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Abstract

Let G be a locally compact group G (which may be non-abelian) and Ap(G) thep-Fourier algebra of
Herz (1971). This paper is concerned with the Fourier algebra AUp(G) = Ap(G) n Lt(G) and
various relations that exist between At p(G), Ap(G) and G.
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1. Introduction

Let G be a locally compact group with left Haar measure X. In this paper, we

will discuss some properties of the Fourier algebra At p(G) = Ap(G) n LX(G),

1 <p < oo, where Ap(G) is the/7-Fourier algebra in the sense of C. Herz (1971).
The space Ap(G), 1 < p < oo, was introduced in 1964 by Figa-Talamanca who

studied the case where G is a locally compact abelian group. Eymard in the

same year studied A2(G) where G is non-abelian.

For 1 <p, q < oo, j + ^ = 1, the space Ap(G) is defined by the set of all

functions u on G satisfying the following conditions:

" = 1 1 * &, I, G Lp(G), gi G LAG)

©Copyright Australian Mathematical Society 1981

The first author was partially supported by the National Science Council, Taiwan,

Republic of China.

438

https://doi.org/10.1017/S1446788700017912 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017912


|2] Fourier algebras Alp(G) 439

such that Sr-JU-HJftll, < oo where £,(*) = g,(*~') for x G G. /J,(G) is
equipped with the norm

\"\\A, = i n f

where the infimum is taken over all possible representations for u. This norm
|| Ĥ  is stronger than the uniform norm || H .̂

Originally concerned with the multipliers of Lp(G), Figa-Talamanca (1964)
introduced this space Ap(G) and proved that the multiplier space of Lp(G) is
isometrically isomorphic to the dual space A*(G) of Ap{G) provided G is
abelian. For nonabelian locally compact group G, Eymard (1964) studied the
Fourier algebra A2(G) = A(G), and for general p, 1 < p < oo, Herz (1971)
proved that Ap(G) is a Banach algebra under pointwise multiplication. In a later
paper, Herz (1973) also proved that Ap(G) is a regular tauberian algebra of the
functions on G.

In this paper, we introduce the algebra Ax p(G) = Ap(G) n LX(G), 1 <p <
oo, by using the sum norm given by

I M I i . , - ll«ll^ + ll«lli. uGAhp(G).

Evidently, Ax p(G) is nonempty since Cc * CC(G) c A{ p(G), where CC(G) is the
space of continuous functions with compact support in G, and one can verify
easily that (A{ p(G), || ||, p) is a Banach algebra under pointwise multiplication.

Note that Ap(G) is a Fourier algebra under pointwise multiplication but is not
an algebra under convolution. However, the algebra Ax p(G) with convolution
product is a Segal algebra of LX{G). We are concerned with the structure theory
of Ax P(G) in connection with the known properties of Ap(G) and Lt(G). In
particular, we will show that the following statements are equivalent:

(l)Ahp(G) C Lr(G) for each 0 < r < oo.

(3) A Up(G) has a bounded approximate identity.
(4) A ip(G) has the factorization property.
(5) A, p(G) has the weak factorization property.
(6) G is compact.
(7) Every maximal ideal inAlp(G) is prime.
(8) Every maximal ideal in Alp(G) is regular.
(9) Every maximal ideal in A, P(G) is closed.
(10) Every positive functional onAhp(G) is continuous.
(11) A, p(G) has an identity.
(11)' Ap(G) has an identity.
(\2)Ahp(G)= Bhp(G).
(12)'Ap(G)= Bp(G).
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Here

Bp(G) = {<p e Cb(G)\<pu G Ap(G), V« G Ap(G)},

BXp(G) = {<p G Cb(G)\<pu G /J,,p(G), VM G AXJG)}

and Q(G) denotes the set of all bounded continuous functions on G.

