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Abstract

We adopt the untyped imperative object calculus of Abadi and Cardelli as a minimal

setting in which to study problems of compilation and program equivalence that arise when

compiling object-oriented languages. We present both a big-step and a small-step substitution-

based operational semantics for the calculus. Our first two results are theorems asserting the

equivalence of our substitution-based semantics with a closure-based semantics like that given

by Abadi and Cardelli. Our third result is a direct proof of the correctness of compilation to

a stack-based abstract machine via a small-step decompilation algorithm. Our fourth result

is that contextual equivalence of objects coincides with a form of Mason and Talcott’s CIU

equivalence; the latter provides a tractable means of establishing operational equivalences.

Finally, we prove correct an algorithm, used in our prototype compiler, for statically resolving

method offsets. This is the first study of correctness of an object-oriented abstract machine,

and of operational equivalence for the imperative object calculus.

Capsule Review

This paper presents a rigorous semantic study of the imperative object calculus of Abadi

and Cardelli presenting: several forms of operational semantics along with correspondence

theorems; an abstract machine, compiler and correctness result; and a theory of operational

equivalence and its application to reasoning about program equivalence and correctness of

program optimizations.

The paper is well-written and a pleasure to read. It brings together a number of existing

techniques in operational semantics for imperative functional languages, making a coherent

whole and providing a guideline for semantics based development of object-oriented languages.

Adding additional data types and program syntax (conditional, loops, etc.) should be a matter

of filling in details following the guidelines given. This is likely to be a frequently cited paper.

The paper sets the stage for a number of important future developments including extension

of the study to concurrent objects and investigation of additional forms of program analysis

and optimization.
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1 Introduction

This paper collates and extends a variety of operational techniques for describing

and reasoning about programming languages and their implementation. We focus on

implementation of imperative object-oriented programs, expressed in an imperative

object calculus. We examine different forms of structural operational semantics

for the calculus, specify an implementation in terms of an object-oriented abstract

machine, and develop a theory of operational equivalence between programs which

we use to specify and verify a simple compiler optimisation. Many of our semantic

techniques originate in earlier studies of the λ-calculus. This paper is their first

application to an object calculus and shows they may easily be re-used in an

object-oriented setting.

The language we describe is essentially the untyped imperative object calculus

of Abadi and Cardelli (1995a; 1995b; 1996), a small but extremely rich language

that directly accommodates object-oriented, imperative and functional program-

ming styles. Abadi and Cardelli invented the calculus to serve as a foundation

for understanding object-oriented programming; in particular, they use the calculus

to develop a range of increasingly sophisticated type systems for object-oriented

programming. We have implemented the calculus as part of a broader project to

investigate object-oriented languages. Other work considers a concurrent variant

of the imperative object calculus (Gordon and Hankin, 1998). This paper develops

formal foundations and verification methods to document and better understand

various aspects of our implementation.

Our system compiles the imperative object calculus to bytecodes for an abstract

machine, implemented in C, based on the ZAM1 of Leroy’s CAML Light (Leroy,

1990). We also implemented a closure-based interpreter for the calculus. A type-

checker enforces the system of primitive self types of Abadi and Cardelli. Since

the results of the paper are independent of this type system, we will say no more

about it.

The rest of the paper is organised as follows:

• In section 2 we present our source language, the imperative object calculus,

together with three forms of operational semantics (Plotkin, 1981; Martin-Löf,

1983; Felleisen and Friedman, 1986; Kahn, 1987). Theorems 1 and 2 assert

the consistency of these semantics.

• Our target language is the instruction set of an object-oriented abstract ma-

chine, a simplification of the machine used in our implementation, and analo-

gous to abstract machines for functional languages. Section 3 presents a formal

description of our abstract machine, and a compiler from the object calculus to

instructions for the abstract machine. We prove a compiler correctness result,

Theorem 3, by adapting an idea of Rittri (1990) to cope with state and objects.

• Given the formal description of our source language, we may express cor-

rectness of source-to-source transformations via operational equivalence. In

section 4, we adapt the contextual equivalence of Morris (1968), which has

1 ‘ZAM’ is an acronym for ‘Zinc Abstract Machine’, where ‘Zinc’ is an acronym for ‘Zinc is not Caml’.
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become the standard for studies of λ-calculi, to the imperative object calculus.

Our fourth result, Theorem 4, characterises contextual equivalence using the

CIU equivalence of Mason and Talcott (1991).

• In section 5, we exercise operational equivalence by specifying a simple opti-

misation that resolves at compile-time certain method labels to integer offsets.

Theorem 5 states the correctness of the optimisation.

We discuss related work at the ends of sections 2, 3, 4 and 5. Finally, we review

the contributions of the paper in section 6.

Mostly, we state propositions without proofs or with brief proof outlines only.

Some technical lemmas needed for the proofs are omitted. These and the full proofs

may be found in a technical report (Gordon et al., 1998).

2 An imperative object calculus

In this section, we present the syntax of an imperative object calculus, together with

three forms of operational semantics. Theorems 1 and 2 state the equivalence of

these semantics.

2.1 Syntax of the calculus

We begin with the syntax of an untyped imperative object calculus, the impς calculus

of Abadi and Cardelli (1996) augmented to include store locations as terms. Let

x, y and z range over an infinite collection of variables, ` range over an infinite

collection of method labels, and ι range over an infinite collection of locations, the

addresses of objects in the store.

The set of terms of the calculus is given as follows:

a, b ::= term

x variable

ι location

[`i = ς(xi)bi
i∈1..n] object (`i distinct)

a.` method selection

a.`⇐ ς(x)b method update

clone(a) cloning

let x = a in b let

Informally, when an object is created, it is put at a fresh location, ι, in the store,

and referenced thereafter by ι. Method selection runs the body of the method with

the self parameter (the x in ς(x)b) bound to the location of the object containing the

method. Method update allows an existing method in a stored object to be updated.

Cloning makes a fresh copy of an object in the store at a new location. The reader

unfamiliar with object calculi is encouraged to consult Abadi and Cardelli (1996)

for many examples, and a discussion of the design choices that led to this calculus.

Here are the scoping rules for variables: in a method ς(x)b, variable x is bound in

b; in let x = a in b, variable x is bound in b. If φ is a phrase of syntax we write fv (φ)
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for the set of variables that occur free in φ. We say phrase φ is closed if fv (φ) = ?.

We write φ{{ψ/x}} for the substitution of phrase ψ for each free occurrence of variable

x in phrase φ. We identify all phrases of syntax up to alpha-conversion; hence a = b,

for instance, means that we can obtain term b from term a by systematic renaming

of bound variables. Let o range over objects, terms of the form [`i = ς(xi)bi
i∈1..n].

In general, the notation φi
i∈1..n means φ1, . . . , φn.

Unlike Abadi and Cardelli, we do not identify objects up to re-ordering of

methods. This is because the order of methods in an object is significant for an

application of our techniques presented in section 5. Moreover, we include locations

in the syntax of terms. This is so we may express the dynamic behaviour of the

calculus using a substitution-based operational semantics. In Abadi and Cardelli’s

closure-based semantics, locations appear only in closures and not in terms. If φ is

a phrase of syntax, let locs(φ) be the set of locations that occur in φ. Let a term

a be a static term if locs(a) = ?. The static terms correspond to the source syntax

accepted by our compiler. Terms containing locations arise during reduction.

As a first example of programming in the imperative object calculus, here is how

to express pairs of terms as objects with fst and snd methods for accessing the two

components and a swap method for interchanging the first and second components:

pair(a, b)
def
= [fst = ς(s)a,

snd = ς(s)b,

swap = ς(s)let x = s.fst in

let y = s.snd in

(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

for s /∈ fv (a) ∪ fv (b)

The next example makes use of the imperative nature of the calculus to express

updateable references as objects with a single ref method:

ref (a)
def
= let x = a in [ref = ς(y)x]

a := b
def
= let x = b in a.ref ⇐ ς(y)x

!a
def
= a.ref

As a third example, here is an encoding of the call-by-value λ-calculus:

λ(x)b
def
= [arg = ς(z)z.arg , val = ς(s)let x = s.arg in b]

b(a)
def
= let y = a in (b.arg ⇐ ς(z)y).val

where y 6= z, and s and y do not occur free in b. It is like an encoding from Abadi

and Cardelli’s book but with right-to-left evaluation of function application. Given

updateable methods, we can easily extend this encoding to express an ML-style

call-by-value λ-calculus with updateable references.

Although functions are derivable, for the purpose of the operational semantics

of this section and the abstract machine and compiler in the next (section 3), we

consider an extended calculus that includes functions and function application. This

is partly because an efficient implementation would include functions (procedures)

as primitive, and partly to demonstrate the applicability of the techniques of these
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sections to a λ-calculus with state. We do not use this extended calculus in section 4

or in section 5. The techniques used in the study of operational equivalence in

section 4 are well understood for λ-calculi with state. The optimisation of method

access in section 5 is independent of the presence of primitive functions.

The syntax of the extended calculus is given by:

a, b ::= terms

. . . as previously

λ(x)b function

b(a) application

In a function λ(x)b, variable x is bound in b. Unlike Abadi and Cardelli’s imperative

λ-calculus, the impλ calculus, our extended calculus does not permit assignments to

bound variables.

Throughout this paper, and in our implementation, we adopt the convention that a

function application b(a) is evaluated right-to-left; a is evaluated before b. In making

this choice we are following Leroy (1990), who proposes it on grounds of efficiency.

Adopting a left-to-right evaluation order would have little effect on the contents of

this paper, but would adversely affect the performance of our implementation.

We finish this section by fixing notation for finite lists and finite maps. We

write finite lists in the form [φ1, . . . , φn], which we usually write as [φi
i∈1..n]. Let

ψ :: [φi
i∈1..n] = [ψ, φi

i∈1..n]. Let [φi
i∈1..m]@[ψj

j∈1..n] = [φi
i∈1..m, ψj

j∈1..n].

Let a finite map, f, be a list of the form [xi 7→ φi
i∈1..n], where the xi are distinct.

When f = [xi 7→ φi
i∈1..n] is a finite map, let dom(f) = {xi i∈1..n}. For the finite map

f = f′@[x 7→ φ]@f′′, let f(x) = φ. When f is a finite map, let the map f+ (x 7→ φ),

be f′@[x 7→ φ]@f′′ if f = f′@[x 7→ ψ]@f′′, otherwise (x 7→ φ) :: f.

2.2 Small-step substitution-based semantics

The goal of this section is to specify a relation, c → d, where c and d are each

configurations consisting of a closed term paired with an object store. Intuitively,

c→ d means that the program state represented by c takes a single computation step

to reach d. We present this operational semantics using reduction contexts introduced

in the study of imperative λ-calculi by Felleisen and Friedman (1986). We say this

is a small-step semantics because it defines individual steps of computation. We say

it is substitution-based because it is defined in terms of the substitution primitive,

−{{v/x}}, that substitutes values for variables. We use this semantics in section 3 to

prove correctness of compilation. In the course of this paper, we use the symbol →
for several small-step relations; we refer to such relations as reduction or transition

relations.

Let a store, σ, be a finite map from locations to objects. Each stored object consists

of a collection of labelled methods. The methods may be updated individually. Abadi

and Cardelli use a method store, a finite map from locations to methods, in their

operational semantics of imperative objects. We prefer to use an object store, as it

explicitly represents the grouping of methods in objects. We discuss the connection

between our semantics and that of Abadi and Cardelli in section 4.6.
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σ ::= [ιi 7→ oi
i∈1..n] object store (ιi distinct)

c, d ::= (a, σ) configuration

We write ` σ ok , to mean that a store σ is well formed, if and only if fv (σ(ι)) = ?
and locs(σ(ι)) ⊆ dom(σ) for each ι ∈ dom(σ). We write ` (a, σ) ok , to mean that a

configuration (a, σ) is well formed, if and only if fv (a) = ?, locs(a) ⊆ dom(σ) and

` σ ok .

To define the reduction relation we need the syntactic concepts of values and

reduction contexts. A value is either a location or a function. A reduction context, R,

is a term given by the following grammar, with one free occurrence of a distinguished

variable, •, which represents ‘the point of execution’ in R.

u, v ::= ι | λ(x)b value

R ::= • | R.` | R.`⇐ ς(x)b reduction context

| clone(R) | let x = R in b

| a(R) | R(v)

Since there is exactly one free occurrence of • in any reduction context, ifR.`⇐ ς(x)b

is a reduction context, • /∈ fv (b)− {x}. For the same reason, if let x = R in b, a(R),

and R(v) are reduction contexts, • /∈ fv (b)−{x}, • /∈ fv (a) and • /∈ fv (v), respectively.

We write R[a] for the outcome of substituting term a (not necessarily a value) for

the single occurrence of the hole • in a reduction context R. No variables are ever

captured by this operation, since the hole in a reduction context does not appear in

the scope of any bound variables.

Let the small-step substitution-based reduction relation, c→ d, be the least relation

satisfying the following axiom schemes:

(Red Object) (R[o], σ)→ (R[ι], σ′) if σ′ = (ι 7→ o) :: σ and ι /∈ dom(σ).

(Red Select) (R[ι.`j], σ)→ (R[bj{{ι/xj}}], σ)

if σ(ι) = [`i = ς(xi)bi
i∈1..n] and j ∈ 1..n.

(Red Update) (R[ι.`j ⇐ ς(x)b], σ)→ (R[ι], σ′)
if σ(ι) = [`i = ς(xi)bi

i∈1..n], j ∈ 1..n, and

σ′ = σ + (ι 7→ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n]).

(Red Clone) (R[clone(ι)], σ)→ (R[ι′], σ′)
if σ(ι) = o, σ′ = (ι′ 7→ o) :: σ and ι′ /∈ dom(σ).

(Red Let) (R[let x = v in b], σ)→ (R[b{{v/x}}], σ).

(Red Appl) (R[(λ(x)b)(v)], σ)→ (R[b{{v/x}}], σ).

The outcome of reducing a well formed configuration is itself a well formed

configuration. Moreover, reduction may increase, but not decrease, the domain of

the store of a configuration:

Lemma 1

Suppose ` (a, σ) ok and (a, σ)→ (a′, σ′). Then ` (a′, σ′) ok and dom(σ) ⊆ dom(σ′).

Let a configuration c be terminal if and only if there is a store σ and a value

v such that c = (v, σ). We say that a configuration c converges, c↓, if and only if

there is a terminal configuration d such that c →∗ d. We say that a configuration c
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diverges if and only if there is an infinite sequence of configurations c1, c2, . . . such

that c→ c1 → c2 → · · ·.
For instance, consider the configuration:

(pair(ι1, ι2).swap, σ)

where σ is a well formed store of the form [ι1 7→ o1, ι2 7→ o2] and pair is as defined

in section 2.1. This is not a terminal configuration, but it converges because of the

following reduction sequence (in which we assume ι /∈ dom(σ)).

(pair(ι1, ι2).swap, σ)

→ (ι.swap, (ι 7→ pair(ι1, ι2)) :: σ)

→ (let x = ι.fst in let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let x = ι1 in let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)ι1,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let y = ι2 in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)ι1,
(ι 7→ pair(ι1, ι2)) :: σ)

→ ((ι.fst ⇐ ς(s′)ι2).snd ⇐ ς(s′)ι1, (ι 7→ pair(ι1, ι2)) :: σ)

→ (ι.snd ⇐ ς(s′)ι1, (ι 7→ pair(ι2, ι2)) :: σ)

→ (ι, (ι 7→ pair(ι2, ι1)) :: σ)

Consider now the following configuration:

([` = ς(s)s.`].`, [])

It diverges because of the following reduction sequence.

