set of all s^{+}-hypergraphs which have Δ as their degree multiset. We make $R(\Delta, s)$ into a graph by defining two elements of $R(\Delta, s)$ to be adjacent if and only if one can be obtained from the other by a very simple operation called an exchange. By considering the components of $R(\Delta, s)$ we are able to make $R\left(\Delta, s^{+}\right)$into a suitable graph.

In this thesis we investigate the structure of the graphs $R(\Delta, s)$ and $R\left(\Delta, s^{+}\right)$when Δ is countable. When Δ is finite we also consider the structure of two subgraphs of $R(\Delta, 2)$.

Necessary and sufficient conditions on Δ and s are found for both $R(\Delta, s)$ and $R\left(\Delta, s^{+}\right)$to be non-empty. To find these conditions we first construct canonical elements of $R(\Delta, s)$ and $R\left(\Delta, s^{+}\right)$. If Δ is denumerable then we determine the number of components and the number of isolated vertices óf both $R(\Delta, s)$ and $R\left(\Delta, s^{+}\right)$. When Δ is finite we show that $R(\Delta, s)$ is connected. The definition of $R\left(\Delta, s^{+}\right)$makes it connected when Δ is finite. All the finite multisets, Δ, for which either $R(\Delta, \boldsymbol{s})$ or $R\left(\Delta, \varepsilon^{+}\right)$has exactly one element, are given explicitly. To conclude our study of $R(\Delta, s)$ for arbitrary s and

Received 2 September 1982. Thesis submitted to University of Melbourne, December 1981. Degree approved July 1982. Supervisor: Dr Derek A. Holton.
finite Δ we present some necessary conditions on Δ and s for $R(\Delta, s)$ to be a tree.

Finally we turn our attention to $R(\Delta, 2)$ when Δ is finite. The vertices of $R(\Delta, 2)$ are just the multigraphs which realise Δ. For any positive integer m, an m-graph is a multigraph which has at most m edges between any two points. By an exact m-graph we mean an m-graph in which there exist two points which have exactly m edges between them.
The subgraph of $R(\Delta, 2)$ induced by the m-graphs is denoted by $R(\Delta, L(m))$, while $R(\Delta, E(m))$ denotes the subgraph of $R(\Delta, 2)$ induced by the exact m-graphs.

The proof we give that $R(\Delta, L(m))$ is connected provides best possible upper and lower bounds for the shortest distance between any two vertices of $R(\Delta, L(m))$. Although $R(\Delta, E(m))$ is in general not connected, very weak sufficient conditions on Δ and m are found which ensure that $R(\Delta, E(m))$ is connected.