2. Structure theorems and approximate identity for Ax P(G)

We first consider the connection between Ax P(G) and the/>-Fourier algebra

THEOREM 2.1. Let G be a locally compact (Hausdorff) group. Then
(1) Ax p(G) is a commutative semisimple Banach algebra under pointwise

multiplication and Ax p(G) is a dense ideal in Ap(G).
(2) A, P(G) is a proper ideal of Ap(G) if and only if G is noncompact.

PROOF. (1) It is easy to see that Ax p(G) is a commutative Banach algebra
under pointwise multiplication.

In fact, if {un} is any Cauchy sequence in Ax p(G), then it is also a Cauchy
sequence in Ap(G) and LX(G). It follows that there exist v G Ap(G), v' G LX(G)
such that ||un - v\\A —>0 and ||«n - t/||, —>0 as n —» oo. Since ||wn — t/||, -»0,
there exists a subsequence {unik)} of {un} such that wn(/t)(x) —* v'(x) a.e. On the
other hand, since \un(x) — v(x)\ < \\un — v\\A -» 0, we have un(k)(x) —> v(x) and

hence v = v' a.e. This shows the completeness of Ax P(G). In addition, for any
u, v G A, p(G), we have

IMk , < IMI^IMI^ + IML,IN,

Next we show that Ax p(G) is semisimple. Note first that the regular maximal
ideal space of Ap(G) is G (see Herz (1973, p. 102)). Since Ap(G) n CC(G) c

C ^ ( G ) and since Ap{G) n Q(G) is dense in ^ ( G ) , it follows that
is a dense ideal in Ap(G). Hence the regular maximal ideal space of

Alp(G) is also G (see Burnham (1972) or Lai (1975)), and so AXp(G) is
semisimple.

(2) We show that Ax p{G) is a proper ideal if and only if G is noncompact.
Evidently, if G is compact, then Ax p(G) = Ap{G). Now suppose G is noncom-
pact. Then there exists a sequence {yn} in G and a compact symmetric
neighborhood U of the identity e of G, such that Y,t/2 n Y,t/2 = 0 provided
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i ^j. Let

/ = 2 TXytu>< 8 = Xu
k = \ K

where xy u2Xu denote the characteristic functions of yk U
2 and U respectively.

For 1 <p, q < oo, i + \ = 1, we have / G Lp(G), g G L,(G) and / * g G
>4 (G). However,/ * g $ L,(G), because

diverges. This shows / * g £ .4, p(G), and hence / ^ p(G) is a proper ideal of
Ap(G). The proof is complete.

A locally compact group is said to be amenable if for any compact set K of G
and any e > 0, there exists a compact set V with positive measure m such that
m(KV) < (1 + e)m(V). This definition is equivalent to the existence of an
invariant mean on L°°(G). A locally compact group G is amenable if and only if
Ap(G) has a bounded approximate identity (see Eymard (1971) p. 62, Theorem 3
or Herz (1973) p. 120, Theorem 6). We will show that the existence of an
approximate identity of Alp(G) follows from the existence of a bounded
approximate identity of Ap(G). However, any approximate identity of Al P(G) is
unbounded, unless G is compact.

THEOREM 2.2. To each bounded approximate identity of Ap(G) (if it exists) there
corresponds an approximate identity of Ax p(G). All approximate identities in
A^ p(G) are unbounded unless G is compact.

PROOF. Let {ea} be the usual bounded approximate identity of Ap(G) with
\\ea\\A < c. For any u e Ax P(G) c LX(G) and any e > 0, there exists a com-
pact subset K of G depending on u and e such that

f \u(x)\
JG- K

dx <
8(c + 1)

and there exists a, such that

lleaw ~ U\\A < e / 4 whenever a > a,.

Since Ax P(G) is an ideal of Ap(G), we have eau G Ax and so eau — u G L,(G).
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Thus for any a,

f \ea(x)u(x) - u(x)\ dx
JG-K
f
G-K

< (KIL + 0 I l"(*)l ^ (since Ap(G) c
JG-K
I

JG-K

+ l)e/8(c + 1)

It follows from the regularity of the Banach algebra Ap(G) (Herz (1973)), that
there exists a function h e Ap(G) such that /i = 1 on K. Thus for every x e K,

\ea(x) - 1| = k(*)*(*) - *(*)| < 11^ - HA,

and since {ea} is an approximate identity for Ap(G), we can choose a2 such that

k « - i| < lk«,A - h\\Ap

< e[8A.(A:)(||M||0O + I)]"1 whenever a > a2.

