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Abstract: The surface of the Sun is continually oscillating due to sound waves encroaching on it from
the interior. Measurements of the surface velocity are used to infer some of the properties of the regions
through which the sound waves have propagated. Traditionally, this has been done by using a modal
decomposition of the surface disturbances. However, the use of ray descriptions, in the form of acous-
tic holography or time–distance helioseismology, provides an alternative approach which may reveal
more detailed information about the properties of local phenomena such as sunspots and active regions.
Fundamental to any such treatment is determining the correct ray paths in a given atmosphere. In the sim-
plest approach, the ray paths are constructed to minimise the travel time between two points (Fermat’s
principle). However, such an approach is only valid in the high frequency limit, ω � ωc, N , where
ωc is the acoustic cut-off and N the Brunt-Väisälä frequency. Although ωc is often included in time–
distance calculations, and N occasionally, the same is not true of acoustic holography. We argue that
this raises concerns about image sharpness. As illustrations, representative ray paths are integrated in a
realistic solar model to show that the Fermat approximation performs poorly for frequencies of helioseis-
mic interest. We also briefly discuss the importance of the Brunt-Väisälä frequency to the time–distance
diagram.

Keywords: Sun: oscillations — sunspots

1 Introduction

Acoustic waves propagate throughout the interior of the
Sun. The conventional approach to analyzing these waves
is through a modal decomposition (Deubner 1975; Unno
et al. 1989). In this fashion, a great deal of information has
been obtained regarding the internal structure of the Sun,
including sound speed profile (Christensen-Dalsgaard
et al. 1985), convection zone depth (Christensen-
Dalsgaard, Gough & Thompson 1991), and differential
rotation (see Hill, Deubner & Isaak 1991; Christensen-
Dalsgaard & Berthomieu 1991; Charbonneau et al. 1998).
In addition, local features, such as sunspots, have been
probed. The modal method indicates that sunspots are
strong absorbers of acoustic energy (Braun 1995), but
gives little indication of their structure.

Two alternate approaches are time–distance helioseis-
mology and acoustic holography. The former is explicitly
founded on the ray or wave packet description rather than
wave mechanics, and is generally formulated to account
for dispersion, at least to the extent of retaining the
acoustic cut-off frequency. The extent to which acous-
tic holography is either wave mechanical or ray theoretic
is controversial and confusing, but Fermat’s principle is
clearly applied in the construction of its central diagnos-
tic quantity, the acoustic egression (equation [2]; see also
Lindsey & Braun 1997, §4.1), thereby ignoring disper-
sion. In this paper, we point out the potential significance
of dispersion for the accurate holographic localisation of
subsurface features.

1.1 Time–distance Helioseismology

Time–distance helioseismology (Duvall et al. 1993)
utilises an approach commonly applied in both terrestrial
and oceanographic seismology, extracting ray travel time
information from cross-correlations of observed surface
data. Specifically, letting �(x, t) be a generic scalar rep-
resenting the oscillation field (observationally, this may
be say vertical velocity or intensity, but for modelling pur-
poses we shall specialise to another specific choice of �
later), the cross-correlation of the signals at positions x
and x +	x is


(x,	x,	t) =
∫ ∞

−∞
�(x +	x, t +	t)�∗(x, t) dt,

(1)

where it is assumed that a wave packet propagates from
x at time t to x + 	x at t + 	t . With x and x + 	x
both on the surface, a time–distance (	x–	t) diagram
displays a sequence of high-correlation lines, represent-
ing respectively one-skip, two-skip, etc. ray travel paths.
The theoretical foundations of time–distance helioseis-
mology are set out in D’Silva (1996a; 1996b; see also
D’Silva 1994) and D’Silva & Duvall (1995), though it
is useful to bear in mind that the observations and the
process of forming the cross-correlations and the time–
distance diagram is completely independent of ray theory.
It is at the level of interpretation and inversion that the ray
formalism is introduced as a convenient method of extract-
ing information from the data. An interesting comparison
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(independent of ray theory) of the time–distance method
with the frequency–wavenumber modal description in
local helioseismology is drawn by Bogdan, Braun & Lites
(1998).