([` = ς(s)s.`].`, []) → (ι.`, [ι 7→ [` = ς(s)s.`]])

→ (ι.`, [ι 7→ [` = ς(s)s.`]])

→ · · ·
Next we show that reduction, →, is deterministic up to the choice of freshly

allocated locations in rules (Red Object) and (Red Clone). To state this precisely,

we need a couple of definitions. First, we define a predicate which asserts that the

domain of the store of a configuration includes a set w of locations: let the predicate

`w (a, σ) ok hold if and only if ` (a, σ) ok and w ⊆ dom(σ). Second, we define

structural equivalence at w, ≡w , for any finite set w of locations, as the least relation

on configurations closed under the following rules.

(Struct Refl)

`w c ok

c ≡w c

(Struct Trans)

c ≡w c′ c′ ≡w c′′

c ≡w c′′

(Struct Symm)

c ≡w c′

c′ ≡w c
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(Struct Rename)

`w (a, σ) ok ι ∈ dom(σ)− w ι′ /∈ dom(σ)

(a, σ) ≡w (a{{ι′/ι}}, σ{{ι′/ι}})
In this definition the notation a{{ι′/ι}} denotes the outcome of replacing every occur-

rence of location ι in a by ι′; and σ{{ι′/ι}} denotes the outcome of renaming location ι

of store σ to ι′, and applying this substitution to each of the objects in the store. An

easy induction establishes that c ≡w d implies that `w c ok and `w d ok . Roughly,

c ≡w d means that the locations in w are all included in the domains of the stores

of both c and d, and that c may be obtained from d by a series of renamings of the

locations outside w.

The → relation is deterministic up to structural equivalence:

Proposition 2

Suppose `w c ok . Then c→ c′ and c→ c′′ imply c′ ≡w c′′.
Furthermore, reduction and structural equivalence possess the following property.

Lemma 3

Suppose c ≡w c′. Then c→ d implies there exists d′ such that c′ → d′ and d ≡w d′.
Proposition 2 and Lemma 3 imply that whenever (a, σ) is well formed and

(a, σ) →∗ d, the configuration d is unique up to structural equivalence at dom(σ),

that is, up to the renaming of any newly generated locations in the store component

of d.

2.3 Big-step substitution-based semantics

In this section, we specify a relation, c ⇓ d, where again c and d are configurations,

but this time with the intuition that d is the final outcome of many computation steps

starting from c. We say this is a big-step semantics because it relates a configuration

to the final outcome of taking many individual steps of computation. It is defined

in terms of the substitution primitive, −{{v/x}}, like the small-step relation, →, of the

previous section. Unlike the → relation, the ⇓ relation is defined inductively. We

exploit its induction principle in the proof of Proposition 38, the crux of section 5.

In the course of this paper, we use the symbol ⇓ for several big-step relations; we

often refer to such relations as evaluation relations.

Let the big-step substitution-based evaluation relation, c ⇓ d, be the relation on

configurations inductively defined by the following rules.

(Subst Value)

(v, σ) ⇓ (v, σ)

(Subst Object)

σ1 = (ι 7→ o) :: σ0 ι /∈ dom(σ0)

(o, σ0) ⇓ (ι, σ1)

(Subst Select) (where j ∈ 1..n)

(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi
i∈1..n] (bj{{ι/xj}}, σ1) ⇓ (v, σ2)

(a.`j , σ0) ⇓ (v, σ2)
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(Subst Update) (where j ∈ 1..n)

(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi
i∈1..n]

σ2 = σ1 + (ι 7→ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n])

(a.`j ⇐ ς(x)b, σ0) ⇓ (ι, σ2)

(Subst Clone)

(a, σ0) ⇓ (ι, σ1) σ1(ι) = o σ2 = (ι′ 7→ o) :: σ1 ι′ /∈ dom(σ1)

(clone(a), σ0) ⇓ (ι′, σ2)

(Subst Let)

(a, σ0) ⇓ (v, σ1) (b{{v/x}}, σ1) ⇓ (u, σ2)

(let x = a in b, σ0) ⇓ (u, σ2)

(Subst Appl)

(a, σ0) ⇓ (u, σ1) (b, σ1) ⇓ (λ(x)b′, σ2) (b′{{u/x}}, σ2) ⇓ (v, σ3)

(b(a), σ0) ⇓ (v, σ3)

We define c ↘ d to mean that c →∗ d and d is terminal. The big-step and

small-step substitution semantics are consistent with one another in the following

sense:

Theorem 1

(1) Whenever c ⇓ d, c↘ d.

(2) Whenever c↘ d, c ⇓ d.
Proof

Part (1) is by induction on the derivation of c ⇓ d. For part (2), one can prove by

induction on n that c ⇓ d whenever c→n d and d is terminal. q

It follows, by the results about the small-step relation in Proposition 2 and

Lemma 3, that the big-step relation, ⇓, is also deterministic up to structural equiv-

alence:

Proposition 4

Whenever `w c ok , c ⇓ c′ and c ⇓ c′′ imply c′ ≡w c′′.

2.4 Big-step closure-based semantics

In this section we present an operational semantics for the imperative object calculus,

based on the one in Chapter 10 of Abadi and Cardelli (1996) but with the addition

of functions. It is in the same style as the dynamic semantics of expressions in

the definition of Standard ML (Milner et al., 1990). Unlike the semantics of the

previous sections, it uses closures, rather than a substitution primitive, to link

variables to their values. Like the semantics of the previous section, it is a big-step
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semantics, an evaluation relation, denoted by ⇓. The main result of this section is a

proof of consistency between the closure-based semantics and the substitution-based

semantics of the previous section.

U,V ::= closure-based value

ι location

(S, λ(x)b) function closure

S ::= [xi 7→ Vi
i∈1..n] stack (xi distinct)

O ::= [`i = (Si, ς(xi)bi)
i∈1..n] object value

Σ ::= [ιi 7→ Oi
i∈1..n] store

C,D ::= configuration

((S, a),Σ) initial configuration

(V ,Σ) terminal configuration

A stack (of bindings) S = [xi 7→ Vi
i∈1..n] is a finite map that binds variables to

their values. A value is either a location, ι, or a closure of the form (S, λ(x)b) where

the stack S maps each variable free in b to a value. A store Σ is a finite map sending

locations to object values, which are of the form O = [`i = (Si, ς(xi)bi)
i∈1..n], where

for each i, stack Si maps each variable free in the method ς(xi)bi to its value. An

initial configuration consists of a closure (S, a), together with a store Σ that maps

locations occurring in (S, a) to object values. A terminal configuration is simply a

value paired with a store. A configuration of the form (V ,Σ) where V = (S, λ(x)b)

is both initial and terminal.

Our syntax admits stores and configurations that include dangling pointers and

unbound variables. We could make an explicit definition of those well formed stores

and configurations that do not include such errors. Instead, it is more convenient,

later on in this section, to make an implicit definition of well formed stores and

configurations in terms of an unloading relation.

We use uppercase metavariables for the entities used in our closure-based seman-

tics; they mostly correspond to lowercase metavariables ranging over corresponding

entities used in the substitution-based semantics. For example, σ is a store used in

the two substitution-based semantics, and Σ is a store used in the closure-based

semantics. We refer to both entities as stores, relying on the case of the metavariable

to indicate which kind of store is meant.

Let the big-step closure-based evaluation relation, C ⇓ D, be the relation on

configurations inductively defined by the following rules.

(Closure x)

S(x) = V

((S, x),Σ) ⇓ (V ,Σ)

(Closure Value)

((S, λ(x)b),Σ) ⇓ ((S, λ(x)b),Σ)

(Closure Select)

((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = [`i = (Si, ς(xi)bi)
i∈1..n]

j ∈ 1..n xj /∈ dom(Sj) (((xj 7→ ι) :: Sj , bj),Σ1) ⇓ (V ,Σ2)

((S, a.`j),Σ0) ⇓ (V ,Σ2)
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(Closure Update)

((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = [`i = (Si, ς(xi)bi)
i∈1..n] j ∈ 1..n

O = [`i = (Si, ς(xi)bi)
i∈1..j−1, `j = (S, ς(x)b), `i = (Si, ς(xi)bi)

i∈j+1..n]

((S, a.`j ⇐ ς(x)b),Σ0) ⇓ (ι, (ι 7→ O) + Σ1)

(Closure Object)

Σ1 = (ι 7→ [`i = (S, ς(xi)bi)
i∈1..n]) :: Σ0 ι /∈ dom(Σ0)

((S, [`i = ς(xi)bi
i∈1..n]),Σ0) ⇓ (ι,Σ1)

(Closure Clone)

((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = O Σ2 = (ι′ 7→ O) :: Σ1 ι′ /∈ dom(Σ1)

((S, clone(a)),Σ0) ⇓ (ι′,Σ2)

(Closure Let)

((S, a),Σ0) ⇓ (V ,Σ1) x /∈ dom(S) (((x 7→ V ) :: S, b),Σ1) ⇓ (U,Σ2)

((S, let x = a in b),Σ0) ⇓ (U,Σ2)

(Closure Appl)

((S, a),Σ0) ⇓ (U,Σ1) ((S, b),Σ1) ⇓ ((S ′, λ(x)b′),Σ2) x /∈ dom(S ′)
(((x 7→ U) :: S ′, b′),Σ2) ⇓ (V ,Σ3)

((S, b(a)),Σ0) ⇓ (V ,Σ3)

These rules are almost identical to the ones from Chapter 10 of Abadi and

Cardelli (1996), except for the inclusion of functions and except that locations

contain objects in our semantics but methods in theirs, as discussed earlier (and in

section 4.6).

The semantics does indeed relate initial and terminal configurations:

Lemma 5

Whenever C ⇓ D, C is an initial configuration and D is a terminal configuration.

Proof

By induction on the derivation of C ⇓ D. q

To establish a correspondence between this closure-based semantics and the

substitution-based semantics of section 2.3, we introduce several relations that unload

the entities used in the closure-based semantics by turning closures into substitutions.

Let s range over a substitution of the form [vi/xi
i∈1..n] where the xi are distinct and

each vi is closed. We use the symbol ; for each of five unloading relations.

V ; v value unloading

S ; s stack unloading

O ; o object unloading

Σ ; σ store unloading

C ; c configuration unloading
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(Value ι)

ι; ι

(Value Fun)

S ; s x /∈ dom(S) fv (b) ⊆ dom(S) ∪ {x} locs(b) = ?

(S, λ(x)b) ; λ(x)(b{{s}})
(Stack [])

[] ; []

(Stack Object)

V ; v x /∈ dom(S) S ; s

((x 7→ V ) :: S) ; (v/x :: s)

(Object Unload) (where `i distinct)

Si ; si xi /∈ dom(Si) fv (bi) ⊆ dom(Si) ∪ {xi} locs(bi) = ? ∀i ∈ 1..n

[`i = (Si, ς(xi)bi)
i∈1..n] ; [`i = ς(xi)(bi{{si}}) i∈1..n]

(Store Unload) (where Σ = [ιi 7→ Oi
i∈1..n], ιi distinct)

Oi ; oi ∀i ∈ 1..n

Σ ; [ιi 7→ oi
i∈1..n]

(Config Initial)

S ; s Σ ; σ fv (a) ⊆ dom(S) locs(a) = ?

((S, a),Σ) ; (a{{s}}, σ)

(Config Terminal)

V ; v Σ ; σ

(V ,Σ) ; (v, σ)

The unloading relations possess the following properties.

Proposition 6

(1) Whenever V ; v, v is a closed value.

(2) Whenever S ; s there are distinct variables xi and closed values vi such that

s = [vi/xi
i∈1..n] and dom(S) = {xi i∈1..n}.

(3) Whenever O ; o, object o is closed.

(4) Whenever Σ ; σ, both dom(Σ) = dom(σ) and ` σ ok .

(5) Whenever C ; c, ` c ok .

Proof

By simultaneous induction on the derivation of the unloading predicates. q

The side conditions concerning free and bound variables in (Value Fun), (Stack

Object), (Object Unload) and (Config Initial) are needed to ensure property (2). This

property allows the substitutions that arise from closures to be manipulated easily

in later proofs. All the terms manipulated by the closure-based evaluator are static

terms; the side conditions concerning locations in (Value Fun), (Object Unload) and

(Config Initial) ensure that only static terms arise in configurations.

We consider a store Σ to be well formed if and only if there is a store σ such

that Σ ; σ. Similarly, we consider a configuration C to be well formed if and only
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if there is a configuration c such that C ; c. The only occurrences of locations in

a well formed configuration are in the domain of the store and in the range of any

stacks occurring in the configuration.

The unloading relations are in fact functional:

Proposition 7

Whenever φ; ψ′ and φ; ψ′′, then ψ′ = ψ′′.

To prove Theorem 2, which asserts the consistency of the two big-step operational

semantics, we need the following two lemmas.

Lemma 8

If C ; c and C ⇓ C ′ there is c′ such that C ′ ; c′ and c ⇓ c′.
Proof

By induction on the derivation of C ⇓ C ′. q

Lemma 9

Suppose C is an initial configuration. Whenever C ; c and c ⇓ c′ there is terminal

C ′ such that C ′ ; c′ and C ⇓ C ′.
Proof

By induction on the derivation of c ⇓ c′. q

Theorem 2

Suppose C and C ′ are initial and terminal configurations respectively, and that

C ; c and C ′ ; c′. Then C ⇓ C ′ if and only if c ⇓ c′.
Proof

Suppose C ⇓ C ′. By Lemma 8 there is c′′ with C ′ ; c′′ and c ⇓ c′′. By Proposition 7,

c′ = c′′. On the other hand, suppose c ⇓ c′. By Lemma 9, there is a terminal

configuration C ′′ such that C ′′ ; c′ and C ⇓ C ′′. By Proposition 7, C ′ = C ′′. q

2.5 Discussion and related work

A big-step closure-based semantics, as in Section 2.4 or, say, the definition of Stan-

dard ML, is attractive as a language definition because it directly yields an efficient

algorithm for interpreting the calculus. For instance, Cardelli (1995) implements

Obliq in this way. On the other hand, substitution-based semantics are simpler to

work with when reasoning about program equivalence; we apply the substitution-

based semantics of sections 2.2 and 2.3 in sections 4 and 5 respectively. In fact,

either substitution-based semantics would do alone; we include both for the sake of

completeness.

We do not present a small-step closure-based semantics for the imperative object

calculus; this would amount to an SECD machine (Landin, 1964) for the calculus.

The next section, however, contains a small-step closure-based semantics for an

object-oriented abstract machine to which we compile the object calculus.

The technique used to prove Theorem 1, the consistency of the two substitution-

based semantics is well-known. An analogous result is proved by Plotkin (1975), who
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also proves the consistency with the SECD machine of what amounts to a big-step

substitution-based operational semantics. On the other hand, the proof technique

of Theorem 2, the consistency of the substitution-based and closure-based big-step

semantics, appears to be new, though the idea of unloading a closure to a term

goes back to Plotkin (1975). There is a proof by Felleisen and Friedman (1989) of

the equivalence of substitution-based and closure-based semantics for an imperative

λ-calculus, but they work with small-step rather than big-step semantics.

3 Compilation to an abstract machine

In this section we present an abstract machine, based on the ZAM (Leroy, 1990), for

the extended calculus of imperative objects, a compiler sending the object calculus

to the instruction set of the abstract machine and a correctness result, Theorem 3.

The proof depends on an unloading procedure which converts configurations of

the abstract machine back into configurations of the object calculus from section 2.

The unloading procedure depends on a modified abstract machine whose argument

stack and environment contain object calculus terms as well as locations.