Hence

f \ea(x)u{x) - u(x)\ dx = f \ea{x) - 1| |«(*)| dx < e/8
•'A: JK

whenever a > a2. Now letting a0 = maxfa,, a2), we have

lk«w - "Hi,/. = IK" - "L, + K " - "Hi

< T £ + (K(X)U(X)- u(x)\dx4
 •'G

e +
>K

= Te + f \ea(x)u(x) - u(x)\ dx
4 JK

+ f \ea{x)u(x) - u(x)\ dx
Ja- K' G-K

whenever a > a0.
Since Ax p{G) is a dense ideal in Ap(G), for any ê  £ Ap(G) and 5 > 0 there

corresponds an element/(/3a) G yl, ̂ (G) such that

Here we order the set of pairs {(a, e)} as follows:

(a, e) < (P, 8)** a </? and e > S.
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Then {(a , e)} is a directed set with this order ing, a n d we ssert that the set {/(aje)}
forms an approx imate identi ty for A x p(G). In fact, lett ing

and for any y = (/?, 5) > y0, we have

(*) WfyU ~ epu\\Up < \\fy - ^ I L J N I , , ,
1

and hence

ll/y" ~ "111,, < ll/y" - ^"111, , + Ik/8" ~ "111,/-

The inequality (*) follows from the following computation:

||/Yw - e/}u\\Xp = ||/Yw - e^u\\Ap + ||/Yw - epu\\x

< ll/y - ^ L P ( I I " I U , + INI . ) (•••|| I I . < II WAP)

= ll/y - ^ ILJMIl , / , -
All the approximate identity in Ax p(G) are unbounded unless G is compact (see
Lai (1969) p. 574 or Burnham (1972), Theorem 1.2).

If G is amenable, then Ax p(G) and Ap(G) have the same structure theory. The
following proposition follows immediately from Lai (1969), Theorem 2, or
Burnham (1972), Theorem 1.1.

PROPOSITION 2.3. Suppose the locally compact group G is amenable, then the
following two statements hold:

(1) If I is a closed ideal in Ap(G) then J = / n Ax p(G) is a closed ideal in
Ax p(G) and the closure of J in Ap(G) is I; and

(2) / / / /' 5 a closed ideal in Ax p{G) and I is the closure of J in Ap{G), then I is
a closed ideal in Ap{G) and J = I n Ax p(G).

3. Some equivalence relations

DEFINITION. Let (A, \\ \\A) be a Banach algebra. A is said to have the
factorization property if for every u EL A, there exists V, W G A such that
u = VW. A is said to have the weak factorization property (in symbols A2 = A) if
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for every u e A, there exist Vx, V2, . . . , Vn, Wx, W2, . . . , Wn in A such that
u = Z"=,V,W,.

In order to show that the compactness of G and the factorization properties of
Ax P(G) are connected, we need the following lemmas.

LEMMA 3.1. Let G be a noncompact locally compact group. Then there exists a
sequence {Un} of subsets in G such that for each n, Un contains a compact subset
Kn, and there is a sequence { Vn) in Ax p{G) with \\ Vn\\Xp < cn, where cn > 1 for
all n, such that

(1) Ui n U, = 0 if i ¥*j, Kn c U° and 0 < \(Un) = a < oo, 0 < X(Kn) = $
< oo (n = 1, 2, . . . ) where U° is the interior of Un and a, ft are real constants;

(2) for all n, Vn(Kn) = 1, supp Vn c Un andO < Vn < 1; and
(3) for all n, || Vn\\x p < cn and the series 2 " _ , l/cn

a converges if a > 1, and
diverges if a < 1.