Most commonly, the observed and analysed oscilla-
tions are part of the ‘bath’ of normal modes continually
ringing in their own cavities in the solar interior. In this
paper however, we are in part concerned with rays ema-
nating from a compact object (emitted or scattered), and
which have not yet bounced between their upper and lower
turning points sufficiently often (if at all) for normal modes
to be set up. In this case, expansion in terms of normal
modes is less appropriate. Specifically, we are concerned
with the problem of localising a subsurface emitter or
scatterer using observable surface oscillations. It is there-
fore crucial to derive accurate ray paths. Even given a
mature spectrum of normal modes, localisation is a con-
cern. Bogdan (1997) has shown how the rays employed in
time–distance helioseismology can be synthesised from a
finite collection ofp-modes. However, he finds that locali-
sation is very far from perfect because of the dearth of high
radial order modes in the solar oscillation power spec-
trum. It is therefore open to question whether mapping
compact subsurface features with high spatial accuracy is
achievable with this technique.

Putting these concerns to one side for the moment, a
time–distance method known as helioseismic tomography
is designed to measure and localise travel time varia-
tions along ray paths (Duvall et al. 1996), specifically
those passing under and around sunspots. However, the
speed of wave packet propagation is well-recognised as
depending on a combination of local sound speed, acous-
tic cut-off frequency, magnetic field, and any flow fields
present. To some extent, these can be deconvolved by
examining different rays and different propagation direc-
tions (Kosovichev & Duvall 1997). However, magnetic
effects in particular are treated only crudely as yet, taking
account of just the fast magneto-acoustic wave. In reality
an incident p- or f -mode couples to a combination of fast
and slow magneto-acoustic-gravity modes in a very com-
plicated way (Cally & Bogdan 1993; Cally, Bogdan &
Zweibel 1994; Bogdan & Cally 1997; Cally & Bogdan
1997; Cally 2000),1 and these are not fully accounted for
in the ray description (see also D’Silva 1994, where Snell’s
law is applied to rays incident on magnetic interfaces).

1.2 Acoustic Holography

Another related recent method is acoustic holography,
developed for application to the Sun by Lindsey & Braun
(1997; 1998; 1999; 2000) and Braun & Lindsey (2000a;
2000b). It is assumed that the solar surface acoustic field
ψ(r, t) = �(r+zs êz, t) has been observed in some annu-
lus (the pupil) of inner radius a and outer radius b at the
surface zs over some period of time. Here r denotes the

1It is interesting though that some aspects of this complex process can
be modelled as purely a surface effect (Barnes & Cally 2000).

horizontal coordinates only. In the space–time perspec-
tive, the ‘acoustic egression’H+ and ‘acoustic ingression’
H− are defined by

H±(r, z, t) =
∫ ∫

a<|r−r′|<b
G±(|r − r′|, z, t − t ′)

× ψ(r′, t ′) d2r′ dt ′, (2)

where G+ is a Green’s function expressing how a sin-
gle transient point disturbance at (r′, zs, t ′) propagates
to (r, z, t), and G−(|r − r′|, z, t − t ′) = G+(|r − r′|,
z, t ′ − t) is its time reverse. Since both the spatial
and the temporal quadratures here are convolution inte-
grals, Fourier transforms reduce them to products, with
consequent computational advantages. In particular, the
wavenumber–frequency version of (2) is

Ĥ±(k⊥, z, ν) = Ĝ±(|k⊥|, z, ν) ψ̂(k⊥, ν) (3)

which is useful if the plane-parallel projection is appro-
priate, and the space–frequency version is

Ȟ±(r, z, ν) =
∫
a<|r−r′|<b

Ǧ±(|r − r′|, z, ν)ψ̌(r′, ν) d2r′,

(4)

which may be used for larger pupils, or when dispersion
is important.

The time taken for a wavefront emanating from a
point acoustic source at depth z to reach a surface point
horizontal distance r away is assumed to be given by

T (r, z) = min
�

∫
�

ds

c
(5)

where � represents a path joining these two points, c is
the sound speed, and ds an element of arc length. This
is Fermat’s principle, that the true ray path between fixed
points minimises travel time. However, this is only approx-
imately true in the Sun, a point revisited in Section 2.
Lindsey & Braun (1997) next write

G+(|r − r′|, z, t − t ′)
= δ [

t − t ′ − T (|r − r′|, z)] f (|r − r′|, z). (6)

Here f (r, z) represents the pulse amplitude, which is
determined from the condition that wave energy flux is
conserved. If we assume that we have a satisfactory mean
model for the sound speed as a function of depth, the
egression and ingression can be calculated numerically at
any subsurface point. The crudest measure of a subsurface
acoustic field is provided by the ‘acoustic power’