3.1 The abstract machine

The machine defined here is based on Leroy’s ZAM. The ZAM was designed for

efficient evaluation of curried functions. The machine configuration consists of a state

paired with a store. A store is a finite map from locations to stored objects. A state is

a quadruple, (ops , AS, E, RS), consisting of a list of instructions (or operations), ops ,

an argument stack, AS , an environment, E, and a return stack, RS . The instruction

list is obtained from compiling some source term. Each item on the argument stack

is either a value, V , or a mark, ♦. A value is either the location, ι, of an object

in the store, or a closure, (ops , E), which is an operation list ops paired with an

environment E. A mark is a special tag introduced by Leroy for efficient evaluation

of functions. An environment is a list of values that represents the runtime values

assumed by variables free in the original source term. The return stack is a list of

frames representing the currently active method invocations and function calls. A

frame is simply a closure.

To call a function a mark is pushed onto the stack, the arguments are evaluated

and pushed onto the stack and the code for the function body is called. The body

of the function can read in (curried) arguments off the stack, and discovers when

it has consumed all its arguments when it finds the mark. If the function returns

(on executing a return instruction) and there are more arguments to consume, the

result of the function (which must itself be a function if execution is to proceed) is

called, and will consume the extra arguments that are available.

The instruction set of our abstract machine consists of the following operations.

op ::= operation

access i variable access

object[(`i, ops i)
i∈1..n] object construction
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select ` method invocation

update(`, ops) method update

let ops let

cur ops build function closure

apply apply function

grab get curried argument

pushmark push mark onto stack

return return from function

ops ::= [] | op :: ops

We describe the workings of our machine informally as follows:

• The instruction access i fetches the ith value in the current environment, and

pushes it onto the argument stack. It is used for looking up the value of a

variable.

• The instruction object[(`i, ops i)
i∈1..n] creates a new object in the store, and

pushes the location of the newly created object onto the argument stack. The

`i are method labels and the ops i are the corresponding compiled methods.

• The instruction select` pops the location of an object off the argument stack,

and loads from the object the method closure (ops , E) labelled `. The current

operation list and environment are saved by pushing them as a pair onto the

return stack, and then are replaced by the new operation list ops and the new

environment E.

• The instruction update(`, ops) pops the location of an object off the argument

stack, and updates the method closure labelled ` in that object with the closure

(ops , E), where E is the current environment.

• The instruction letops pops a value off the argument stack, and adds it to the

environment. The instructions ops are then executed in the new environment.

A frame built from the remainder of the operation list and the current envi-

ronment is pushed onto the return stack, to be executed once the instructions

ops have been completed.

• The instruction cur ops pushes a function closure onto the argument stack.

The closure is built by pairing the compiled function body, ops , with the

current environment.

• The instruction apply pops a function closure and value off the argument

stack. The current operation list and environment are pushed as a frame onto

the return stack, and the closure is executed with the value (the argument to

the function) added to its environment.

• The instruction pushmark pushes a mark, ♦, onto the argument stack. This

instruction is used to delimit a series of curried arguments to a function.

• The instruction grab examines the top of the argument stack. If the top of

the argument stack is a mark, ♦, the grab instruction builds the current state

into a closure and returns to the function caller by popping a frame off the

return stack. Otherwise, if the top of the argument stack is a value, the value

is added to the environment and the execution of the function proceeds. The

grab instruction starts the compiled form of a nested function. For example,
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in the term λ(x)λ(y)a, the compilation of the λ(y)a term will start with a grab

instruction.

• The instruction return can be considered a dual to grab. When return is

executed (at the end of a function call), the value the function is returning is

on the top of the argument stack. If the return value is a function, and this

function is being applied directly to an argument, the value will be second on

the argument stack. In this case, return will perform the function application

without returning to the original function caller. On the other hand, if the

return value is not being applied to an argument, a mark, ♦, will be second

on the argument stack. In this case, the mark is removed and the function

caller is popped back off the return stack.

We now give a formal definition of the abstract machine. An abstract machine

configuration, C or D, is a pair (P ,Σ), where P is a state and Σ is a store, given as

follows:

P ,Q ::= (ops , E, AS, RS) machine state

U,V ::= ι | fun(ops , E) value

U♦, V♦ ::= U | ♦ value or mark

E ::= [Ui
i∈1..n] environment

AS ::= [U♦i i∈1..n] argument stack

RS ::= [Fi
i∈1..n] return stack

F ::= (ops , E) closure or frame

O ::= [(`i, Fi)
i∈1..n] stored object (`i distinct)

Σ ::= [ιi 7→ Oi
i∈1..n] store (ιi distinct)

In a configuration ((ops , E, AS, RS),Σ), ops is the current program. Environment

E contains variable bindings. Argument stack AS contains results of evaluating

terms and control flow information in the form of marks, ♦. Return stack RS holds

return addresses during function calls and method invocations. Store Σ associates

locations with objects.

Two transition relations, given next, represent execution of the abstract machine.

A β-transition, P
β−→ Q, corresponds directly to a reduction in the object calculus.

A τ-transition, P
τ−→ Q, is an internal step of the abstract machine, for example

a method return or a variable lookup. Lemma 18 relates reductions of the object

calculus and transitions of the abstract machine.

(τ Return) (([], E, AS, (ops , E ′) :: RS),Σ)
τ−→ ((ops , E ′, AS, RS),Σ).

(τ Function Return) (([return], E,U ::♦ :: AS, (ops , E ′) :: RS),Σ)
τ−→

((ops , E ′, U :: AS, RS),Σ).

(β Function Return) (([return], E, fun(ops , E ′) ::U :: AS, RS),Σ)
β−→

((ops , U :: E ′, AS, RS),Σ).

(τ Grab) ((grab :: ops , E,♦ :: AS, (ops ′, E ′) :: RS),Σ)
τ−→

((ops ′, E ′, fun(ops , E) :: AS, RS),Σ).

(β Grab) ((grab :: ops , E,U :: AS, RS),Σ)
β−→ ((ops , U :: E,AS, RS),Σ).

(τ Access) ((access j :: ops , E, AS, RS),Σ)
τ−→ ((ops , E,Uj :: AS, RS),Σ)

if E = [Ui
i∈1..n] and j ∈ 1..n.
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(τ Pushmark)

((pushmark :: ops , E, AS, RS),Σ)
τ−→ ((ops , E,♦ :: AS, RS),Σ).

(τ Cur) ((cur ops :: ops ′, E, AS, RS),Σ)
τ−→

((ops ′, E, fun(ops , E) :: AS, RS),Σ).

(β Clone) ((clone :: ops , E, ι :: AS, RS),Σ)
β−→ ((ops , E, ι′ :: AS, RS),Σ′)

if Σ(ι) = O and Σ′ = (ι′ 7→ O) :: Σ and ι′ /∈ dom(Σ).

(β Object) ((object[(`i, ops i)
i∈1..n] :: ops , E, AS, RS),Σ)

β−→
((ops , E, ι :: AS, RS), (ι 7→ [(`i(ops i, E)) i∈1..n]) :: Σ) if ι /∈ dom(Σ).

(β Select) ((select `j :: ops , E, ι :: AS, RS),Σ)
β−→

((ops j , ι :: Ej, AS, (ops , E) :: RS),Σ)

if Σ(ι) = [(`i, (ops i, Ei))
i∈1..n] and j ∈ 1..n.

(β Update)

((update(`, ops ′) :: ops , E, ι :: AS, RS),Σ)
β−→ ((ops , E, ι :: AS, RS),Σ′)

if Σ(ι) = O@[(`, F)]@O′ and Σ′ = Σ + (ι 7→ O@[(`, (ops ′, E))]@O′).

(β Let) ((let ops ′ :: ops , E,U :: AS, RS),Σ)
β−→

((ops ′, U :: E,AS, (ops , E) :: RS),Σ).

(β Apply) ((apply :: ops , E, fun(ops ′, E ′) ::U :: AS, RS),Σ)
β−→

((ops ′, U :: E ′, AS, (ops , E) :: RS),Σ).

Let C
βτ−→ D if C

β−→ D or C
τ−→ D.

We now describe compilation of the object calculus to the instruction set of

our abstract machine. We use the notation grabn for the list [grab, grab, . . . , grab]

consisting of n grab instructions, and the notation λ(x1x2 . . . xn)a for the term

λ(x1)λ(x2) . . . λ(xn)a when n > 0 and a when n = 0. We represent compilation of

a term a to an operation list ops by the judgment xs ` a ⇒ ops , defined by the

following rules. The variable list xs includes all the free variables of a; it is needed

to compute the de Bruijn index of each variable occurring in a.

(Trans Var) [xi
i∈1..n] ` xj ⇒ [access j] if j ∈ 1..n.

(Trans Object) xs ` [`i = ς(yi)ai
i∈1..n]⇒ [object[(`i, ops i)

i∈1..n]]

if yi :: xs ` ai ⇒ ops i and yi /∈ xs for all i ∈ 1..n.

(Trans Select) xs ` a.`⇒ ops@[select `] if xs ` a⇒ ops .

(Trans Update) xs ` (a.`⇐ ς(x)a′)⇒ ops@[update(`, ops ′)]
if xs ` a⇒ ops and x :: xs ` a′ ⇒ ops ′ and x /∈ xs.

(Trans Clone) xs ` clone(a)⇒ ops@[clone] if xs ` a⇒ ops .

(Trans Let) xs ` let x = a in a′ ⇒ ops@[let ops ′]
if xs ` a⇒ ops and x :: xs ` a′ ⇒ ops ′ and x /∈ xs.

(Trans Apply) xs ` (a1a2 . . . an)⇒ pushmark :: opsn @ opsn−1 @ . . .@ ops1@[apply]

if xs ` ai ⇒ ops i for all i ∈ 1..n and a1 is not a function application.

(Trans Function) xs ` λ(xn+1xn . . . x1)a⇒ [cur(grabn @ ops @ [return])]

if xi /∈ xs for all i ∈ 1..n+ 1, all the xi are distinct, a is not a λ abstraction and

[xi
i∈1..n+1]@xs ` a⇒ ops .
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3.2 Examples of compilation and execution

We illustrate compilation and execution via three examples.

Example 1: Method invocation

As a first example, let the term a = pair([], []).fst , (pair was defined in section 2.1).

We have [] ` a⇒ ops , where the operation list ops is given by:

ops = [object[(fst , ops1), (snd , ops2), (swap, ops3)], select fst]

ops1 = [object[]]

ops2 = [object[]]

ops3 = [access 1, select fst , let ops4]

ops4 = [access 2, select snd , let ops5]

ops5 = [access 3, update(fst , [access 2]), update(snd , [access 3])]

If we load ops into an empty machine configuration we get the following compu-

tation.

((ops , [], [], []), [])
β−→ (([select fst], [], [ι1], []),Σ1) by (β Object)

where Σ1 = [ι1 7→ [(fst , ops1), (snd , ops2), (swap, ops3)]]
β−→ ((ops1, [ι1], [], [([], [])]),Σ1) by (β Select)
β−→ (([], [ι1], [ι2], [([], [])]),Σ2) by (β Object)

where Σ2 = (ι2 7→ []) :: Σ1
τ−→ (([], [], [ι2], []),Σ2) by (τ Return)

When the abstract machine terminates, the answer to the computation can be

found as the single item on the argument stack. In this case, the terminal configur-

ation (([], [], [ι2], []),Σ2). The location ι2 returned on the argument stack references

an empty object in the store.

Example 2: ZAM-style function call

As a second example, let the term a = (λ(x)x)(λ(x)[])[]. We have [] ` a⇒ ops , where

the operation list ops is given by:

ops = [pushmark, object[], cur ops2, cur ops1, apply]

ops1 = [access 1, return]

ops2 = [object[], return]

If we load ops into an empty machine configuration we get the following compu-

tation.
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((ops , [], [], []), [])
τ−→ (([object[], cur ops2, cur ops1, apply], [], [♦], []), [])

by (τ Pushmark)
τ−→ (([cur ops2, cur ops1, apply], [], [ι1,♦], []),Σ1

def
= [ι1 7→ []])

by (β Object)
τ−→ (([cur ops1, apply], [], [fun(ops2, []), ι1,♦], []),Σ1)

by (τ Cur)
τ−→ (([apply], [], [fun(ops1, []), fun(ops2, []), ι1,♦], []),Σ1)

by (τ Cur)
β−→ ((ops1, [fun(ops2, [])], [ι1,♦], [([], [])]),Σ1) by (β Apply)
τ−→ (([return], [fun(ops2, [])], [fun(ops2, []), ι1,♦], [([], [])]),Σ1)

by (τ Access)
β−→ ((ops2, [ι1], [♦], [([], [])]),Σ1) by (β Function Return)
τ−→ (([return], [ι1], [ι2,♦], [([], [])]),Σ2

def
= (ι2 7→ []) :: Σ1)

by (β Object)
τ−→ (([], [], [ι2], []),Σ2) by (τ Function Return)

We see in this example the mechanism for function application, and in particular

how, like the ZAM, our abstract machine uses a mark on the stack to delimit a

series of arguments to a function.

The function call begins with the (τ Pushmark) τ-transition. The abstract machine

evaluates applications in a right-to-left fashion, pushing the results of evaluating

the arguments onto the argument stack. The closure representing the function to

be called is pushed onto the argument stack, and the (β Apply) β-transition starts

the body of the function λ(x)x applied to the first argument and pushes an entry

on the return stack. During the (β Function Return) β-transition, which does not

touch the return stack, the outcome of this application gets applied to the second

curried argument. The (τ Function Return) τ-transition completes the application

by popping the entry off the return stack.

In the terminal configuration, (([], [], [ι2], []),Σ2) we have a location ι2 on the

argument stack. At location ι2 in the store Σ2 is an empty object []. This evaluation

produces some garbage in the store, at location ι1.

Example 3: ZAM-style Curried function call

As a third example, let the term a = (λ(xyz)x)[][]. We have [] ` a⇒ ops , where the

operation list ops is given by:

ops = [pushmark, object[], object[], cur(ops1), apply]

ops1 = [grab, grab, access 3, return]

If we load ops into an empty machine configuration we get the following compu-

tation.
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((ops , [], [], []), [])
τ−→ (([object[], object[], cur(ops1), apply], [], [♦], []), [])

by (τ Pushmark)
β−→ (([object[], cur(ops1), apply], [], [ι1,♦], []),Σ1) by (β Object)

where Σ1 = [ι1 7→ []]
β−→ (([cur(ops1), apply], [], [ι2, ι1,♦], []),Σ2) by (β Object)

where Σ2 = [ι1 7→ [], ι2 7→ []]
τ−→ (([apply], [], [fun(ops1, []), ι2, ι1,♦], []),Σ2) by (τ Cur)
β−→ ((ops1, [ι2], [ι1,♦], [([], [])]),Σ2) by (β Apply)
β−→ (([grab, access 3, return], [ι1, ι2], [♦], [([], [])]),Σ2) by (β Grab)
τ−→ (([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2) by (τ Grab)

Consider the transitions corresponding to the application of the function λ(xyz)x

to its two curried arguments [] and []. The curried call begins with the (τ Pushmark)

τ-transition, which pushes a mark, ♦, onto the argument stack. After the two

arguments have been evaluated, the (β Apply) β-transition starts the body of the

function λ(xyz)x applied to the first curried argument, [], and pushes an entry on

the return stack. The (β Grab) β-transition applies the curried function λ(yz)x to

the second argument, []. The second grab instruction finds a mark on the stack

indicating there are no more arguments to be consumed, so causes a (τ Grab)

τ-transition, which builds a closure and returns, popping an entry off the return

stack.

The terminal configuration is:

(([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2)

We will show formally in Section 3.4 that the function closure returned on the

argument stack, fun([access 3, return], [ι1, ι2]), represents the function λ(z)ι2.