PROOF. Since G is noncompact, there exists a sequence {yn} in G and a
compact symmetric neighborhood U of the identity e in G such that y, i/ n 7) U
= 0 if / T^y. Take y, = e and a compact symmetric neighborhood K of e in [/°.
Since ^ ( G ) is regular, there exists a V G ^ ( G ) such that F(#) = 1, supp K c
U and 0 < V < 1 (see Herz (1973), p. 101). V is an element of Ax p(G) since V
has compact support. Now let

Un=ynU, Kn = ynK, Kn=KYn, (n = 1, 2, . . . )

where (^-.(x) = V{y~xx) for any x e G. Take rf > 1 such that || V\\Up < d, and
let cn = nd, we have

(1) Ut n I/,- = 0 i f i=£j and

Kn = ynK c ynU° c (ynU)° = U°n

0 < \{Un) =\(U) = a < oo

0 < \(Kn) = K(K) = j3 < oo.

(2) 0 < Vn < 1, supp Kn c ynU = t/n and Vn(Kn) = ^ - . ( y ^ ) = K(̂ T) = 1.
(3) Since

WK\\uP = \ \ v ^ h + \\vyn'\\Ap = \\v\U + \\v\\Ap

J _ = / y J_^_L( converges if a > 1,
C \ ,-e, n° j d" [ diverges if a < 1.
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LEMMA 3.2. {\)Alp{G) c Ly(G)for 1 < y < oo.

(2) If A t p(G) has the weak factorization property, then
(i)Aip(G) c Ll/2»(G)for any integer n > 1;
(ii) ^i^(G) C Li/3(G).

PROOF. (1) This is clear since Aip(G) c C0(G) n L,(G) c Ly(G) for 1 < y
< oo.

(2) Since Alp(G) has the weak factorizatioin property, it follows that if
u G AXp{G) = A]p(G), t h e r e e x i s t Vv V2,...,Vm a n d Wv W2,...,Wm<E

Alp(G) such that
m

U = y vw

Since

1/2/ f \l/2

I I | W^(x)| Jx j < oo,

we have VjWj G Li/2(G) for i = 1, 2, . . . , m and so u G Ll/2(G). Continuing
this process, we obtain by induction that Ax p(G) c Ll/2(G) for any integer
n > 1.

To see that (ii) holds, we take a function u G /4I>y)(G) which we may assume
to be the above mentioned u. By Holder's inequality, we have (since | + 575 =

1)

C I r \ 1 / 3 / r , \ 2 / 3

/ I vi(x) W,(x)\//3 dx < I I Vt(x)\ dx) I /1 W,(x)\1/2 dx\ < 00,

that is, K; Wj G L,^3(G). Consequently M G LX^(G) as required.

THEOREM 3.3. The following statements are equivalent.
(1) G iy compact.

(3) ,4 [ ^(G) /ia5 a bounded approximate identity.
(4) A t p(G) has the factorization property.
(5) A, p(G) has the weak factorization property.
(6)AUp(G) C Lr(G)for all r, 0 < r < 00.

PROOF. (1) <=> (2) This follows from Theorem 2.1.
(2) => (3) (2) implies (1) so that G is amenable, and therefore Alp(G) = Ap(G)

has a bounded approximate identity (see Eymard (1971) or Herz (1973)).
(3)=>(4) This follows from Cohen's factorization theorem (Cohen (1959),

Theorem 1).
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(4) => (5) Trivial.
(5)=>(1) Suppose to the contrary that G is noncompact. If Al p(G) has the

weak factorization property, we have Alp(G) c Ll/3(G) by Lemma 3.2.
According to Lemma 3.1, if we let

v= 2 —.
1 c

where vn stands for V , then

and so v G L1/3(G). On the other hand, supp vn C Un and {/, n Uj - 0\l i
so

Thus

f Kx) | ' / 3 dx = f
Jr. Jr.

= 2 J — dx

> ^ f ^dx (sinccvn(Kn) = l)

diverges. This implies v ^ L1/3(G) and therefore by Lemma 3.2, Aip(G) does
not have the weak factorization property. But this contradicts our hypothesis
and shows that G must be compact.