P(r, z) =
∫
	t

|H+(r, z, t)|2 dt, (7)

where 	t is a considerable time containing many wave
periods. Phase sensitive holography uses the temporal
correlation of the egression and the ingression

C(r, z, τ ) =
∫
	t

H−(r, z, t)H+(r, z, t + τ) dt, (8)
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(a)

(b)

Figure 1 (a) Density perturbation determined numerically for a truncated 2D isentropic m = 1.5 polytrope containing a Gaussian source
region (horizontal position x = 25 Mm, depth z = 5 Mm, standard deviation σ = 0.3 Mm) vibrating simultaneously with ten superimposed
frequencies between 1 mHz and 20 mHz. (b) Acoustic power (cf. equation (7)) determined numerically from surface oscillations of the model
of Figure (a).

from which travel times may be determined. Horizontal
flow maps may be generated in this way.

As an experiment, we calculated the acoustic field
due to a compact acoustic source in a polytropic atmo-
sphere, generated using the 2D finite difference code of
Cally (2000). The resulting surface oscillations were then
applied as described above to determine the subsurface
acoustic power. Figure 1 displays both the actual acous-
tic field and the holographic power image. Clearly, the

method is broadly successful at detecting the source, but
does not localise it very well.

Now, the formula for the egression is built upon
the Green’s function for the most basic wave equation
(see equation [9] below). It is therefore ‘aware’ of the
underlying atmosphere only through the sound speed in
equation (5), and so is clearly incapable of taking account
of dispersion associated with the cut-off or Brunt-Väisälä
frequencies. In reality, ray paths and travel times are
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frequency dependent. In the next section we set up the
theory for treating dispersive solar oscillations properly,
and apply it to both a simple polytrope and a realistic
solar model. It is hoped that, combined with the space–
frequency formulation, this will prove useful in further
developing acoustic holography so as to produce higher
resolution images.

2 Ray Paths for Acoustic Waves in a General
Atmosphere

The ray formalism forms the prime descriptive context
of ocean acoustics (Munk, Worcester & Wunsch 1995),
and a considerable body of theory has been developed
in that field. In the oceans, the effect of gravity and den-
sity gradients is negligible for frequencies above 1 Hz (see
Brekhovskikh & Lysanov 1982, §2.1), and so the wave
equation in its most basic form suffices:

∂2�

∂t2
= c2∇2�, (9)

where t is time, c is the sound speed, and� is some mea-
sure of the acoustic field, e.g. the pressure perturbation, or
the velocity potential. For this system, Fermat’s principle
applies, i.e. ray paths are associated with an extremum in
travel time.

Introducing the dependent variable

�(x, t) = ρ1/2c2∇· ξ , (10)

where ξ is the displacement and ρ is the equilibrium den-
sity, and otherwise following the method of Lamb (1932),
the fundamental equation governing acoustic disturbances
in an atmosphere such as the Sun can be written as(

∇2 − ω2
c

c2
− 1

c2

∂2

∂t2

)
∂2�

∂t2
= −N2∇2⊥�, (11)

where ∇2⊥ is the horizontal part of the Laplacian, N2 =
g/Hρ − g2/c2 is the squared Brunt-Väisälä frequency,
g is the gravitational acceleration, and

ω2
c = c2

4H 2
ρ

(
1 − 2H ′

ρ

)
(12)

is the square of the acoustic cut-off frequency, withHρ(z)
the density scale height, andH ′

ρ = dHρ/dz. Since we are
interested in local features, we work in cartesian coordi-
nates, and assume that each of ρ,N , ωc and c is a function
of vertical coordinate z alone. In the high frequency limit,
equation (11) reduces to the simple wave equation (9). For
arbitrary frequencies, however, a more general approach
must be taken. Following Weinberg (1962) and Bogdan
(1997), we look for a solution of the form

�(x, t) =
∫ ∫ ∞

−∞
ψσ (x, ω) eiSσ (x,ω)−iωt dω dσ, (13)

where σ is used loosely to represent particular ray paths.
For the most part, we shall be concerned with monochro-
matic radiation, where the ω dependence of ψ has a

delta-function form, propagating along one ray path. We
shall therefore discard the subscript σ onψ and S and their
explicit ω dependence from now on. The ray-theoretic
analysis assumes the amplitude ψ to be slowly varying
in the sense that lnψ changes slowly compared to S along
ray paths.

