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Central Limit Theorem (Th. B.7.2) Mean-square of ζ(s) on the critical
line (Prop. C.4.1)

Gaussian random variable (Section B.7) Multiplicative functions (Section C.1)

Lipschitz test functions (Prop. B.4.1) Euler products (Lemma C.1.4)

Method of moments (Th. B.5.5)

4.1 Introduction

In this chapter, as indicated previously, we will continue working with the
values of the Riemann zeta function, but on the critical line s = 1

2 + it , where
the issues are much deeper.

Indeed, the analogue of Theorem 3.1.1 fails for τ = 1/2, which shows that
the Riemann zeta function is significantly more complicated on the critical
line. However, there is a limit theorem after normalization, due to Selberg, for
the logarithm of the Riemann zeta function. To state it, we specify carefully the
meaning of log ζ( 1

2 + it). We define a random variable LT on �T by putting
L(t) = 0 if ζ(1/2+ it) = 0, and otherwise

LT(t) = log ζ
(

1
2 + it

)
,
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76 The Distribution of Values of the Riemann Zeta Function

where the logarithm of zeta is the unique branch that is holomorphic on a
narrow strip

{s = σ + iy ∈ C | σ > 1
2 − δ, |y − t | � δ}

for some δ > 0 and satisfies log ζ(σ + it)→ 0 as σ →+∞.

Theorem 4.1.1 (Selberg) With notation as above, the random variables

LT√
1
2 log log T

on �T converge in law as T → +∞ to a standard complex Gaussian random
variable.

We will in fact only prove “half” of this theorem: we consider only the real
part of log ζ( 1

2 + it), or in other words, we consider log |ζ( 1
2 + it)|. So we

(re)define the arithmetic random variables LT on �T by LT(t) = 0 if ζ( 1
2 +

it) = 0, and otherwise LT(t) = log |ζ( 1
2 + it)|. Note that dealing with the

modulus means in particular that we need not worry about the choice of the
branch of the logarithm of complex numbers. We will prove:

Theorem 4.1.2 (Selberg) The random variables

LT√
1
2 log log T

converge in law as T →+∞ to a standard real Gaussian random variable.

4.2 Strategy of the Proof of Selberg’s Theorem

We present the recent proof of Theorem 4.1.2 due to Radziwiłł and Soundarara-
jan [95]. In comparison with Bagchi’s Theorem, the strategy has the common
feature of the use of suitable approximations to ζ , and the probabilistic limiting
behavior will ultimately derive from the independence and distribution of the
vector t �→ (p−it )p (as in Proposition 3.2.5). However, one has to be much
more careful than in the previous section.

Precisely, the approximation used by Radziwiłł and Soundararajan involves
three steps:

• Step 1: An approximation of LT by the random variable L̃T given by
t �→ log |ζ(σ0 + it)| for σ0 sufficiently close to 1/2 (where σ0 depends
on T).
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4.2 Strategy of the Proof of Selberg’s Theorem 77

• Step 2: For the random variable ZT given by t �→ ζ(σ0 + it), so that
log |ZT| = L̃T, an approximation of the inverse 1/ZT by a short Dirichlet
polynomial DT of the type

DT(s) =
∑
n�1

aT(n)μ(n)n
−s,

where aT(n) is zero for n large enough (again, depending on T); here μ(n)
denotes the Möbius function (see Definition C.1.3), and we recall once
more that it satisfies ∑

n�1

μ(n)n−s = 1

ζ(s)

if Re(s) > 1 (see Corollary C.1.5). At this point, we get an approximation
of LT by − log |DT|.

• Step 3: An approximation of |DT| by what is essentially a short Euler
product, namely, by exp(−Re(PT)), where

PT(t) =
∑
pk�X

1

k

1

pk(σ0+it) (4.1)

for suitable X (again depending on T). In this definition, and in all formulas
involving such sums below, the condition pk � X is implicitly restricted to
integers k � 1. At this point, LT is approximated by Re(PT).

Finally, the last probabilistic step is to prove that the random variables

Re(PT)√
1
2 log log T

converge in law to a standard Gaussian random variable as T →+∞.
None of these steps (except the last) is easy, in comparison with the results

discussed up to now, and the specific approximations that are used (namely,
the choices of the coefficients aT(n) as well as of the length parameter X) are
quite subtle and by no means obvious (they can be seen to be related to sieve
methods). Even the nature of the approximation will not be the same in the
three steps!