3.3 The unloading machine

To prove the abstract machine and compiler correct, we need to convert back from

a machine state to an object calculus term. To do so, we load the state into a

modified abstract machine, the unloading machine, and when this unloading machine

terminates, its argument stack contains a single term that is a decompiled version

of the original state.

The unloading machine is like the abstract machine, except that instead of execu-

ting each instruction, it reconstructs the corresponding source term. Since no store

lookups or updates are performed, the unloading machine does not act on a store.

An unloading machine state is like an abstract machine state, except that values are

generalised to arbitrary terms. Let an unloading machine state, p or q, be a quadruple

(ops , e, as, RS) where e and as are defined as follows:

e ::= [ai
i∈1..n] unloading environment

a♦, b♦ ::= a | ♦ term or mark

as ::= [a♦i i∈1..n] unloading stack
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Next we make a simultaneous inductive definition of a u-transition relation

p
u−→ p′, and three unloading relations: (ops , e) ; (x)b, that unloads a method

closure to a method, fun(ops , e) ; λ(x)b, that unloads a function closure to a

λ-abstraction and [U♦i i∈1..n] ; [a♦i i∈1..n], that unloads a list.

(u Access) (access j :: ops ′, e, as, RS)
u−→ (ops ′, e, aj :: as, RS)

if j ∈ 1..n and e = [ai
i∈1..n].

(u Object) (object[(`i, ops i)
i∈1..n] :: ops ′, e, as, RS)

u−→
(ops ′, e, [`i = ς(xi)bi

i∈1..n] :: as, RS) if (ops i, e) ; (xi)bi for each i ∈ 1..n.

(u Clone) (clone :: ops ′, e, a :: as, RS)
u−→ (ops ′, e, (clone(a)) :: as, RS).

(u Select) (select ` :: ops ′, e, a :: as, RS)
u−→ (ops ′, e, (a.`) :: as, RS).

(u Update) (update(`, ops) :: ops ′, e, a :: as, RS)
u−→

(ops ′, e, (a.`⇐ ς(x)b) :: as, RS) if (ops , e) ; (x)b.

(u Let) (let(ops ′) :: ops ′′, e, a :: as, RS)
u−→ (ops ′′, e, (let x = a in b) :: as, RS)

if (ops ′, e) ; (x)b.

(u Return) ([], e, as, (ops , E) :: RS)
u−→ (ops , e′, as, RS)

if E ; e′.
(u Cur) (cur ops :: ops ′, e, as, RS)

u−→ (ops ′, e, (λ(x)a) :: as, RS)

if fun(ops , e) ; λ(x)a.

(u Function Return) ([return], e, [ai
i∈1..n]@[♦]@as, RS)

u−→
([], e, (a1(a2) · · · (an)) :: as, RS).

(u Grab) (grab :: ops , e, as, RS)
u−→ ([return], e, (λ(x)a) :: as, RS)

if fun(ops , e) ; λ(x)a.

(u Apply) (apply :: ops , e, [ai
i∈1..n]@[♦]@as, RS)

u−→
(ops , e, (a1a2 . . . an) :: as, RS).

(u Pushmark) (pushmark :: ops , e, as, RS)
u−→ (ops , e,♦ :: as, RS).

(Unload Abstraction) (ops , e) ; (x)b

if x /∈ fv (e) and (ops , x :: e, [], [])
u−→∗ ([], e′, [b], []).

(Unload Closure) fun(ops , e) ; λ(x)b

if x /∈ fv (e) and (ops , x :: e, [♦], [])
u−→∗ ([], e′, [b], []).

(Unload List Empty) [] ; [].

(Unload List Loc) ι :: [U♦i i∈1..n] ; ι :: [a♦i i∈1..n]

if [U♦i i∈1..n] ; [a♦i i∈1..n].

(Unload List Closure) fun(ops , E) :: [U♦i i∈1..n] ; (λ(x)a) :: [a♦i i∈1..n]

if [U♦i i∈1..n] ; [a♦i i∈1..n], E ; e and fun(ops , e) ; λ(x)a.

(Unload List Mark) ♦ :: [U♦i i∈1..n] ; ♦ :: [a♦i i∈1..n]

if [U♦i i∈1..n] ; [a♦i i∈1..n].

We complete the machine with the following unloading relations: O ; o (on

objects), Σ ; σ (on stores) and C ; c (on configurations).

(Unload Object) [(`i, (ops i, Ei))
i∈1..n] ; [`i = ς(xi)bi

i∈1..n]

if Ei ; ei and (ops i, ei) ; (xi)bi for all i ∈ 1..n.

(Unload Store) [ιi 7→ Oi
i∈1..n] ; [ιi 7→ oi

i∈1..n] if Oi ; oi for all i ∈ 1..n.

(Unload Config) ((ops , E, AS, RS),Σ) ; (a, σ)

if Σ ; σ, E ; e, AS ; as and (ops , e, as, RS)
u−→∗ ([], e′, [a], []).

https://doi.org/10.1017/S0956796899003482 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003482


394 A. D. Gordon, P. D. Hankin and S. B. Lassen

Let p ; a if and only if there is e such that p
u−→∗ ([], e, [a], []). We say P ↓ p if

P = (ops , E, AS, RS), p = (ops , e, as, RS), E ; e and AS ; as. Therefore (P ,Σ) ;

(a, σ) if and only if P ↓ p, p; a and Σ ; σ.

Two important facts about the unloading relation ; are that no u transition can

prevent unloading, and that the unloading relation ; is deterministic:

Lemma 10

Suppose p
u−→ q. Then for all a, p; a if and only if q ; a.

Proof

By determinacy of
u−→. q

Proposition 11

Whenever p; a and p; a′, a = a′.

3.4 Examples of unloading

To clarify the workings of the unloading machine, we present some examples. We

unload some of the abstract machine states of the examples in section 3.2.

Example 1: Unloading a compiled term

Recall from Example 3 of section 3.2 the configuration ((ops , [], [], []), []), where

ops = [pushmark, object[], object[], cur(ops1), apply]

ops1 = [grab, grab, access 3, return]

We know already that [] ` (λ(xyz)x)[][]⇒ ops .

We aim to prove ((ops , [], [], []), []) ; ((λ(xyz)x)[][], []). We build up to this result

in four steps. The first step corresponds to unloading the body of the function

λ(xyz)x and each subsequent step will build a function whose body is the result of

the previous step. Bound names are lost in translation, but since we identify terms

up to alpha conversion, we choose variables in this example so that the unloaded

term is the same as the original term.

(1) We compute:

([access 3, return], [z, y, x], [♦], [])
u−→ ([return], [z, y, x], [x,♦], []) by (u Access)
u−→ ([], [z, y, x], [x], []) by (u Function Return)

By rule (Unload Closure), we get:

fun([access 3, return], [y, x]) ; λ(z)x

(2) Hence, we compute:

([grab, access 3, return], [y, x], [♦], [])
u−→ ([return], [y, x], [λ(z)x,♦], []) by (u Grab)
u−→ ([], [y, x], [λ(z)x], []) by (u Function Return)
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By (Unload Closure), we get:

fun([grab, access 3, return], [x]) ; λ(yz)x

(3) Hence, we compute:

(ops1, [x], [♦], [])
u−→ ([return], [x], [(λ(yz)x),♦], []) by (u Grab)
u−→ ([], [x], [λ(yz)x], []) by (u Function Return)

Again by (Unload Closure), we get:

fun([grab, grab, access 3, return], []) ; λ(xyz)x

(4) Below, the result of step (3) is used in the (u Cur) step:

(ops , [], [], [])
u−→ ([object[], object[], cur(ops1), apply], [], [♦], [])

by (u Pushmark)
u−→ ([object[], cur(ops1), apply], [], [[],♦], []) by (u Object)
u−→ ([cur(ops1), apply], [], [[], [],♦], []) by (u Object)
u−→ ([apply], [], [(λ(xyz)x), [], [],♦], []) by (u Cur)
u−→ ([], [], [(λ(xyz)x)[][]], []) by (u Apply)

The terminal configuration of the unloading machine has our original expression

(λ(xyz)x)[][] on the stack. Hence by (Unload Config) we have ((ops , [], [], []), []) ;

((λ(xyz)x)[][], []) as desired.

Example 2: Unloading a terminal configuration

For the next example, we unload the terminal configuration of Example 3 of

section 3.2, (([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2), where Σ2 = [ι1 7→ [], ι2 7→
[]].

From rule (Unload Store) we have Σ2 ; σ2 = [ι1 7→ [], ι2 7→ []]. To unload the

closure fun([access 3, return], [ι1, ι2]), we calculate:

([access 3, return], [z, ι1, ι2], [♦], [])
u−→ ([return], [z, ι1, ι2], [ι2,♦], []) by (u Access)
u−→ ([], [z, ι1, ι2], [ι2], []) by (u Function Return)

By rule (Unload Closure) we get:

fun([access 3, return], [ι1, ι2]) ; λ(z)ι2

From rules (Unload List Closure) and (Unload List Empty) we get that the argument

stack unloads as follows:

[fun([access 3, return], [ι1, ι2])] ; [λ(z)ι2]

Finally, by (Unload Config) we deduce:

(([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2) ; (λ(z)ι2, σ2)
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Combining the working from this section and section 3.2, we have shown that

unloading the outcome of compiling and executing the term (λ(xyz)x)[][], yields the

configuration (λ(z)ι2, [ι1 7→ [], ι2 7→ []]).

Example 3: Unloading an intermediate configuration

For a final example, we consider an intermediate configuration obtained from the

evaluation of (λ(x)x.`)[` = ς(s)λ(y)y][] in the abstract machine. The configuration

we will unload is:

(([select `, return], [ι2], [ι2, ι1,♦], [([], [])]),Σ2)

where

Σ2 = [ι1 7→ [], ι2 7→ [(`, ([cur([access 1, return])], []))]]

We first unload the store:

• We compute:

([access 1, return], [y, s], [♦], [])
u−→ ([return], [y, s], [y,♦], []) by (u Access)
u−→ ([], [y, s], [y], []) by (u Function Return)

So by rule (Unload Closure), fun([access 1, return], [s]) ; λ(y)y.

• Hence, we get:

([cur([access 1, return])], [s], [], [])
u−→ ([], [s], [λ(y)y], [])

By (Unload Abstraction) we get:

([cur([access 1, return])], []) ; (s)λ(y)y

• Hence by rule (Unload Store):

Σ2 ; [ι1 7→ [], ι2 7→ [` = ς(s)λ(y)y]]

To unload the other component of the configuration, we compute:

([select `, return], [ι2], [ι2, ι1,♦], [([], [])])
u−→ ([return], [ι2], [ι2.`, ι1,♦], [([], [])]) by (u Select)
u−→ ([], [ι2], [(ι2.`)ι1], [([], [])]) by (u Function Return)
u−→ ([], [], [(ι2.`)ι1], []) by (u Return)

By rule (Unload Config) we deduce:

(([select `, return], [ι2], [ι2, ι1,♦], [([], [])]),Σ2)

; ((ι2.`)ι1, [ι1 7→ [], ι2 7→ [` = ς(s)λ(y)y]])

3.5 Correctness of the abstract machine

We first show that unloading is an inverse to compilation:
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Proposition 12

Whenever [] ` a⇒ ops then ((ops , [], [], []), []) ; (a, []).

Proof

We prove a more general fact: if xi
i∈1..n ` a⇒ ops then for all bi

i∈1..n

(ops , [bi
i∈1..n], [], [])

u−→∗ ([], [bi
i∈1..n], [a{{bi/xii∈1..n}}], [])

by induction on the derivation of xi
i∈1..n ` a⇒ ops . q

The next lemma asserts that the unloading machine preserves reduction contexts

under certain conditions. We use u♦ and v♦ to stand for terms which are either

locations, functions or marks (♦).

Lemma 13

If (ops , e, as, RS)
u−→ (ops ′, e′, as′, RS ′) and as = [a♦i i∈1..n,R, u♦j i∈1..m] where • /∈ fv (e)

then • /∈ fv (e′) and as′ = [b♦i i∈1..n′ ,R′, v♦j j∈1..m′] for some R′, b♦i and v♦j (with

i ∈ 1..n′, j ∈ 1..m′).

The unloading machine also preserves substitutions:

Lemma 14

If p
u−→ q then p{{a/x}} u−→ q{{a/x}}.

The next lemma shows that the unloading machine is independent of the terms

in its environment and on its stack. Define the shape of (ops , e, as′, RS) to be the

quadruple (ops , |e|, |as|, RS), and write shape p for the shape of p. We say two stacks

[a♦i i∈1..n] and [b♦i i∈1..m] are mark-equivalent if and only if n = m and a♦j = ♦ if and

only if b♦j = ♦. We say p and q are shape-mark-equivalent if shape p = shape q and

the argument stack of p is mark-equivalent to that of q.

Lemma 15

If p
u−→ p′ and p is shape-mark-equivalent to q then there is a q′ with q

u−→ q′ and

p′ is shape-mark-equivalent to q′.

Proof

By induction on the derivation of p
u−→ p′. q

A corollary of Lemma 15 is the following:

Lemma 16

If p ; a then for all q with p and q shape-mark-equivalent, there is an a′ with

q ; a′.

We now show that the head of the argument stack corresponds to the part of the

source expression which is currently evaluating.

Proposition 17

Whenever (ops , e, a :: [u♦i i∈1..n], RS) ; b, where • /∈ fv (e), there is a reduction context,

R, such that (ops , e, a′ :: [u♦i i∈1..n], RS) ; R[a′] for any a′.
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Proof

If (ops , e, a :: [u♦i i∈1..n], RS) ; b there is a b′ such that (ops , e, • :: [u♦i i∈1..n], RS) ; b′

(by Lemma 16). This means (ops , e, • :: [u♦i i∈1..n], RS)
u−→k ([], e′, [b′], []) for some k.

Since • is a reduction context, applying Lemma 13 k times tells us that b′ = R
for some R. Since • /∈ fv (e), Lemma 14 implies (ops , e, a′ :: [u♦i i∈1..n], RS) ; R[a′]
(because a′ = •{{a′/•}} and R[a′] = R{{a′/•}}). q

The first main lemma asserts that β transitions of the abstract machine correspond

to reductions in our extended object calculus, and that τ transitions are not reflected

in the source level reductions:

Lemma 18

(1) If C ; c and C
τ−→ D then D ; c.

(2) If C ; c and C
β−→ D then there is a d such that D ; d and c→ d.

Proof

(1) The proof for each of the τ transitions is similar. We detail only the (τ Access)

case.

(τ Access) Here C = (P ,Σ), where P = (access j :: ops , E, AS, RS), E = [Ui
i∈1..n],

j ∈ 1..n, C ; c = (a, σ) and C
τ−→ D = (Q,Σ) where Q = (ops , E,Uj :: AS, RS).

Now, P ↓ p = (access j :: ops , e, as, RS) where E ; e, e = [ai
i∈1..n], Ui ; ai and

AS ; as. Similarly Q ↓ q = (ops , e, aj :: as, RS). Since C ; (a, σ), and p is unique,

p ; a (from the definition of (Unload Config)). By (u Access), p
u−→ q, so by

Lemma 10 and p; a we have q ; a. So D ; (a, σ) as required.

(2) We examine each rule that may derive C
β−→ D. We detail one case for illustration.

(β Clone) Here C = (P ,Σ), where P = (clone :: ops , E, ι ::AS, RS), and C
β−→ D =

(Q,Σ′) where Q = (ops , E, ι′ :: AS, RS), Σ′ = (ι′ 7→ Σ(ι)) :: Σ and ι′ /∈ dom(Σ).