There are two different types of ray path considered in
the literature. One is associated with the phase velocity,
whilst the other represents the locus of a wave packet as
it propagates at the group velocity. For example, prop-
agation of the cross-correlation function 
(x,	x,	t),
which is at the basis of time–distance helioseismology,
is related to both descriptions: its envelope peak moves
along the group velocity paths, and its phase peaks fol-
low the phase velocity rays (D’Silva 1996b). Kosovichev
and Duvall (1997; see also Kosovichev, Duvall & Scherrer
2000) show how both group and phase angular speeds may
be derived simultaneously from fits to observational data
(see also Chou & Duvall 2000). It is the group velocity ray
paths which concern us in this paper. However, it should
be borne in mind that the formation of stigmatic optical
images in holography is dependent on interference based
on phase coherence rather than wave-packet timing (we
are indebted to Charles Lindsey for bringing this to our
attention). Nevertheless, the phase S is also derivable from
the ‘group velocity’ approach (equation [21] and Figure 5
below), and there would not appear to be any disadvantage
to this formalism.

Although the ray equations have been set out many
times before (e.g. D’Silva 1996a), we adopt a slightly dif-
ferent formalism, and present the analysis in detail in the
interests of clarity. Beginning with the full wave equation
(11), and substituting (13) into (11), we have

[
ω2 − ω2

c

c2 + i
(

∇2S − N2

ω2 ∇2⊥S
)

+
(
|∇S|2 − N2

ω2 |∇S⊥|2
)]
ψ

= −2i

(
∇S − N2

ω2 ∇⊥S
)

· ∇ψ −
(

∇2ψ − N2

ω2 ∇2⊥ψ
)
.

(14)

The wavevector is defined by

k(x) = ∇S(x), (15)

with k⊥ representing the horizontal part of k, and k ≡ |k|.
Then, to zeroth order (i.e. ignoring the spatial dependence
ofψ and k), the right hand side and the middle term on the
left hand side vanish, and a solution is clearly apparent:

D0 ≡ k2 − N2

ω2
k2⊥ − ω2 − ω2

c

c2
= 0. (16)

This is effectively the dispersion relation of Deubner &
Gough (1984) equation (2.3), widely used in ray theoretic
treatments of solar oscillations (e.g. D’Silva 1996a;
D’Silva & Duvall 1995).

Equation (16) partially specifies k. To complete its con-
struction, the standard technique is to define a family of
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ray paths given by

dx
dτ

= ∂D0

∂k
, (17)

dk
dτ

= −∂D0

∂x
, (18)

dt

dτ
= −∂D0

∂ω
, (19)

dω

dτ
= ∂D0

∂t
, (20)

where τ parametrises the progress of a disturbance along
the ray path. Clearly, sinceD0 is independent of horizontal
position, k⊥ remains constant along a ray. However, the
vertical component kz evolves due to the z dependence
of N , c, and ωc. Furthermore, for a time independent
medium, where ∂D0/∂t = 0, the frequency ω is also
invariant along the path. The phase function S evolves
according to

dS

dτ
= k · dx

dτ
, (21)

which is easily shown to satisfy (15). For the wave
equation in question here, this is equivalent to

dS

dt
= ω3 ω2 − ω2

c

ω4 −N2c2k⊥
, (22)

showing how the temporal evolution of phase depends
on the cut-off and Brunt-Väisälä frequencies. We note in
particular that the simple formula S = ωt is not correct
when ωc �= 0. This implies that Fermat’s principle does
not apply.2

The function f appearing in the holography Green’s
function (6) may be identified with the slowly varying
amplitude ψ . This is determined in the approximation
where terms involving second spatial derivatives of the
amplitude are neglected, but first derivatives are retained,
from

d lnψ

dτ
+ 1

2
∇ · dx

dτ
= 0. (23)

Cartesian and cylindrical geometries may be accommo-
dated neatly if we define

ψ̃ =
{
ψ, 2D cartesian coordinates;

r1/2ψ, cylindrical coordinates,
(24)

where r is the cylindrical radial (horizontal) coordinate.
Equation (23) then becomes

d ln ψ̃

dτ
+

(
1 − N2

ω2

)
∂k⊥
∂r

+ ∂kz

∂z
= 0, (25)

where r represents either the cartesian or cylindrical hori-
zontal distance. In the latter case, it is assumed that the
ray is emanating from r = 0. The factor of r1/2 in the
definition of ψ̃ simply accounts for geometric attenuation
in cylindrical geometry. For emission from a point source,

2It can be shown (Weinberg 1962) that Fermat’s principle applies for any
system where D0 is a homogeneous function of k and ω.

either 2D cartesian or 3D cylindrical, it is easily shown
that, at ‘time’ τ ,

ψ̃ ∼ constant × τ−1/2 as τ → 0+,

and hence r1/2ψ̃ = O(1) in that limit, as we would expect
from energy conservation considerations.