In order to simplify the reading of the proof, we first specify the relevant
parameters. We assume from now on that T � ee2

. We denote by

�T =
√

1
2 log log T � 1
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78 The Distribution of Values of the Riemann Zeta Function

the normalizing factor in the theorem. We then define

W = (log log log T)4 � (log �T)
4, σ0 = 1

2
+ W

log T
= 1

2
+ O

(
(log �T)

4

log T

)
,

(4.2)

X = T1/(log log log T)2 = T1/
√

W. (4.3)

Note that we omit the dependency on T in most of these notation. We will also
require a further parameter

Y = T1/(log log T)2 = T4/�4 � X. (4.4)

We begin by stating the precise approximation statements. All parameters
are now fixed as above for the remainder of this chapter. After stating the
precise form of each steps of the proof, we will show how they combine to
imply Theorem 4.1.2, and finally we will establish these intermediate results.

Proposition 4.2.1 (Moving outside of the critical line) We have

ET

(
|LT − L̃T|

)
= o(�T)

as T →+∞.

We now define properly the Dirichlet polynomials that appear in the second
step of the approximation. It is here that the arithmetic subtlety lies, since the
definition is quite delicate. We define first

m1 = 100 log log T � �T and m2 = 100 log log log T � log �T. (4.5)

We denote by bT(n) the characteristic function of the set of squarefree integers
n � 1 such that all prime factors of n are � Y, and n has at most m1 prime
factors. We denote by cT(n) the characteristic function of the set of squarefree
integers n � 1 such that all prime factors p of n satisfy Y < p � X, and n has
at most m2 prime factors. We associate to these the Dirichlet polynomials

B(s) =
∑
n�1

μ(n)bT(n)n
−s and C(s) =

∑
n�1

μ(n)cT(n)n
−s

for s ∈ C. Finally, define D(s) = B(s)C(s). The coefficient of n−s in the
expansion of D(s) is the Dirichlet convolution∑

de=n
bT(d)cT(e)μ(d)μ(e) =

∑
de=n
(d,e)=1

bT(d)cT(e)μ(d)μ(e)

= μ(n)
∑
de=n
(d,e)=1

bT(d)cT(e) = μ(n)aT(n),
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4.2 Strategy of the Proof of Selberg’s Theorem 79

say, by Proposition A.4.4, where we used the fact that d and e are coprime if
bT(d)cT(e) is nonzero since the set of primes dividing an integer in the support
of bT is disjoint from the set of primes dividing an integer in the support of cT.
It follows then from this formula that aT(n) is the characteristic function of the
set of squarefree integers n � 1 such that

(1) all prime factors of n are � X;
(2) there are at most m1 prime factors p of n such that p � Y;
(3) there are at most m2 prime factors p of n such that Y < p � X.
It is immediate, but very important, that aT(n) = 0 unless n is quite small,

namely,

n � Y100 log log TX100 log log log T = Tc,

where

c = 100

log log T
+ 100

log log log T
→ 0 as T →+∞.

Finally, we define the arithmetic random variable

DT = D(σ0 + it). (4.6)

Remark 4.2.2 Although the definition of D(s)may seem complicated, we will
see its different components coming together in the proofs of this proposition
and the next.

If we consider the support of aT(n), we note that (by the Erdős–Kac
Theorem, restricted to squarefree integers as in Exercise 2.3.4) the typical
number of prime factors of an integer n � Ym1 is about log log Ym1 ∼ log
log T. Therefore the integers satisfying bT(n) = 1 are quite typical, and only
extreme outliers (in terms of the number of prime factors) are excluded. On
the other hand, the integers satisfying cT(n) = 1 have much fewer prime
factors than is typical, and are therefore quite rare (they are, in a weak sense,
“almost prime”). This indicates that aT is a subtle arithmetic truncation of the
characteristic function of integers n � Tc, and hence that∑

n�1

aT(n)μ(n)n
−s

is an arithmetic truncation of the Dirichlet series that formally gives the
inverse of ζ(s). This should be contrasted with the more traditional analytic
truncations of ζ(s) that were used in Lemma 3.2.10 and Proposition 3.2.11.
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80 The Distribution of Values of the Riemann Zeta Function

For comparison, it is useful to note that Selberg himself used in many
applications certain truncations that are roughly of the shape∑

n�X

μ(n)

ns

(
1− log n

log X

)
.

Proposition 4.2.3 (Dirichlet polynomial approximation) The difference
ZTDT converges to 1 in L2, that is, we have

lim
T→+∞

ET
(|1− ZTDT|2

) = 0.