We have C ; c = (a, σ) also, where P ↓ p = (clone :: ops , e, ι :: as, RS), E ; e,

AS ; as, p ; a and Σ ; σ. By (u Clone), p
u−→ (ops , e, (clone(ι)) :: as, RS).

Hence by Lemma 10, (ops , e, (clone(ι)) :: as, RS) ; a. Therefore by Proposition 17,

there is a reduction context R such that for all a′, (ops , e, a′ :: as, RS) ; R[a′];
by Proposition 11, a = R[clone(ι)] and q = (ops , e, ι′ :: as, RS) ; R[ι′]. Let

σ′ = (ι′ 7→ σ(ι)) :: σ so that Σ′ ; σ′ by (Unload Store). Let d = (R[ι′], σ′).
Q ↓ q ; R[ι′], so D = (Q,Σ′) ; d. Finally, we have c→ d by (Red Clone). q

To prove that the abstract machine simulates the object calculus semantics, we

first need to prove some technical lemmas. We show that the number of τ transitions

is bounded for a given state, and that if the abstract machine is stuck then so is its

unloaded source term.

Lemma 19

For all configurations C there is a D with C
τ−→∗ D and not D

τ−→.
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Proof

Every
τ−→ step either decreases |RS | or keeps RS constant, and consumes an

instruction.

The function f : (ops , E, AS, RS) 7→ (|RS |, |ops |) from states to N×N is such that

if C
τ−→ D then f(D) < f(C) in the lexicographic ordering onN×N, namely (x, y) <

(x′, y′) if x < x′ or x = x′ and y < y′. An infinite chain C1
τ−→ C2

τ−→ ... would

give an infinite descending chain in N×N, a contradiction since the lexicographic

ordering is a well-ordering. q

Lemma 20

If C ; c and there is no D with C
βτ−→ D then there is no d with c→ d.

Proof

Let C = (P ,Σ), where P = (ops , E, AS, RS). Now, C ; c means P ↓ p, Σ ; σ,

p
u−→∗ ([], e′, [a], []) (for some e′), and c = (a, σ).

For a contradiction, suppose that there is no D such that C
βτ−→ D, but there is

d such that c → d. Given that p
u−→∗ ([], e′, [a], []), either (1) p = ([], e′, [a], []) or (2)

there is p′ such that p
u−→ p′ and p′ u−→∗ ([], e′, [a], []).

In case (1), a must either be a function or a location, from the definition of

AS ; as which forms part of the P ↓ p judgment. Then c = (a, σ) is a value, so

there is no d with c→ d.

In case (2), we consider two of the rules capable of deriving p
u−→ p′. The cases

for the other rules are similar.

(u Access) Here p = (access j :: ops , e, as, RS) and p′ = (ops , e, uj :: as, RS) where

e = [ui
i∈1..n] and j ∈ 1..n. Now, P ↓ p means P = (access j ::ops , [Ui

i∈1..n], AS, RS),

Ui ; ui for i ∈ 1..n and AS ; as. But then C = (P ,Σ)
τ−→ ((ops , [Ui

i∈1..n],

Uj :: AS, RS),Σ) by rule (τ Access) contradicting the non-existence of D with

C
βτ−→ D.

(u Select) Here p = (select ` :: ops , e, u :: as′, RS) and p′ = (ops , e, (u.`) :: as′, RS).

Now, p′ →∗ ([], e′, [a], []) means p′ ; a. From P ↓ p, we deduce E ; e. We note

that none of the unloading rules introduces a free variable without binding it, so

fv (e) = ?; in particular this implies • /∈ fv (e). Hence we may apply Proposition 17

to p′ = (ops , e, (u.`) :: as′, RS) to infer the existence of a reduction context R such

that p′ ; R[u.`]. Lemma 10 with p′ ; R[u.`] and p′ ; a implies a = R[u.`]

and c = (R[u.`], σ). If c → d then the only rule that can apply is (Red Select);

hence u = ι and σ(ι) = o@[` = ς(x)b]@o′. From P ↓ p we derive AS ; ι :: as′
and E ; e. From AS ; ι :: as′ and (Unload List Loc) we see that AS = ι :: AS ′
where AS ′ ; as′. From Σ ; σ, σ(ι) = o@[` = ς(x)b]@o′, (Unload Store) and

(Unload Object) we deduce Σ(ι) = O@[` = (ops ′, E ′′)]@O′ where E ′′ ; e′′
and (ops ′, e′′) ; (x)b. Hence C = ((select ` :: ops , E, ι :: AS ′, RS),Σ). Finally,

by rule (β Select), we may derive C
β−→ ((ops ′, ι :: E ′′, AS ′, RS),Σ) and hence a

contradiction. q

We are now in a position to show the second main lemma. It asserts that the abstract

machine semantics simulates the semantics of the object calculus:
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Lemma 21

If C ; c and c→ d then there are D, D′ with C
τ−→∗ D′, D′ β−→ D and D ; d.

Proof

By Lemma 19 we have a D′ with C
τ−→∗ D′ and not D′ τ−→. If there is no D with

D′
β−→ D then by Lemma 20 there is no d with c→ d, contradicting the assumption

of this lemma. So D′ can make a β-transition. We consider each of the β-transition

rules in turn.

(β Select) Here D′ = ((select ` :: ops , E, ι :: AS, RS),Σ) where Σ(ι) = O @

[(`, (ops ′, E ′))] @O′. Moreover, D′ ↓ (p, σ) where p = (select ` :: ops , e, ι :: as, RS),

E ; e, AS ; as, Σ ; σ. Then p
u−→ (ops , e, (ι.`) :: as, RS), and by Proposition 17

there is a reduction context R such that p; R[ι.`]. Hence, c = (R[ι.`], σ) and if

c → d′ then d = d′, since (Red Select) is the unique rule which can derive c → d′
and gives a unique d′.

(β Let), (β Update), (β Function Return), (β Apply), (β Grab) Similar to (β Se-

lect).

(β Clone) Here D′ = (P ,Σ) = ((clone :: ops , E, ι :: AS, RS),Σ) where Σ(ι) = O. By

(u Clone), (Unload Store) and Proposition 17, D′ ; c = (R[clone(ι)], σ) where

σ(ι) = o and O ; o. Now d = (R[ι′], σ + (ι′ 7→ o)) where ι′ /∈ dom(σ). By (Unload

Store) ι′ /∈ dom(Σ) so by (β Clone) D′
β−→ D = ((ops , E, ι′ ::AS, RS),Σ + (ι′ 7→ O)).

Invoking Proposition 17 again, we get D ; (R[ι′], σ + (ι′ 7→ o)) = d as required.

(β Object) Similar to (β Clone). q

We call a configuration of the form (([], E, [V ], []),Σ) terminal.

Lemma 22

If C ; c and not C
τ−→ then C is terminal if and only if c is terminal.

It follows from Lemmas 18, 21 and 22 that the semantics of the abstract machine

and that of our extended object calculus are related via the unloading relation. Let

C ↘ D if C
βτ−→∗ D and D is terminal.

Lemma 23

(1) If C ; c and C ↘ D then there is a d with D ; d and c↘ d.

(2) If C ; c and c↘ d then there is a D with D ; d and C ↘ D.

We are now in a position to prove the main result:

Theorem 3

Suppose that [] ` a⇒ ops . Then, for all d, (a, [])↘ d if and only if there is a D with

((ops , [], [], []), [])↘ D and D ; d.

Proof

Given [] ` a⇒ ops , Proposition 12 implies that ((ops , [], [], []), []) ; (a, []). Suppose

(a, []) ↘ d. By Lemma 23(2), there is D such that D ; d and ((ops , [], [], []), []) ↘
D. Conversely, suppose there is D with ((ops , [], [], []), []) ↘ D and D ; d. By

Lemma 23(1), there is d′ such that D ; d′ and (a, []) ↘ d′. A corollary of Prop-

osition 11 is that D ; d and D ; d′ imply that d = d′. Therefore, we have (a, [])↘ d,

as desired. q
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3.6 Discussion and related work

We have proved correct a machine based on the machine used in our implementation.

The machine could be described as a ZAM (Leroy, 1990) plus objects, but without

some of the ZAM’s tail-recursion optimisations. Because of this, the proof given

here can be considered as a correctness proof of a simplified ZAM, and we are sure

that the proof could be scaled up to the full ZAM.

There is a large literature on proofs of interpreters based on abstract machines,

such as Landin’s SECD machine (Hannan and Miller, 1992; Plotkin, 1975; Sestoft,

1997). Since no compiled machine code is involved, unloading such abstract machines

is easier than unloading an abstract machine based on compiled code. The VLISP

project (Guttman et al., 1995), using denotational semantics as a metalanguage, is the

most ambitious verification to date of a compiler-based abstract machine. Other work

on compilers deploys metalanguages such as calculi of explicit substitutions (Hardin

et al., 1998) or process calculi (Wand, 1995). Rather than introduce a metalanguage,

we prove correctness of our abstract machine directly from its operational semantics.

We adopted Rittri’s idea (Rittri, 1990) of unloading a machine state to a term

via a specialised unloading machine. Rittri uses a generic framework based on

bisimulation to prove correctness of both a machine for evaluating arithmetic

expressions, and the SECD machine. Our work goes beyond Rittri’s by dealing with

state and objects. We found it simpler to write a direct proof than to appeal to his

generic framework.

There are differences, of course, between our formal model of the abstract machine

and our actual implementation. One difference is that we have modelled programs

as finitely branching trees, whereas in the implementation programs are bytecode

arrays indexed by a program counter. Another difference is that our model omits

garbage collection, which is essential to the implementation. Therefore Theorem 3

only implies that the compilation strategy is correct; bugs may remain in its imple-

mentation.

4 Operational equivalence

We now develop a theory of operational equivalence for the imperative object cal-

culus. We consider only the core object calculus, not the calculus extended with

functions. The standard definition of operational equivalence between terms is that

of contextual equivalence (Morris, 1968; Plotkin, 1977): two terms are equivalent if

and only if they are interchangeable in any program context without any observable

difference; the observations are typically the programs’ termination behaviour. Con-

textual equivalence is the largest congruence relation that distinguishes observably

different programs. Terms are equivalent if and only if no amount of program-

ming can tell them apart. This is a robust and reasonable definition of semantic

equivalence.

Mason and Talcott (1991) have shown a useful context lemma for functional

languages with state. It asserts that contextual equivalence coincides with so-called

CIU (Closed Instances of Use) equivalence. Informally, to prove two terms are
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CIU equivalent, one needs to show that they have identical termination behaviour

when placed in the redex position in an arbitrary configuration and locations

are substituted for the free variables. Although contextual equivalence and CIU

equivalence are the same relation, the definition of the latter is typically easier to

use in proofs.

We take CIU equivalence as our definition of operational equivalence for impera-

tive objects and we establish some useful equivalence laws. Furthermore, we show

that operational equivalence is a congruence, allowing compositional equational

reasoning and a proof that it coincides with contextual equivalence. The congruence

proof is adapted from the corresponding congruence proof for a λ-calculus with

references by Honsell, Mason, Smith and Talcott (1993).

We take a modular approach to formulating CIU equivalence. In section 4.1,

we introduce experimental equivalence, an auxiliary relation on configurations.

In section 4.2, we phrase our definition of operational equivalence in terms of

experimental equivalence, but prove our formulation is equivalent to the one of

Mason and Talcott (1991). We derive a variety of equational laws for imperative

objects in Section 4.3. Section 4.4 contains our congruence proof for operational

equivalence, which we use in section 4.5 to show that operational and contextual

equivalence are the same, Theorem 4.

4.1 Experimental equivalence

For configurations c and c′, we write c l c′ to mean that either both converge or

neither of them converges, that is, c↓ if and only if c′↓.
We define a family of relations on configurations, called experimental equivalence.

Recall that w ranges over finite sets of locations. Two configurations (a, σ) and

(a′, σ′) are experimentally equivalent at index set w, written (a, σ) ∼w (a′, σ′), if and

only if `w (a, σ) ok , `w (a′, σ′) ok and, for all reduction contexts with locs(R) ⊆ w

and fv (R) = {•}, (R[a], σ) l (R[a′], σ′).
We may regard experimental equivalence at w as a kind of testing equivalence.

Let a w-test be a reduction context R such that locs(R) ⊆ w and fv (R) = {•}.
Let a configuration (a, σ) pass a w-test, R, if and only if (R[a], σ)↓. Then two

configurations c and c′ are experimentally equivalent at w if and only if `w c ok ,

`w c′ ok and they pass the same w-tests.

The index set w is a view into the configurations: the locations in the stores that R
may directly inspect. Other locations in the stores may only be inspected indirectly.

For every index set w, experimental equivalence is an equivalence relation (re-

flexive, transitive and symmetric) on configurations, and it is anti-monotone in the

index set w, that is, c ∼w c′ holds whenever c ∼w′ c′ and w ⊆ w′.
We can prove that reduction is sound with respect to experimental equivalence:

Lemma 24

If `w c ok and c→ c′, then c ∼w c′.
Proof

Suppose `w (a, σ) ok and (a, σ) → (a′, σ′). Then `w (a′, σ′) ok holds by Lemma 1.
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Further, suppose locs(R) ⊆ w and fv (R) = {•}. By inspection of the reduction

rules we see that (a, σ) → (a′, σ′) implies (R[a], σ) → (R[a′], σ′). Clearly, (R[a′], σ′)↓
implies (R[a], σ)↓ because any converging reduction sequence from (R[a′], σ′) extends

to a converging reduction sequence from (R[a], σ). The reverse implication follows

because reduction is deterministic up to structural equivalence at w, that is, by

a combination of Proposition 2 and Lemma 3. We conclude (a, σ) ∼w (a′, σ′), as

required. q

Moreover, up to experimental equivalence, all that matters about a configuration

is whether it converges, and if so, to which terminal configuration it converges:

Lemma 25

Suppose `w c ok and `w c′ ok . Then c ∼w c′ if and only if either

(1) both c and c′ converge, that is, there are terminal d and d′ such that c →∗ d
and c′ →∗ d′, and moreover d ∼w d′, or

(2) neither c nor c′ converges.

It is possible to formulate garbage collection principles for unused objects in terms

of experimental equivalences. We call a location ι garbage in (a, σ@[ι 7→ o]@σ′) if

the configuration is well formed, ` (a, σ@[ι 7→ o]@σ′) ok , and it is also well formed

without (ι 7→ o) in the store, ` (a, σ@σ′) ok ; that is, a and σ@σ′ make no reference

to ι. Reduction is independent of garbage:

Lemma 26

Suppose ι is garbage in (a, σ@[ι 7→ o]@σ′). Then (a, σ@[ι 7→ o]@σ′) →n (v, σn@

[ι 7→ on]@σ′n) if and only if o = on, ι /∈ dom(σn@σ′n), and (a, σ@σ′)→n (v, σn@σ′n).

Proof

By induction on the length of the computations. q

The lemma can be used to prove the following garbage collection law which

says that if ι is garbage in a configuration c, it can be garbage collected up to

experimental equivalence at any w such that `w c ok and ι /∈ w.

Lemma 27

Suppose ι is garbage in (a, σ@[ι 7→ o]@σ′). If `w (a, σ@σ′) ok then we have

(a, σ@[ι 7→ o]@σ′) ∼w (a, σ@σ′).

Experimental equivalence is only an auxiliary relation. Our main interest is op-

erational equivalence for static terms which we introduce below. However, the

experimental equivalence relation on configurations is useful because some facts

about reduction, such as Lemmas 24, 25 and 27, are best expressed as equivalences

between configurations.