Our primary concern in this paper is with the applica-
tion of Fermat’s principle to determining both ray paths
and travel times. As we have seen, this is at least formally
inappropriate for solar models. Nevertheless, Fermat’s
principle is widely applied in holography. Strangely, it
also seems to be used in time–distance studies where ωc
is retained. For example, Kosovichev & Duvall (1997),
equation (12), identify the travel time variations due to
underlying flow and magnetic fields (which they treat as
perturbations to a background state) as δt = ω−1

∫


δk ·

dx, despite including the cut-off frequency in their dis-
persion relation. This is clearly not correct. We shall
now investigate the errors which may be introduced by
adopting Fermat’s principle.

2.1 A Polytropic Atmosphere

In this section, we briefly apply ray theory to an isen-
tropic, plane-parallel, polytropic atmosphere with poly-
trope index m. A more detailed exposition may be found
in Price (2000). In our model, the Brunt-Väisälä frequency
vanishes, and equation (11) reduces to[

∇2 − m(m+ 2)

4z2
+ mω2

gz

]
ψ = 0, (26)

where g is the acceleration due to gravity. Equations (17)
and (18) can be solved analytically to give the following
expressions for a ray path launched horizontally from its
lower turning point:

k⊥z = −mω
2

2k⊥g
−

[(
mω2

2k⊥g

)2

− m(m+ 2)

4

]1/2

× cos

[
gk⊥
mω2

ωt

]
(27)

k⊥x = ω

2
t −

[(
mω2

2k⊥g

)2

− m(m+ 2)

4

]1/2

sin

[
gk⊥
mω2

ωt

]
(28)

where k⊥ is the (constant) horizontal wavenumber, and
x = 0 at time t = 0. In the limit

ω4 � k2⊥g2(m+ 2)

m
(29)

these ray paths match those derived by minimising the
travel time between two points. For the Sun, where g� =
274 m s−2 and m ≈ 1.5, we may reexpress this in terms
of the horizontal skip distance, d = πmω2/k2⊥g, as

(
ν

1 mHz

)2(
d

30 Mm

)
� 1. (30)
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Figure 2 Ray paths for waves in a GONG model atmosphere. The
dashed line gives the high frequency limit (actually 100 mHz is used
here), while the solid lines are ray paths for frequencies of 2, 3, 4, 6,
8, and 10 mHz (the solid lines, lowest turning depth to highest). The
dots on each path are three minutes apart, and indicate propagation
speed. Note that even though the 10 mHz path is quite similar to
the high frequency limit at depths of order 1 Mm or greater, the
behavior at the surface is quite different. Waves with frequencies
less than about 10 mHz are reflected by the behaviour of the cut-off
frequency near the surface (see Figure 3), while higher frequencies
propagate all the way to z = 0 and beyond.

The oscillations of most interest for probing sunspots and
active regions typically have frequencies of a few milli-
Hertz, and skip distances in the range 15–45 Mm (see e.g.
Lindsey & Braun 1999), putting them in a regime where
differences from the minimised travel time ray paths are
potentially significant.

2.2 The Real Sun

Of course, the real Sun is not a polytrope. However, con-
sidering a more realistic model of the solar interior does
not greatly change things. The most direct way to dis-
play dispersion is to launch a multichromatic ray packet
in a single direction and observe the different frequency
components separating. In Figure 2, we show ray paths
calculated numerically from equations (17) and (18) in a
GONG solar model3 fgong.15bi.d.15, which uses OPAL
opacities, the Livermore equation of state, and He and Z
diffusion. We start the rays from a depth of 5 Mm, at an
angle of 45◦ below the horizontal, for a range of frequen-
cies between 2 mHz and 10 mHz, plus the high frequency
limit. At depths greater than about 1 Mm, the ray paths are
qualitatively similar, with the deviations from the high
frequency limit getting progressively larger as the fre-
quency decreases. At 10 mHz the deviations are not large,
but become quite significant by 4 mHz. This should come
as no surprise, since the Sun’s polytropic index changes
slowly at depths greater than about 1 Mm, so the results of
the preceding subsection apply. In this case, we are show-
ing waves with horizontal skip distances of order 30 Mm,
so we expect that the term dependent upon the cut-off fre-
quency will only be negligible for waves with frequencies
much greater than about a milliHertz.