(6)<=>(1) It suffices to consider the case where 0 < r < 1 since Aip(G) c
Lr(G) holds for all 1 < r < oo (see Lemma 3.2, (1)). If G is compact, then
AXp(G) = A\p(G) (see (1)=>(5)) and by Lemma 3.2 (2), we have A}p(G) c
Ll/2-(G), n > 1. Since 0 < r < 1, there is a positive integer m such that
1 < 1/2"1 < r < 1. Hence ^1>P(G) c Lr(G) for 0 < r < 1 and (1)=>(6) is
proved.

If G is noncompact, we take an element v = 2"_iU,,/c^ as described in the
proof of (5) =>(1), then u G Ax P(G) but u $ Li/3(G). This contradicts the fact
that Alp(G) c Lr(G) for all r, 0 < r < oo. Hence (6) => (1) is proved.

In order to prove Theorem 3.5, we shall need the following known result of
Porcelli (1966), p. 88.
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THEOREM A. Let A be a commutative Banach algebra such that A2 = {0}, then
(1) A contains a nonprime maximal ideal if and only if A2 ¥= A and in this case

each nonprime maximal ideal is a maximal subspaces of A containing A2.
(ii) If A has no identity, then a maximal ideal is regular if and only if it is prime.

The proof of the following lemma is similar to that given for Ap(G) (see Herz
(1973), p. 101).

LEMMA 3.4. / / W is an open set in G which contains a compact set K, then there
exists v G Ax p(G) such that v = 1 on K, v = 0 outside W and 0 < v(x) < 1 for
all x 6 G. Namely, Ax P(G) is regular.

THEOREM 3.5. / / G is a locally compact group, then the following conditions are
equivalent:

( l )G i s compact.
(2) A, p(G) has an identity.
(3) Ap(G) has an identity.
(4) Every maximal ideal in A, p(G) is prime.
(5) Every maximal ideal in A lp(G) is regular.
(6) Every maximal ideal in At p(G) is closed.

PROOF. (1)<=>(2) Since AXp(G) is a regular semi-simple Banach algebra, the
regular maximal ideal space G of At p(G) is compact if and only if Ax p{G) has
an identity. (See Loomis (1953), p. 52, Theorem and p. 83 Corollary).

(1) <=> (3) The reason is the same as (1) <=> (2).
(1) <=> (4) This follows immediately from Theorem 3.3, (5) and Theorem A(i).
(2) => (5) Trivial.
(5) => (1) This result follows from Theorem 3.3 and Theorem A.
(6)=>(1) If G is noncompact, then Theorem 3.3 and Theorem A, there is a

maximal ideal / which is neither prime nor regular. This / is also a maximal
subspace of Ax p(G) containing A2

p(G) by Theorem A(i). Furthermore, / is not
closed: otherwise

AlP(G) c I C I <Z AltP(G),

AXp(G) is dense in Alp(G) (see the following remark) which would imply
/ = Ax p(G). This is a contradiction since / is a maximal subspace of Ax p(G).

(1)=* (6) Trivial.

REMARK. A2
p(G) is a dense subset of Ax p{G). In fact, A2

p(G) is dense in
C^G) by the Stone-Weierstrass Theorem, and A{ p(G) is dense in C^G) if and
only if A2

p(G) is dense in Al p(G) (Hahn-Banach Theorem).
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COROLLARY 1. A locally compact group G is noncompact if and only if At p(G)
contains a maximal ideal which is neither closed, prime, nor regular.