4.2 Operational equivalence

From experimental equivalence on configurations we derive an equivalence relation

on static terms, operational equivalence. First, let a substitution, ρ, be a finite map
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from variables to locations; we write ρ : {x1, . . . , xn} → w whenever ρ = [xi 7→ ιi
i∈1..n]

and ιi ∈ w for all i ∈ 1..n. Let aρ be the term obtained from a static term a by

substituting ρ(x) for x for every x ∈ dom(ρ). (These substitutions denoted by ρ

are a special case of the substitutions denoted by s in section 2.4.) Now, we define

two static terms a and a′ to be operationally equivalent, written a ≈ a′, if and

only if (aρ, σ) ∼dom(σ) (a′ρ, σ) holds for all well formed stores σ and substitutions

ρ : fv (a) ∪ fv (a′)→ dom(σ).

We define operational equivalence only for static terms because we want to study

program equivalences that programmers can use for manipulations of program text.

Also, most automatic program transformations, as may take place in compilers, deal

with static program text or code. Locations are dynamic entities, created during

reduction of configurations. A location only carries meaning in the context of a par-

ticular store. Therefore we only consider locations in connection with configurations

and experimental equivalence. Our modular formulation of operational equivalence

on static terms via experimental equivalence on configurations is often convenient

for proofs: after instantiation of static terms a and a′ into configurations (aρ, σ) and

(a′ρ, σ), one can apply the simpler theory of experimental equivalence.

The following lemma asserts that operational equivalence is Mason and Talcott’s

CIU equivalence: static terms a and a′ are equivalent if and only if all ‘closed

instantiations’ (variable substitutions ρ and stores σ) of all ‘uses’ (reduction contexts

R) either both converge or neither converges.

Lemma 28

For all static terms a and a′, a ≈ a′ if and only if (R[a]ρ, σ) l (R[a′]ρ, σ), for all

static reduction contexts R, well formed stores σ, and substitutions ρ : fv (R[a]) ∪
fv (R[a′])→ dom(σ).

Proof

Follows straightforwardly from the definition of ≈ and ∼. For the forward impli-

cation, we use the fact that R[a]ρ = (Rρ)[aρ] and Rρ is again a reduction context.

For the reverse implication, note that any reduction context R′ can be written in

the form Rρ, for some static reduction context R and substitution ρ. q

An easy consequence of Lemma 28 is that operational equivalence is preserved

by static reduction contexts:

Lemma 29

If a ≈ a′ then R[a] ≈ R[a′], for all static reduction contexts R.

So equivalent terms in identical static reduction contexts are again equivalent.

Conversely, identical static terms in equivalent reduction contexts are also equivalent:

Lemma 30

If R[x] ≈ R′[x] and x /∈ fv (R) ∪ fv (R′), then R[a] ≈ R′[a], for all static terms a.

Proof

After expanding the definition of ≈, the proof proceeds by induction on the length

of computations, using Lemma 25. q
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4.3 Laws of operational equivalence

From Lemma 30 and the definition of operational equivalence, combined with the

laws for experimental equivalence above, it is possible to show a multitude of laws of

operational equivalence for the constructs of the calculus. We now show a selection

of such laws and we give an equational proof of βv-reduction for the encoding of

call-by-value functions from section 2.

The let construct satisfies laws corresponding to those of Moggi’s computational

λ-calculus (Moggi, 1989), presented here in the form given by Talcott (1998):

Proposition 31

(1) (let x = y in b) ≈ b{{y/x}}
(2) (let x = a in R[x]) ≈ R[a], if x /∈ fv (R)

Proof

Part (1) is immediate from definition of ≈ and Lemma 24. For (2), by Lemma 30 it

suffices to show (let x = x in R[x]) ≈ R[x] which is immediate from (1). q

Moggi’s eta law is just Proposition 31(2) with R = •. To prove associativity:

let x = a in (let x = a′ in b) ≈ let x = (let x = a in a′) in b (1)

we first use Proposition 31(1), Lemma 29 and Lemma 30 to rewrite the left hand

side to

let x = a in (let x = (let x = x in a′) in b)

which, by Proposition 31(2) with R = (let x = (let x = • in a′) in b), rewrites to the

right hand side of (1).

There are laws for object constants and their interaction with the other constructs

of the calculus:

Proposition 32

Suppose o = [`i = ς(xi)bi
i∈1..n] and j ∈ 1..n.

(1) (let xj = o in R[xj.`j]) ≈ (let xj = o in R[bj])

(2) o.`j ≈ (let xj = o in bj)

(3) (o.`j ⇐ ς(x)b) ≈ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n]

(4) clone(o) ≈ o
(5) (let x = o in R[clone(x)]) ≈ (let x = o in R[o]), if x /∈ fv (o)

(6) (let x = o in b) ≈ b, if x /∈ fv (b)

(7) (let x = a in let y = o in b) ≈ (let y = o in let x = a in b), if x /∈ fv (o) and

y /∈ fv (a)

Proof

Parts (1), (3) and (5) follow from definition of ≈ and a few applications of Lemma 24.

Part (2) is immediate from (1) and Proposition 31(2).

Part (4) follows from Proposition 31(2), (5) and (6):

clone(o) ≈ (let x = o in clone(x)) ≈ (let x = o in o) ≈ o

where x /∈ fv (o).
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Part (6) is direct from the definition of ≈, Lemma 24 and Lemma 27.

Part (7) requires a more elaborate argument, first expanding the definition of ≈
and then analysing the possible reduction sequences of arbitrary closed instances,

exploiting that reduction is independent of garbage, Lemma 26. q

The next proposition gives laws for method update and its interaction with method

selection and cloning.

Proposition 33

Let notation a;b abbreviate let x = a in b where x /∈ fv (b).

(1) (let x = a.`⇐ ς(x)b in R[x.`]) ≈ (let x = a.`⇐ ς(x)b in R[b])

(2) (let x = a.`⇐ ς(x)b in R[x]) ≈ (let x = a in R[x.`⇐ ς(x)b])

(3) (a.`⇐ ς(x)b).`⇐ ς(x′)b′ ≈ a.`⇐ ς(x′)b′

(4) (y.`⇐ ς(x)b); (z.`′ ⇐ ς(x′)b′); a ≈ (z.`′ ⇐ ς(x′)b′); (y.`⇐ ς(x)b); a, if ` 6= `′

(5) clone(y.`⇐ ς(x)b) ≈ (let z = clone(y) in (y.`⇐ ς(x)b); z.`⇐ ς(x)b)

Proof

We prove only (1). The other laws are proved similarly. By Lemma 30 it suffices to

show the law for some y /∈ fv (b) in place of a. This case holds by definition of ≈
and, if y is instantiated to a location pointing to an object with an ` method, by

five applications of Lemma 24; if the object has no ` method, neither side of the

equation converges. q

Let us look at two examples of equational reasoning using the laws above.

Example 1: Pairs

Recall that pair(a, b) is the object:

[fst = ς(s)a, snd = ς(s)b, swap = ς(s)let x = s.fst in let y = s.snd in

(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

for some s /∈ fv (a) ∪ fv (b). First, let us prove that the fst and snd methods work as

projections:

pair(a, b).fst ≈ let s = pair(a, b) in a by Prop. 32(2)

≈ a by Prop. 32(6)

Analogously, we derive that pair(a, b).snd ≈ b.
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To show that the swap method indeed swaps the components of a pair, we can

argue as follows:

pair(x, y).swap

≈ let s = pair(x, y) in

let x′ = s.fst in let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x′ by Prop. 32(2)

≈ let s = pair(x, y) in

let x′ = x in let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x′ by Prop. 32(1)

≈ let s = pair(x, y) in

let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x by Prop. 32(7) and 31(1)

≈ let s = pair(x, y) in

let y′ = y in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x by Prop. 32(1)

≈ let s = pair(x, y) in

(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x by Prop. 32(7) and 31(1)

≈ (pair(x, y).fst ⇐ ς(s′)y).snd ⇐ ς(s′)x by Prop. 31(2)

≈ pair(y, y).snd ⇐ ς(s′)x by Prop. 32(3)

≈ pair(y, x) by Prop. 32(3)

We note that pair(a, b).swap ≈ pair(b, a) fails in general, for instance if a or b

diverges, because a and b are evaluated in the course of the swap on the left hand

side and they are not evaluated on the right hand side. However, by an elaboration

of the previous derivation, we can show:

pair(a, b).swap ≈ let x = a in let y = b in pair(y, x)

for arbitrary static terms a and b with x /∈ fv (b).

Example 2: Functions

For the second example, recall the encoding of call-by-value functions from Sec-

tion 2.1:

λ(x)b
def
= [arg = ς(z)z.arg , val = ς(s)let x = s.arg in b]

b(a)
def
= let y = a in (b.arg ⇐ ς(z)y).val

where s, y /∈ fv (b) and y 6= z /∈ fv (a). From the laws for let and for object constants,

we can show that βv-reduction is valid:

(λ(x)b)(y) ≈ b{{y/x}} (2)

Let o = [arg = ς(z)y, val = ς(s)let x = s.arg in b], then
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(λ(x)b)(y)

≈ ((λ(x)b).arg ⇐ ς(z)y).val by Prop. 31(1)

≈ o.val by Prop. 32(3) and Lemma 29

≈ let s = o in let x = s.arg in b by Prop. 32(2)

≈ let x = o.arg in b by Prop. 31(2)

≈ let x = (let z = o in y) in b by Prop. 32(2) and Lemma 29

≈ let x = y in b by Prop. 32(6) and Lemma 29

≈ b{{y/x}} by Prop. 31(1)

These examples as well as the derivations of some of the laws above suggest the

usefulness of equational reasoning for understanding and manipulating imperative

object programs.

4.4 Congruence

The derivation of (2) used the fact that operational equivalence is preserved by

reduction contexts, Lemma 29. More generally, in order to exercise compositional

equational reasoning it is necessary that operational equivalence is preserved by

arbitrary term constructs. This property can be formalised in terms of compatible

refinement (Gordon, 1994). Given a relation on terms S, its compatible refinement,

Ŝ, relates terms with identical outermost syntactic constructors and with immediate

subterms pairwise related by S, as defined by the following axiom schemes.

(Comp x) x Ŝ x.

(Comp Object) [`i = ς(xi)bi
i∈1..n] Ŝ [`i = ς(xi)b

′
i
i∈1..n] if bi S b′i for i ∈ 1..n.

(Comp Select) a.` Ŝ a′.` if aS a′.
(Comp Update) a.`⇐ ς(x)b Ŝ a′.`⇐ ς(x)b′ if aS a′ and bS b′.
(Comp Clone) clone(a) Ŝ clone(a′) if aS a′.
(Comp Let) let x = a in b Ŝ let x = a′ in b′ if aS a′ and bS b′.

Let a relation be compatible if and only if it contains its compatible refinement.

Let a congruence be a compatible equivalence relation.

Proposition 34

Operational equivalence is a congruence.

Proof

Operational equivalence is an equivalence relation, so it remains to show that it is

compatible, that is, a ≈̂ a′ implies a ≈ a′. We prove a ≈ a′ by case analysis of the

derivation of a ≈̂ a′.
(Comp x) Here a = a′ = x, for some variable x, and a ≈ a′ holds because ≈ is

reflexive.

(Comp Clone) Here a = clone(a0), a′ = clone(a′0), and a0 ≈ a′0. But then a ≈ a′ is

immediate from Lemma 29 with R = clone(•).
(Comp Select) Immediate from Lemma 29 as in the previous case.
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(Comp Update) Here a = a0.` ⇐ ς(x)b, a′ = a′0.` ⇐ ς(x)b′, a0 ≈ a′0 and b ≈ b′. By

Lemma 29, a0 ≈ a′0 implies a0.` ⇐ ς(x)b ≈ a′0.` ⇐ ς(x)b. Because ≈ is transitive

the result follows if a′0.` ⇐ ς(x)b ≈ a′0.` ⇐ ς(x)b′. By Lemma 30, this again

follows if

y.`⇐ ς(x)b ≈ y.`⇐ ς(x)b′

for some y /∈ fv (b). Consider any σ and ρ such that ` σ ok and ρ : ({y} ∪ fv (b) ∪
fv (b′)− {x})→ dom(σ). We must show that

(ι.`⇐ ς(x)bρ, σ) ∼dom(σ) (ι.`⇐ ς(x)b′ρ, σ)

where ι = ρ(y). If the object σ(ι) has no ` method, both configurations are stuck

(do not converge) and the equivalence holds by Lemma 25. Otherwise it follows

by Lemma 24 if

(ι, σ1) ∼dom(σ) (ι, σ′1)

where σ1 and σ′1 are the updated stores obtained from σ by replacing the method

at label ` in σ(ι) by methods ` = ς(x)bρ and ` = ς(x)b′ρ, respectively. To prove

this, we must show that

(R[ι], σ1) l (R[ι], σ′1)

for all R with locs(R) ⊆ dom(σ) and fv (R) = {•}. Let relation T relate stores

with identical domains and with objects pairwise identical or having ` methods

` = ς(x)bρ and ` = ς(x)b′ρ, respectively, and all other methods identical. In

particular, σ1 T σ′1. We shall argue that

(a, σ) l (a, σ′) for all a, σ and σ′ such that σ T σ′

Suppose (a, σ)↓, that is, there exist n and a terminal configuration d such that

(a, σ)→n d. We show (a, σ′)↓ by induction on n:

If n = 0, (a, σ) is a terminal configuration, that is, a is a value, and then (a, σ′) is

terminal too.

Otherwise there exists (a1, σ1) such that (a, σ) → (a1, σ1) →n−1 d. By inspec-

tion of the reduction rules we see that (a, σ′) → (a1, σ
′
1) with σ1 T σ′1, unless

a is of the form a = R[ι.`] where σ(ι) and σ′(ι) have methods ` = ς(x)bρ

and ` = ς(x)b′ρ, respectively. In that case (a1, σ1) = (R[bρ′], σ) and (a, σ′) →
(R[b′ρ′], σ′) where ρ′ = (x 7→ ι) :: ρ. Since (R[bρ′], σ)→n−1 d in one less step than

(a, σ) →n d, we get (R[bρ′], σ′)↓ by the induction hypothesis. Moreover, b ≈ b′
implies (bρ′, σ′) ∼dom(σ′) (b′ρ′, σ′). Hence (R[bρ′], σ′) l (R[b′ρ′], σ′) and we obtain

(R[b′ρ′], σ′)↓ and (a, σ′)↓, as required.

This completes the induction on n and we conclude that (a, σ)↓ implies (a, σ′)↓.
The reverse implication is symmetrical. So (a, σ) l (a, σ′), as required.

(Comp Object) Follows from case (Comp Update) by repeated applications of

Proposition 32(3).

(Comp Let) Here a = (let x = a0 in b), a′ = (let x = a′0 in b′), a0 ≈ a′0 and

b ≈ b′. Firstly, a0 ≈ a′0 implies (let x = a0 in b) ≈ (let x = a′0 in b), by

Lemma 29. Next, b ≈ b′ implies (let x = x in b) ≈ (let x = x in b′) and

https://doi.org/10.1017/S0956796899003482 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003482


410 A. D. Gordon, P. D. Hankin and S. B. Lassen

(let x = a′0 in b) ≈ (let x = a′0 in b′), by Proposition 31(1) and Lemma 30. Finally,

a ≈ a′ because ≈ is transitive. q

4.5 Contextual equivalence

We call a relation S on static terms adequate if and only if a S a′ implies

(a, []) l (a′, []), for all closed terms a and a′.

Proposition 35

Operational equivalence is the largest compatible and adequate relation on static

terms.

Proof

It is easy to see from the definition that operational equivalence is adequate.