Above a depth of about a megametre, the Sun is no
longer well approximated by a polytrope, so the results of

3Available from http://www.obs.aau.dk/∼jcd/adipack.n/

�1.5 �1 �0.5 0 0.5
z (Mm)

�20

0

20

40

60

80

100

(�
c/

2�
)2 , (

N
/2

�
)2    

(m
H

z2 )

�20 �15 �10 �5 0

0

1

2

3

4

5

6

Figure 3 The square of the cut-off frequency (solid line) and the
Brunt-Väisälä frequency (dashed line) as a function of depth in a
GONG model atmosphere.At depths greater than a few hundred kilo-
metres, the Brunt-Väisälä frequency is negligible even for waves with
frequencies of a few milliHertz, while the cut-off frequency makes a
significant difference for waves with frequencies of a few milliHertz,
but has little impact on waves with frequencies above about 10 mHz.
However, even waves with frequencies up to about 10 mHz will be
reflected off the spike in the cut-off frequency at z ≈ −100 km,
never reaching z = 0 in a ray theoretic treatment. The dotted curve
represents ω̃c = c/2Hρ , the ‘isothermal’ acoustic cut-off frequency.
Inset: same, though extending from depth −20 Mm to −0.1 Mm.

the previous subsection are not applicable. The reason that
none of the ray paths except the high frequency limit reach
the surface has to do with the behaviour of the cut-off fre-
quency and the Brunt-Väisälä frequency just below z = 0.
Figure 3 shows the squares of both frequencies plotted as
a function of depth. It is only within the first few hundreds
of kilometres below the surface that either of the frequen-
cies becomes significant in comparison with a frequency
of a few milliHertz. The cause of the abrupt changes in the
frequencies at z ≈ −100 km is a change in the ionisation
state of hydrogen. What this means for acoustic waves is
that those with frequencies less than about 10 mHz will be
partially reflected at this depth, and partially transmitted
via tunnelling through to the region above, in which they
can continue to propagate. However, classical ray theory
has no way of dealing with this, and so theoretically rays
are completely reflected at this depth. This is very impor-
tant as observations may well be made in regions which ray
theory would suggest no rays have reached. Even waves
with frequencies slightly above 10 mHz, which propagate
freely through this region, will have theoretical ray paths
significantly different from the high frequency limit. How-
ever, in reality it is known that the solar surface is largely
transparent to rays above about 5 mHz, indicating that they
successfully tunnel through the ωc spike. (Another way of
looking at this is that the WKB approximation upon which
ray theory is based breaks down in regions of high spatial
gradients, and should be supplemented by proper match-
ing procedures; see e.g. Bender & Orszag 1978.) This
may be crudely accounted for by simply arbitrarily remov-
ing the spike. One way of achieving this is to replace the
acoustic cut-off frequency given by (12) by the ‘isother-
mal’ value ω̃c = c/2Hρ (Jefferies et al. 1994), depicted in
Figure 3 by the dotted curve. We do not implement this.
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The frequency dependence of the amplitude, at the
level of approximation adopted in this paper, is gener-
ally weaker than that of the ray paths for disturbance with
frequencies of a few milliHertz. In Figure 4, we show
the amplitude as a function of horizontal distance from a
point source for the 4 mHz and high frequency limit cases
of the rays shown in Figure 2. Along most of the ray paths,
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Figure 4 The slowly varying amplitude, ψ , times the horizontal
distance, r , as a function of horizontal distance for the 4 mHz (solid
line) and high frequency limit (dashed line) rays shown in Figure 2.
Compared with the changes in the ray paths, the amplitude shows a
weaker frequency dependence except near the upper turning point
(r ≈ 18 Mm).
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Figure 5 The phase S as a function of horizontal distance (top frame), depth (lower left), and time (lower right) for the 4 mHz case in Figure 2,
with (solid line) and without (dashed line) the cut-off and Brunt-Väisälä frequencies. The integration time is the same for both models. The
horizontal grid lines represent multiples of 2π .

the deviation from the high frequency limit is fairly small
compared with that of the ray path. However, some signif-
icant differences do appear near the upper turning point,
where ray theory as described here breaks down.