Varopoulos (1964) proved that every positive functional on a *-Banach
algebra A with a bounded approximate identity is continuous. We know that
Alp(G) has a bounded approximate identity if and only if G is compact
(Theorem 3.3). Now if we define u*(x) = u(x), x G G for each u G Ax p{G),
then At p(G) is a *-Banach algebra. Thus if G is compact, then every positive
functional on Ax p(G) is continuous, we assert that if every positive functional
on Ax p(G) is continuous, then G is compact. Indeed this follows from the fact
that if a *-Banach algebra A such that A2 is a dense proper subset of A, then
there exists a discontinuous positive functional on A (see Wang (1972), Theorem
5.1). Hence if every positive functional on AXj)(G) is continuous, the weak
factorization property must hold in A{ p(G), so it follows from Theorem 3.3 that
G is compact. We summarize this in the following

THEOREM 3.6. Every positive functional on A, P(G) is continuous if and only if G
is compact.

4. Regular Tauberian algebra and local properties of A{ p(G)

Herz (1973) proved that the Fourier algebras Ap{G), 1 <p < oo, are regular
Tauberian algebras. Similar result holds for Alp(G). Recall that a Banach
algebra A is said to be a regular Tauberian algebra of functions on G if the
following conditions hold:

(R) given a compact subset K c G and a closed subset F disjoint from K,
there exists u G A such that u = 1 on A" and u = 0 on F;

(T) the elements of compact support are dense in A; and
(G) if T is a continuous multiplicative linear functional on A whose support is

a single point {x0} c G, then T = 8Xo, that is, <«, T> = U(JCQ) for all u G A.
We state the following theorem for Al p(G) without proof since it is similar to
that given for Ap(G) (Herz (1973)).

THEOREM 4.1. The Banach algebra Ax P(G) (1 <p < oo) is a regular Tauberian
algebra

We say that a commutative Banach algebra A satisfies the Ditkin condition if,
for any x E. M G Wl there exists a sequence xn £ A such that xn = 0 in a
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neighborhood Vn of M, the maximal ideal, and xxn -» x. Here 3K is the maximal
ideal space of A and x is the Gelfand transform of the algebra A.

The following results are analogous to those for L{(G) in case G is an abelian
group (see Loomis (1953) p. 151 and p. 86, 25F Theorem, see also Lai (1970),
p. 62 or Yap (1970) for other Banach algebras).

THEOREM 4.2 (see Loomis (1953), p. 151). Let G be a locally compact amenable

group and let I be a closed ideal of A, p(G). Then

I D {« G k(h(I))\ (Boundary o/hull(x)) n h(I) includes no non-zero perfect set).

That is, if u G k(h(I)) such that the intersection of the boundary of hull(x) with
hull(/) includes no non-zero perfect set, then u G / . Here k(h(I)) denotes kernel

The above result can be proved easily by similar arguments, mutatis mutandis,
as that in Lai (1970) for AP(G) (the space of a l l / G L\G) such that the Fourier
transform/ G LP{G), where G is the dual group of the locally compact abelian
group G). Therefore, we shall only sketch the proof here.

Note first that Alp(G) is a commutative semisimple Banach algebra by
Theorem 2.1. Furthermore, Ax P(G) satisfies the Ditkin condition (see Loomis
(1953), p. 86), that is, if u G Alp(G), x0 G G, U(XQ) = 0, then there exists a net
{ua} c Ax p(G) with ua = 0 in a neighborhood of x0 in G such that

lim||«Ma - u\\hp = 0.

Indeed, this holds in view of the following lemma, the proof of which is
elementary.

LEMMA 4.3 (see Lai (1970), Theorem 4). Suppose that u G Alp(G), x0 G G,
u(x0) = 0. Furthermore, suppose that there is a neighbohood system {Wp} of x0 in
G with Haar measure less than or equal to 1. Then there is a net { Vp) in Ax p(G)
such that

(1) Hh,p < 5;
(2) Vp = I on some neighborhood of x0 in Wp and Vp = 0 outside Wp;
(3) limjiliityH, = 0;and
(4) lim^llMt^H, p = 0 if G is amenable.

Note that Ax P(G) also satisfies the Ditkin's condition at the point of infinity
since it has an approximate identity with compact support (Loomis (1953),
p. 149 Lemma). It follows that Theorem 4.2 is valid.