Conversely, whenever S is compatible and adequate and aS a′, one can show that

(R[a]ρ, σ) l (R[a′]ρ, σ) by constructing static terms b and b′ from a and a′ such that

b S b′, by compatibility, and (b, []) →∗ (R[a]ρ, σ) and (b′, []) →∗ (R[a′]ρ, σ). The

desired conclusion then follows by determinacy of reduction and adequacy. q

Clearly, operational equivalence is also the largest adequate congruence on static

terms. It follows that it coincides with Morris-style contextual equivalence, some-

times known as observational congruence (Meyer and Cosmadakis, 1988), where we

take convergence of programs as our means of observation. Instead of the usual

definition of contextual equivalence in terms of variable capturing contexts, one can

equivalently define it as the relation between static terms which are related by a

compatible and adequate relation; more concretely, for any two terms a and a′, let

{(a, a′)}c be the least compatible relation that relates them, defined inductively by

the rules:

(Ctx a a′)

a {(a, a′)}c a′

(Ctx Comp)

b{(â, a′)}cb′

b {(a, a′)}c b′

Then a and a′ are contextually equivalent if and only if {(a, a′)}c is adequate. The

coincidence between operational and contextual equivalence reads as follows:

Theorem 4

Operational (CIU) equivalence coincides with contextual equivalence.

Proof

We must prove that a ≈ a′ if and only if {(a, a′)}c is adequate. The ‘if ’ direction

is immediate from the previous proposition because a {(a, a′)}c a′ and {(a, a′)}c is

compatible and adequate. Conversely, {(a, a′)}c is contained in ≈, by induction on

the definition of {(a, a′)}c, since ≈ is closed under (Ctx a a′) and (Ctx Comp) by

the assumption a ≈ a′ and by (≈ Comp). Therefore {(a, a′)}c is adequate since ≈ is

adequate. q
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The definitions of experimental equivalence and operational equivalence are for-

mulated in terms of reduction contexts, stores and substitutions. That makes it

easy to relate experimental and operational equivalence to the substitution-based

operational semantics in equivalence proofs. In contrast, the definition of contextual

equivalence is robust and abstract because it is not dependent on details of the

operational semantics: it only refers to static terms and adequacy (convergence).

Theorems 1, 2 and 3 imply that adequacy can equivalently be defined on the basis

of any of the three operational semantics of section 2 or the abstract machine of

section 3. Furthermore, the definition of adequacy is unaffected by the choice of

store model for the operational semantics (see the discussion below).

4.6 Discussion and related work

The store model

The object store model is well-suited for operational reasoning because it makes

clear that method updates are not shared between different labels and different

objects. For example, it was easy to prove Proposition 33(4):

(y.`⇐ ς(x)b); (z.`′ ⇐ ς(x′)b′); a ≈ (z.`′ ⇐ ς(x′)b′); (y.`⇐ ς(x)b); a

In the method store model of Abadi and Cardelli (1996), object values are of

the form [`i 7→ ιi
i∈1..n], and stores map locations to methods. A static term would

be instantiated to a configuration by applying a substitution of free variables to

object values and by pairing the resulting term with an associated method store. The

definition of CIU equivalence would have to constrain the object values and method

store used in instantiations: the resulting configuration would need to be such that

different occurrences of object values do not share methods unless the occurrences

are identical. For example, without this constraint, there is a closing instantiation

of the above equation such that one side converges while the other diverges. Take

b = x, b′ = x′.`′, and a = z.`′, and substitute the object [` 7→ ι] for y, and the object

[`′ 7→ ι] for z, two objects that share the method ι but that are not identical. Now,

if we run each side in the method store [ι 7→ ς(x)[]], we find that the left hand side

diverges, whereas the right hand side converges to ([`′ 7→ ι], [ι 7→ ς(x)x]).

On the other hand, one advantage of the method store model is that it makes it

easy to verify that different copies of the empty object are equivalent, for instance,

let x = [] in [` = ς(s)x] ≈ [` = ς(s)[]] (3)

is an instance of Proposition 31(1) because [] is a value. In our object store model, the

proof of (3) becomes somewhat involved and requires a tedious argument analogous

to that of Lemma 27.

Functions

To keep the exposition simple and focused on imperative objects, the theory of

operational equivalence is only presented for the core calculus. The definition of

operational equivalence and the results for the core calculus can be extended to
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the full calculus with functions considered in the previous sections, along the lines

of the similar work on a λ-calculus with references by Honsell, Mason, Smith and

Talcott (1993). All the laws in section 4.3 remain valid for the full calculus. Nonethe-

less, the extension of the theory of operational equivalence is not conservative;

for instance, (let y = clone(z) in []) ≈ [] is a valid equation in the theory for

the core calculus, where every value is an object location, but not in the theory

for the full calculus, where z may be instantiated to a function value λ(x)b and

(let y = clone(λ(x)b) in [], σ) is stuck whereas ([], σ) terminates for any store σ.

Related work

The congruence proof we have presented, based on that of Honsell, Mason, Smith

and Talcott (1993), is quite simple, considering that the imperative object calculus

is a higher-order, state-based language. Alternatively, it is possible to adapt Howe’s

general method for proving congruence of simulation orderings (Howe, 1996) to

CIU equivalence; see Gordon (1998) for an example of this for the stateless object

calculus of Abadi and Cardelli (1996). Talcott (1998) presents another proof method

based on a notion of uniform computation. These proof methods scale up more

smoothly when, for example, functions are added to the calculus, but for the core

calculus our direct approach is simpler.

Some transformations for rearranging side effects are rather cumbersome to

express in terms of equational laws as they depend on variables being bound to

distinct locations. We have not pursued this issue in great depth. For further study

it would be interesting to consider program logics such as VTLoE (Honsell et al.,

1993) or specification logic (Reynolds, 1982; Reddy, 1998), where it is possible to

express such conditions directly.

Earlier work on operational equivalence for object calculi has been concerned

with stateless objects. For instance, Gordon and Rees (1996) and Gordon (1998)

characterise contextual equivalence exactly via forms of bisimilarity induced by the

primitive operational semantics of objects. See Stark (1997) for an account of the

difficulties of defining bisimulation in the presence of imperative effects.

In recent work, Kleist and Sangiorgi (1998) translate the first-order typed imper-

ative object calculus into a typed π-calculus. Among other results, they verify typed

versions of some of our laws by translation into bisimilar π-calculus processes. In

comparison, working directly with the operational semantics as we do seems to be

simpler than establishing and reasoning about an encoding.

The main influence on this section has been the literature on operational theories

for functional languages with state. Our experience is that existing techniques for

functional languages with state scale up well to deal with the object-oriented features

of the imperative object calculus. CIU equivalence was introduced by Mason and

Talcott (1991) and has been the topic of much research; see Talcott (1998) for an

overview of this work as well as a more general presentation of the theory. Functional

languages with state accommodate imperative object-oriented programming styles;

see for example Abelson and Sussman (1985). Operational equivalences of imperative

objects in this style have been studied using CIU equivalence by Mason and Talcott
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(1991; 1992; 1995). However, program equivalences for imperative object-oriented

languages do not seem to have received much study so far. Our results are a first

step and indicate an interesting algebra of imperative objects. Many subtleties of the

theory of operational equivalence are shared with theories for functional languages

with state, including the examples of Meyer and Sieber (1988). These subtleties have

been addressed by advanced operational methods (Honsell et al., 1993; Pitts and

Stark, 1998) which should be interesting to study for objects too, but we have not

explored these issues here in any depth.

Several authors have studied operational equivalences for languages with concur-

rent objects (Agha et al., 1997; Jones, 1996; Walker, 1995; Sangiorgi, 1997), but the

technique of CIU equivalence was not used in these studies.

5 Refinement: Static resolution of labels

In section 3 we showed how to compile the imperative object calculus to an abstract

machine that represents objects as finite lists of labels paired with method closures. In

each pair, the first component is the label, and the second component is the method

closure. A frequent operation is to resolve a method label, that is, to compute the

offset of the method with that label from the beginning of the list. This operation is

needed to implement both method select and method update. In general, resolution

of method labels needs to be carried out dynamically since one cannot in general

compute statically the object to which a select or an update will apply. However,

when the select or update is performed on a newly created object, or to self, it is

possible to resolve method labels statically. The purpose of this section is to exercise

our framework by presenting an algorithm for statically resolving method labels in

these situations, and proving its correctness, Theorem 5.

We begin in section 5.1 by extending our calculus to allow method selects and

method updates with respect to integer offsets as well as labels. We present the

optimisation algorithm in section 5.2, give an example in section 5.2.1, and prove the

correctness of the algorithm in section 5.3. We discuss related work in section 5.4.

5.1 Integer offsets

To represent our intermediate language, we begin by extending the syntax of terms

so that selects and updates may be performed on (positive) integer offsets, i or j.

a, b ::= . . . | a.j | a.j ⇐ ς(x)b terms, 0 < j

As before, we say that a term, a, of this extended language is a static term if and

only if locs(a) = ?.

The intention is that at runtime, a resolved select o.j proceeds by running the jth

method of object o. If the jth method of object o has label `, this will have the same

effect as o.`. Similarly, an update o.j ⇐ ς(x)b proceeds by updating the jth method

of object o with method ς(x)b. If the jth method of object o has label `, this will

have the same effect as o.`⇐ ς(x)b.
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To make this precise, the operational semantics of section 2 and the abstract

machine and compiler of section 3 may easily be extended with integer offsets. We

suppress all the details apart from the following.

We extend the reduction contexts of section 2.2 as follows:

R ::= . . . | R.j | R.j ⇐ ς(x)b reduction context

We extend the small-step substitution-based semantics of section 2.2 and the

big-step substitution-based semantics of section 2.3 with these axioms and rules:

(Red Offset Select) (R[ι.j], σ)→ (R[bj{{ι/xj}}], σ)

if σ(ι) = [`i = ς(xi)bi
i∈1..n] and j ∈ 1..n.

(Red Offset Update) (R[ι.j ⇐ ς(x)b], σ)→ (R[ι], σ′)
if σ(ι) = [`i = ς(xi)bi

i∈1..n], j ∈ 1..n and

σ′ = σ + (ι 7→ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n]).

(Subst Offset Select)

(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi
i∈1..n] j ∈ 1..n (bj{{ι/xj}}, σ1) ⇓ (v, σ2)

(a.j, σ0) ⇓ (v, σ2)

(Subst Offset Update)

(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi
i∈1..n] j ∈ 1..n

σ2 = σ1 + (ι 7→ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n])

(a.j ⇐ ς(x)b, σ0) ⇓ (ι, σ2)

All the results proved in sections 2 and 3 remain true for this extended language.

The reduction contexts used in the definition of experimental equivalence now

include include selects and updates with integer offsets. By enriching the syntax with

integer offsets we make both experimental equivalence and operational equivalence

finer grained. For instance, in the original language the order of methods in an

object may be permuted without affecting operational equivalence. For example, if

a = [`1 = [], `2 = ς(s)s.`2] and b = [`2 = ς(s)s.`2, `1 = []], then a ≈ b. But this

equation fails in the presence of reduction contexts with integer offsets, since, for

instance, (a.1, []) converges but (b.1, []) diverges. Although the equivalences are finer

grained, all the results proved in section 4 hold for the extended calculus.

5.2 A static resolution algorithm

We need the following definitions to express the static resolution algorithm.

A,B ::= [`i
i∈1..n] layout type, `i distinct

E ::= [xi 7→ Ai
i∈1..n] environment, xi distinct

For an object o = [`i = ς(xi)bi
i∈1..n], let layout(o) = [`i

i∈1..n].

The algorithm infers a layout type, A, for each term it encounters. If the layout type

A is [`i
i∈1..n], with n > 0, the term must evaluate to an object o with layout(o) = A.

On the other hand, if the layout type A is [], nothing has been determined about the
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layout of the object to which the term will evaluate. An environment E is a finite

map that associates layout types to the free variables of a term.

We express the algorithm as the following recursive routine resolve(E, a), which

takes an environment E and a static term a with fv (a) ⊆ dom(E), and produces a

pair (a′, A), where static term a′ is the residue of a after resolution of labels known

from layout types to integer offsets, and A is the layout type of both a and a′. We

use p to range over both labels and integer offsets.

resolve(E, x)
def
= (x, E(x)) where x ∈ dom(E)

resolve(E, [`i = ς(xi)ai
i∈1..n])

def
= ([`i = ς(xi)a

′
i
i∈1..n], A)

where A = [`i
i∈1..n]

and (a′i, Bi) = resolve((xi 7→ A) :: E, ai), xi /∈ dom(E), for each i ∈ 1..n

resolve(E, a.p)
def
={

(a′.j, []) if j ∈ 1..n and p = `j
(a′.p, []) otherwise

where (a′, [`i i∈1..n]) = resolve(E, a)

resolve(E, a.p⇐ ς(x)b)
def
={

(a′.j ⇐ ς(x)b′, A) if j ∈ 1..n and p = `j
(a′.p⇐ ς(x)b′, A) otherwise

where (a′, A) = resolve(E, a), A = [`i
i∈1..n]

and (b′, B) = resolve((x 7→ A) :: E, b), x /∈ dom(E)

resolve(E, clone(a))
def
= (clone(a′), A) where (a′, A) = resolve(E, a)

resolve(E, let x = a in b)
def
= (let x = a′ in b′, B)

where (a′, A) = resolve(E, a)

and (b′, B) = resolve((x 7→ A) :: E, b), x /∈ dom(E)

5.2.1 Example of static resolution

To illustrate the algorithm in action, consider the object pair(x, y):

[fst = ς(s)x, snd = ς(s)y, swap = ς(s)let x = s.fst in let y = s.snd in

(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

Then, for arbitrary layout types A and B,

resolve([x 7→ A, y 7→ B], pair(x, y)) = (pair ′(x, y), [fst , snd , swap])

where pair ′(x, y) denotes the object:

[fst = ς(s)x, snd = ς(s)y, swap = ς(s)let x = s.1 in let y = s.2 in

(s.1⇐ ς(s′)y).2⇐ ς(s′)x]

All method selects and method updates in the object have been statically resolved.

The layout type [fst , snd , swap] asserts that pair(x, y) and pair ′(x, y) will evaluate to

objects with this layout. This means, not surprisingly, that any select or update of

fst , snd or swap on pair(x, y) are statically resolved. For instance:

resolve([x 7→ A, y 7→ B], pair(x, y).swap) = (pair ′(x, y).3, [])
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Here, the empty layout type [] asserts that nothing is known about the layout of the

objects returned by pair(x, y).swap and pair ′(x, y).3. So, if we select swap twice, the

second method select is not resolved:

resolve([x 7→ A, y 7→ B], pair(x, y).swap.swap) = (pair ′(x, y).3.swap, [])

5.3 Verification of the algorithm

To allow proofs by induction on derivations, we begin by representing the algorithm

by an inductively defined relation, ↔. We need an auxiliary notion of a store type,

a finite map sending locations to layout types:

Σ ::= [ιi 7→ Ai
i∈1..n] store type, ιi distinct

By the following rules, we define a resolution relation on terms, (E,Σ) ` a↔ a′ : A,

intended to mean that in environment E and store type Σ, and at layout type A,

term a may be resolved to term a′ by turning some of the labels in a into integer

offsets in a′.