As mentioned earlier, the phase S is of prime impor-
tance in holography. This is displayed as a function of
both r and z in Figure 5, again for 4 mHz. In this case,
comparison is made not with the high frequency limit, but
with an atmosphere having the same sound speed profile,
but zero cut-off and Brunt-Väisälä frequencies. It is seen
that the difference in phase at the upper turning point (end
of the full curves) is quite small, but that their horizontal
positions are significantly different.

Another measure of dispersion is provided by the
primary tool of time–distance helioseismology, the time–
distance diagram. In Figure 6 we show how this varies
with frequencies ranging from 2 mHz to 6 mHz. Clearly,
the deviations from the ‘infinite frequency’ approxima-
tions (Figure 7) are substantial, especially at low fre-
quencies. Indeed, variations of one to several minutes
are large in comparison to typical perturbations encoun-
tered in studies of sub-surface temperature enhancements,
flows, and magnetic fields (e.g. around 20 seconds as
reported by Duvall et al. 1996). This raises concerns about
interpretation. For example, Duvall et al. (1996) measure
travel times between a surface point and a surrounding
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Figure 6 The single skip time–distance curves of the solar model
for a range of frequencies: 2 mHz (top curve), 3 mHz, 4 mHz, 5 mHz,
6 mHz (bottom full curve). These are the times and horizontal dis-
tances between successive skips, not successive crossings of a set
‘surface’ zs . However, due to the steepness of the cut-off spike
displayed in Figure 3, this turning point lies between −0.08 and
−0.07 Mm in each case, with only a very weak dependence on ω
and k⊥. The dashed curve corresponds to the ‘infinite frequency’
case in which ωc and N are set to zero. However, since this ray
path does not ‘skip’, because of the finite height of the cut-off peak,
the times and distances have been chosen to represent separations
between two points on the ‘surface’ z = 0.
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Figure 7 The delay 	t between the single skip times at frequen-
cies 2 mHz (top full curve), 3 mHz, 4 mHz, 5 mHz, 6 mHz, and
10 mHz (bottom full curve) compared to the ‘infinite frequency’
skip time (dashed curve in Figure 6). The dotted curves represent
single skip delays where the Brunt-Väisälä frequency N is set to
zero throughout, but ωc is left unchanged.

annulus, and filter out flows by averaging ingoing and
outgoing rays. The remaining differences with average
travel times over the surface were attributed to local wave
speed enhancements, in particular, sound speed (temper-
ature) inhomogeneities. However, our results show that
local variations in acoustic cut-off and Brunt-Väisälä fre-
quencies may also be relevant, as these too greatly affect
travel time. The relative importance of sound speed ver-
sus ωc and N variations may be estimated by utilising
a range of different frequencies. Indeed, Jefferies et al.
(1994) present an inversion method for ωc based on travel
times. Figure 7 also shows the frequency dependent travel
time variation if the Brunt-Väisälä frequency is set to

zero. This suggests thatN could possibly be probed using
short-skip 3 mHz rays.

3 Conclusions

While holography has a great deal of potential to reveal
subsurface structures in the Sun, care must be taken in
applying it. For the frequency regime of most interest,
the ray paths must be determined from a formulation
which includes the effects of the cut-off frequency and the
Brunt-Väisälä frequency. At shallow depths in particular
(the first few hundreds of kilometres below the surface),
these additional terms can change the ray paths for waves
with frequencies less than about 5 mHz quite significantly.
In a model solar atmosphere, including these terms also
leads to the reflection of rays at a depth of about one hun-
dred kilometres below the surface, suggesting that even a
classical ray treatment involving the frequency dependent
terms will not adequately model these layers. In addition to
modifying the ray paths, these extra terms also affect the
amplitude and phase of an acoustic wave, although this
is usually a smaller effect than the changes in the paths
themselves. As discussed by Bogdan (1997) though, it is
far from clear that a single ray can adequately represent
a wave packet for low frequency waves. Instead, ray bun-
dles must be constructed. Despite these limitations, we
feel that its already considerable successes show it to be
an extremely valuable tool.
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