We list several easy consequences of Theorem 4.2.
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COROLLARY 1. If G is amenable, then every closed ideal I in At p(G) is included
in a regular maximal ideal, that is if I is a closed ideal in Alp(G) and if
hull(7) = 0 , then I = Alp(G) provided G is amenable.

COROLLARY 2. Suppose that G is an amenable, locally compact group and I is an
ideal in Ax P(G) such that I is contained in exactly one regular maximal ideal M.
Then I = M.

COROLLARY 3. If G is amenable, then every closed primary ideal in Ax p(G) (or
Ap(G)) is maximal.

We remark that Theorem 4.2 and its corollaries still hold if Ax p(G) is replaced
by Ap(G).

5. Multipliers for Alp(G)

If A is a Banach algebra, a mapping T: A —> A is called a multiplier of A if
u(Tv) = (Tu)v for all u, u G A. We denote the set of all multipliers of A by
M(A). If A is commutative Banach algebra without order and T G M(A), then
T is continuous and T(uv) = u(Tv) = (Tu)v.

Now, let Bp(G) = {<p G Cb(G): <pu G Ap(G), Vw G Ap(G)}, and define the
norm for Bp(G) by

\\<P\\BP = s u p j j j j

then Bp(G) is a Banach algebra under pointwise multiplication (see Eymard
(1971)).

Now we define

= {<p G Cb(G): cp« G Ahp(G), Vu G AUp(G)}.

Then

Iliwlli,, = \\<P»\\Ap + l l v l l i < IMI* , IMU + I M I J M I i

< (W\BP

and we write
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It is immediately clear that Bx p(G) is also a commutative Banach algebra
provided the multiplication is the pointwise product.

In order to find a multiplier algebra of Ax P(G), we shall need the following
known result of Wang (1961).

THEOREM B. Let A be a commutative Banach algebra without order and let
T G M(A). Then there exists a unique bounded continuous function <p on SSR(A)
(the maximal ideal space of A) such that

(1) (Tu)"= yufor all u G A.

(2)IML< ||7-||.

LEMMA 5.1. Let u G Al p(G) and uv = Ofor all v G Alp(G). Then u = 0. That
is, Ax p(G) is without order.

PROOF. If u =£ 0, then there is a x0 G G such that u(x0) =£ 0. But Alp(G) is
regular (by Lemma 3.4), there exists a v0 G Ax p(G) such that vo(x^) = 1» thus
u(xo)vo(xo) ¥= 0. This contradicts to uv = 0. Hence u = 0.

REMARK. Ap(G) is also without order.

The following theorem holds for Ax p(G) and Ap(G).

THEOREM 5.2. The following statements are equivalent:
(1) T e M(AUp(G)) (respectively M(Ap(G))).
(2) There exists a unique function <p G B, P(G) (respectively Bp(G)) such that

Tu = <pu for each u G A{ p(G) (respectively Ap(G)). Moreover the correspondence
between T and <p defines an isometric linear isomorphism from M(Alp(G))
(respectively M(Ap(G))) onto Blp(G) (respectively Bp(G)). That is

M(Alp(G)) =* Bhp(G) {respectively M(Ap(G)) =* Bp(G)).

PROOF. (1) => (2) It follows immediately from Lemma 4.1, Theorem B and the
property that the Gelfand transform on Alp(G) (respectively Ap(G)) is an
identity mapping.

(2)=>(1) If <p G B, p(G) (respectively Bp(G)) and we define T^u = <pu for
each u£Alp(G) (respectively Ap(G)), then Tv G M(A, p(G)) (respectively,
M(Ap(G))). '

Moreover, M(Alp(G)) (respectively, M(Ap(G))) and Blp(G) (respectively
M(Bp(G))) are isometric isomorphic onto.
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From this theorem, we have

COROLLARY 1. The following statements are equivalent:

(l)AUp(G)= Bhp(G).

(2) A, p(G) has an identity.

(3) Ap(G) = Bp(G).

COROLLARY 2. / / G is compact, then

= Ap(G) = Bp(G).
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