(Layout x)

x ∈ dom(E)

(E,Σ) ` x↔ x : E(x)

(Layout ι)

ι ∈ dom(Σ)

(E,Σ) ` ι↔ ι : Σ(ι)

(Layout Object) (where B = [`i
i∈1..n] and xi /∈ dom(E))

((xi 7→ B) :: E,Σ) ` ai ↔ a′i : Ai ∀i ∈ 1..n

(E,Σ) ` [`i = ς(xi)ai
i∈1..n]↔ [`i = ς(xi)a

′
i
i∈1..n] : B

(Layout Select 1)

(E,Σ) ` a↔ a′ : A

(E,Σ) ` a.`↔ a′.` : []

(Layout Select 2)

(E,Σ) ` a↔ a′ : A

(E,Σ) ` a.j ↔ a′.j : []

(Layout Select 3) (where j ∈ 1..n)

(E,Σ) ` a↔ a′ : [`i
i∈1..n]

(E,Σ) ` a.`j ↔ a′.j : []

(Layout Update 1) (where x /∈ dom(E))

(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.`⇐ ς(x)b↔ a′.`⇐ ς(x)b′ : A

(Layout Update 2) (where x /∈ dom(E))

(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.j ⇐ ς(x)b↔ a′.j ⇐ ς(x)b′ : A
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(Layout Update 3) (where x /∈ dom(E), A = [`i
i∈1..n] and j ∈ 1..n)

(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.`j ⇐ ς(x)b↔ a′.j ⇐ ς(x)b′ : A

(Layout Clone)

(E,Σ) ` a↔ a′ : A

(E,Σ) ` clone(a)↔ clone(a′) : A

(Layout Let) (where x /∈ dom(E))

(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` let x = a in b↔ let x = a′ in b′ : B

We need the (Layout ι) rule and store types so that the resolution relation is

defined on arbitrary terms. Even though the resolve(E, a) routine takes a static term

a as its input, we cannot simply define the resolution relation on static terms. If

we did so, we would not be able to prove Proposition 38, which relates resolution

and evaluation, since terms containing locations may arise from evaluation of static

terms.

This resolution relation on terms includes all the possible outcomes of running

the algorithm:

Lemma 36

Suppose that a is a static term and E is an environment with fv (a) ⊆ dom(E).

If routine resolve(E, a) returns (a′, A), then the judgment (E, []) ` a ↔ a′ : A is

derivable.

Proof

By induction on the number of recursive calls made by the routine resolve(E, a),

using all the rules but (Layout ι). q

For illustration, let us revisit the pair example from section 5.1. Via (Layout

Object), (Layout x), (Layout Let), (Layout Select 3) and (Layout Update 3) we may

derive:

([x 7→ A, y 7→ B], []) ` pair(x, y)↔ pair ′(x, y) : [fst , snd , swap]

Further, via (Layout Select 3) and (Layout Select 1) we derive:

([x 7→ A, y 7→ B], []) ` pair(x, y).swap ↔ pair ′(x, y).3 : []

([x 7→ A, y 7→ B], []) ` pair(x, y).swap.swap ↔ pair ′(x, y).3.swap : []

We will make precise the connection between evaluation and resolution in Propo-

sition 38. Since evaluation is defined on configurations, to state the proposition we

first need need to extend the resolution relation to stores and configurations. By the

following rules, we define a resolution relation, ` σ ↔ σ′ : Σ, on store pairs, and

another, ` c↔ c′ : (A,Σ), on configuration pairs:
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(Layout Store) (where dom(Σ) = dom(σ) = dom(σ′))
Σ(ι) = layout(σ(ι)) = layout(σ′(ι))
([],Σ) ` σ(ι)↔ σ′(ι) : Σ(ι) ∀ι ∈ dom(Σ)

` σ ↔ σ′ : Σ

(Layout Config)

([],Σ) ` a↔ a′ : A Σ ` σ ↔ σ′

` (a, σ)↔ (a′, σ′) : (A,Σ)

For example, consider the store σ = [ι1 7→ o1, ι2 7→ o2] and a store type Σ = [ι1 7→
A1, ι2 7→ A2] such that ` σ ↔ σ : Σ. Then, using the rules above, we may derive:

` (pair(ι1, ι2).swap, σ)↔ (pair ′(ι1, ι2).3, σ) : ([],Σ)

where pair ′(ι1, ι2) is the object pair(ι1, ι2) with all labels resolved, as in the previous

example. Given the set of rules defining the resolution relation, we cannot derive a

layout type other than [] for pair(ι1, ι2).swap and pair ′(ι1, ι2).3.

To see the effect of evaluation on the layout type of these configurations, we

derive:

(pair(x, y).swap, σ) ⇓ (ι, (ι 7→ pair(ι2, ι1)) :: σ)

and

(pair ′(x, y).3, σ) ⇓ (ι, (ι 7→ pair ′(ι2, ι1)) :: σ)

where ι /∈ dom(σ), by the evaluation rules from sections 2.3 and 5.1. Moreover, using

the rules above, we may derive:

` (ι, (ι 7→ pair(ι2, ι1)) :: σ)↔ (ι, (ι 7→ pair ′(ι2, ι1)) :: σ) : (A, (ι 7→ A) :: Σ)

where A = [fst , snd , swap].

This example shows that, as one might expect, evaluation increases the accuracy

of the layout types derivable for a configuration. In seeking to verify the resolve

routine, we introduced the resolution relation because it includes all the results

of running resolve, Lemma 36, but also because we can prove that resolution is

preserved by evaluation, Proposition 38. We first need the following substitution

lemma.

Lemma 37

(E ′@[x 7→ A]@E ′′,Σ) ` a ↔ a′ : B, ι ∈ dom(Σ) and Σ(ι) = A imply (E ′@E ′′,Σ) `
a{{ι/x}} ↔ a′{{ι/x}} : B.

Proof

A routine induction on the derivation of the judgment (E′@[x 7→ A]@E ′′,Σ) ` a↔
a′ : B. q

If Σ and Σ′ are store types, let Σ 6 Σ′ if and only if dom(Σ) ⊆ dom(Σ′) and

Σ(ι) = Σ′(ι) for each ι ∈ dom(Σ).

https://doi.org/10.1017/S0956796899003482 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003482


Compilation and equivalence of imperative objects 419

Proposition 38

Suppose that ` c↔ c′ : (A,Σ).

(1) Whenever c ⇓ d there are d′, A′ and Σ′ such that c′ ⇓ d′, ` d↔ d′ : (A′,Σ′) and

Σ 6 Σ′. Moreover, A 6= [] implies A = A′.
(2) Whenever c′ ⇓ d′ there are d, A′ and Σ′ such that c ⇓ d and ` d↔ d′ : (A′,Σ′)

and Σ 6 Σ′. Moreover, A 6= [] implies A = A′.

Proof

Part (1) is by induction on the derivation of c ⇓ d. Part (2) is by induction on the

derivation of c′ ⇓ d′. q

Lemma 39

Suppose ([xi 7→ [] i∈1..n], []) ` a ↔ a′ : A. Consider any reduction context R
with locs(R) = ? such that fv (R) − {•, x1, . . . , xn} = {xn+1, . . . , xn+m}. Then ([xi 7→
[] i∈1..n+m], []) ` R[a]↔ R[a′] : B for some B.

Proof

By induction on the size of the reduction context R. q

Lemma 40

Given ([xi 7→ [] i∈1..n], []) ` a ↔ a′ : B, a store type Σ and a substitution ρ :

{x1, . . . , xn} → dom(Σ), there is B′ such that ([],Σ) ` aρ↔ a′ρ : B′. Moreover, B 6= []

implies B = B′.

Proof

By induction on the derivation of ([xi 7→ [] i∈1..n], []) ` a↔ a′ : B. q

Theorem 5

Suppose a is a static term with free variables x1,. . . ,xn. If routine resolve

([xi 7→ [] i∈1..n], a) returns (a′, A), then a ≈ a′.
Proof

By Lemma 28, to show a ≈ a′, it suffices to prove (R[a]ρ, σ) l (R[a′]ρ, σ), for all

static reduction contexts R, well formed stores σ, and substitutions ρ : fv (R[a]) ∪
fv (R[a′])→ dom(σ). Consider any static reduction context R, any well formed store

σ and any substitution ρ : fv (R[a])∪ fv (R[a′])→ dom(σ). Let E = [xi 7→ [] i∈1..n] and

E ′ = [xi 7→ [] i∈1..n+m] where {xn+1, . . . , xn+m} = fv (R)− {•, x1, . . . , xn}. By Lemma 36,

we may derive (E, []) ` a↔ a′ : A. By Lemma 39, (E, []) ` a↔ a′ : A implies (E ′, []) `
R[a] ↔ R[a′] : B for some B. If σ = [ιi = oi

i∈1..n], let Σ = [ιi = layout(oi)
i∈1..n].

By Lemma 40, (E ′, []) ` R[a] ↔ R[a′] : B and ρ : {x1, . . . , xn+m} → dom(Σ) imply

([],Σ) ` R[a]ρ ↔ R[a′]ρ : B′ for some B′. By (Layout Store), Σ ` σ ↔ σ. Hence

by (Layout Config), we have ` (R[a]ρ, σ) ↔ (R[a′]ρ, σ). Suppose that (R[a]ρ, σ)↓.
By Theorem 1 there is c with (R[a]ρ, σ) ⇓ c. By Proposition 38(1), ` (R[a]ρ, σ) ↔
(R[a′]ρ, σ) implies there is c′ such that (R[a′]ρ, σ) ⇓ c′, and therefore (R[a′]ρ, σ)↓,
again by Theorem 1. Similarly, by Proposition 38(2) and ` (R[a]ρ, σ)↔ (R[a′]ρ, σ),

(R[a′]ρ, σ)↓ implies (R[a]ρ, σ)↓. Therefore (R[a]ρ, σ) l (R[a′]ρ, σ), as required to

establish that a ≈ a′. q
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Our prototype implementation of the imperative object calculus optimises any

closed static term a by running the routine resolve([], a) to obtain an optimised

term a′ paired with a layout type A. By the theorem, this optimisation is correct

in the sense that a′ is operationally equivalent to a. In fact the theorem applies to

applications of the resolve routine to open terms. Inasmuch as we may regard a

module as a term with free variables, the theorem would justify use of resolve during

separate compilation of modules.

On a limited set of test programs, the algorithm converts a majority of selects

and updates into the optimised form. However, the speedup ranges from modest

(10%) to negligible; the interpretive overhead in our bytecode-based system tends

to swamp the effect of optimisations such as this. It is likely to be more effective in

a native code implementation.

5.4 Discussion and related work

In general, there are many algorithms for optimising access to objects; see Cham-

bers (1992), for instance, for examples and a literature survey. The idea of statically

resolving labels to integer offsets is found also in the work of Ohori (1992), who

presents a λ-calculus with records and a polymorphic type system such that a com-

piler may compute integer offsets for all uses of record labels. Our system is rather

different, in that it exploits object-oriented references to self.

In contrast to Ohori’s type system, we have not integrated our layout types with a

conventional type system that guarantees the absence of unchecked runtime errors.

Our system of layout types could probably be integrated with one or other of Abadi

and Cardelli’s type systems for the imperative object calculus, to obtain a unified

type system that avoided unchecked runtime errors and moreover could determine

statically the layout of certain objects. Instead, our implementation checks programs

using one of Abadi and Cardelli’s type systems in one pass, and in a separate pass

uses the algorithm from this section to optimise updates and selects. This separation

avoids the complications of a unified type system.

Two alternative approaches to program analysis for untyped object calculi are a

control flow analysis for the imperative object calculus, expressed as a flow logic

(Nielson and Nielson, 1998) and a set-based control flow analysis for a concurrent,

imperative object calculus (di Blasio et al., 1997). Both should be adaptable to the

problem of statically resolving method offsets. These approaches are rather more

complex than ours but may lead to more precise results.

6 Conclusions

In this paper, we have collated and extended a range of operational techniques in

order to verify aspects of the implementation of a small object-oriented programming

language, Abadi and Cardelli’s imperative object calculus.

First, we presented both a big-step and a small-step substitution-based operational

semantics for the calculus and proved them equivalent to a closure-based operational

semantics like that given by Abadi and Cardelli (Theorem 1 and Theorem 2).
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Next, we designed an object-oriented abstract machine as a straightforward ex-

tension of Leroy’s abstract machine with instructions for manipulating objects. Our

third result is a correctness proof for the abstract machine and its compiler (The-

orem 3). Such results are rather more difficult than proofs of interpretive abstract

machines. Our contribution is a direct proof method which avoids the need for any

metalanguage – such as a calculus of explicit substitutions.

Our fourth result is that Mason and Talcott’s CIU equivalence coincides with

Morris-style contextual equivalence (Theorem 4). This is the first result about pro-

gram equivalence for the imperative object calculus, a topic left unexplored by

Abadi and Cardelli’s book. The selection of laws of program equivalence that we

establish is a first step towards an algebra of imperative objects that may be useful

for future work on imperative object-oriented languages. Already, typed versions of

some of our laws have been verified for a typed imperative object calculus (Kleist

and Sangiorgi, 1998).

One benefit of CIU equivalence is that it allows the verification of compiler

optimisations. We illustrate this by proving that an optimisation algorithm from our

implementation preserves contextual equivalence (Theorem 5).
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A Glossary of notation

Notation from Section 2

a, b term

u, v value

s substitution (of values for variables)

o object

σ store

c, d configuration

ι location in store

` method label

R reduction context

• hole

φ phrase of syntax

U,V closure-based value

S closure-based stack

O closure-based object

Σ closure-based store
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C,D closure-based configuration

fv (φ) variables free in φ

φ{{ψ/x}} substitution

φi
i∈1..n φ1, . . . , φn

locs(φ) locations occurring in φ

[φi
i∈1..n] list

φ :: [φi
i∈1..n] list constructor

[φi
i∈1..n] @ [φ′i i∈1..m] list concatenation

[xi 7→ φi
i∈1..n] finite map

dom(f) domain of map

f + (x 7→ φ) extension of map

c→ d small-step reduction

c↘ d reduction to terminal configuration

` σ ok store well formed

` c ok configuration well formed

`w c ok configuration well formed at w

c ≡w c′ structural equivalence at w

R[a] substitution of a for hole in R
c ⇓ d big-step evaluation

C ⇓ D closure-based big-step evaluation

V ; v value unloading

S ; s stack unloading

O ; o object unloading

Σ ; σ store unloading

C ; c configuration unloading

Notation from Section 3

op machine operation

ops operation list

P ,Q machine state

U,V value

U♦, V♦ value or mark

E environment

AS argument stack

RS return stack

F closure

O stored object

Σ store

p, q unloading machine state

e unloading environment

as unloading argument stack

a♦, b♦ term or mark

u♦, v♦ value or mark

xs ` a⇒ ops compilation judgment
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grabn list of grab instructions

((ops , E, AS, RS),Σ) configuration

(ops , e, as, RS) unloading machine state

C
β−→ D β-transition

C
τ−→ D τ-transition

C
βτ−→ D either β or τ transition

C ↘ D reduction to terminal configuration

♦ mark on stack

fun(ops , E) function closure

p
u−→ q unloading machine step

(ops , e) ; (x)a unload abstraction

fun(ops , e) ; λ(x)b unload function

[U♦i i∈1..n] ; [u♦i i∈1..n] unload list

O ; o unload object

Σ ; σ unload store

C ; c unload configuration

p; a unload unloading machine state

E ; e unload environment

AS ; as unload argument stack

P ↓ p conversion of machine state to

unloading machine state

shape p shape of unloading machine state

Notation from Section 4

ρ substitution (of locations for variables)

S relation on terms

c l c′ same-convergence relation

c ∼w c′ experimental equivalence at w

a ≈ a′ operational equivalence

Ŝ compatible refinement

Sc context closure

Notation from Section 5

A,B layout type

E environment

Σ store type

layout(o) layout of object

resolve(E, a) static resolution algorithm

(E,Σ) ` a↔ a′ : A resolution relation on terms

` σ ↔ σ′ : Σ resolution relation on stores

` c↔ c′ : (A,Σ) resolution relation on configurations

Σ 6 Σ′ store comparison
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