Proposition 4.2.4 (Euler product approximation) The random variables
DT exp(−PT) converge to 1 in probability, that is, for any ε > 0, we have

lim
T→+∞

PT
(|DT exp(PT)− 1| > ε) = 0.

In particular, PT(DT = 0) tends to 0 as T →+∞.

Despite our probabilistic presentation, the three previous statement are
really theorems of number theory, and would usually be stated without
probabilistic notation. For instance, Proposition 4.2.1 means that

1

T

∫ T

−T
| log |ζ(1/2+ it)| − log |ζ(σ0 + it)||dt = o(

√
log log T).

The last result finally introduces the probabilistic behavior,

Proposition 4.2.5 (Gaussian Euler products) The random variables �−1
T PT

converge in law as T → +∞ to a standard complex Gaussian random
variable. In particular, the random variables

Re(PT)√
1
2 log log T

converge in law to a standard Gaussian random variable.

We will now explain how to combine these ingredients for the final step of
the proof.

Proof of Theorem 4.1.2 Until Proposition 4.2.5 is used, this is essentially a
variant of the fact that convergence in probability implies convergence in law,
and that convergence in L1 or L2 implies convergence in probability.

For the details, fix some standard Gaussian random variable N. Let f be a
bounded Lipschitz function R −→ R, and let C � 0 be a real number such that

|f (x)− f (y)| � C|x − y|, |f (x)| � C, for x, y ∈ R.
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4.2 Strategy of the Proof of Selberg’s Theorem 81

We consider the difference∣∣∣∣ET

(
f

(
LT

�T

))
− E(f (N))

∣∣∣∣
and must show that this tends to 0 as T →+∞.

We estimate this quantity using the “chain” of approximations introduced
above: we have∣∣∣∣ET

(
f

(
LT

�T

))
− E(f (N))

∣∣∣∣
� ET

(∣∣∣∣∣f
(

LT

�T

)
− f

(
L̃T

�T

)∣∣∣∣∣
)
+ ET

(∣∣∣∣∣f
(

L̃T

�T

)
− f

(
log |DT|−1

�T

)∣∣∣∣∣
)

+ ET

(∣∣∣∣f ( log |DT|−1

�T

)
− f

(
Re PT

�T

)∣∣∣∣)
+
∣∣∣∣ET

(
f

(
Re PT

�T

))
− E(f (N))

∣∣∣∣ , (4.7)

and we discuss each of the four terms on the right-hand side using the four
previous propositions (here and below, we define |DT|−1 to be 0 if DT = 0).

The first term is handled straightforwardly using Proposition 4.2.1: we have

ET

(∣∣∣∣∣f
(

LT

�T

)
− f

(
L̃T

�T

)∣∣∣∣∣
)
� C

�T
ET(|LT − L̃T|) −→ 0

as T →+∞.
For the second term, let AT ⊂ �T be the event

{DT = 0} ∪ {|̃LT − log |DT|−1| > 1/2}

and A′T its complement. Since log |ZT| = L̃T, we then have

ET

(∣∣∣∣∣f
(

L̃T

�T

)
− f

(
log |DT|−1

�T

)∣∣∣∣∣
)
� 2C PT(AT)+ C

2�T
.

Proposition 4.2.3 implies that PT(AT) → 0 (convergence to 1 of ZTDT in L2

implies convergence to 1 in probability, hence convergence to 0 in probability
for the logarithm of the modulus) and therefore

ET

(∣∣∣∣∣f
(

L̃T

�T

)
− f

(
log |DT|−1

�T

)∣∣∣∣∣
)
→ 0

as T →+∞.
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82 The Distribution of Values of the Riemann Zeta Function

We now come to the third term on the right-hand side of (4.7). Distinguish-
ing according to the events

BT =
{∣∣log |DT exp(PT)|

∣∣ > 1/2
}

and its complement, we get as before

ET

(∣∣∣∣f ( log |DT|−1

�T

)
− f

(
Re PT

�T

)∣∣∣∣) � 2C PT(BT)+ C

2�T
,

and this also tends to 0 as T →+∞ by Proposition 4.2.4.
Finally, Proposition 4.2.5 implies that∣∣∣∣ET

(
f

(
Re PT

�T

))
− E(f (N))

∣∣∣∣→ 0

as T → +∞, and hence we conclude the proof of the theorem, assuming the
approximation statements.

We now explain the proofs of these four propositions. We begin with
the easiest part, which also happens to be where the transition to the
pure probabilistic behavior happens. A key tool is the quantitative form of
Proposition 3.2.5 contained in Lemma 3.2.6. More precisely, as in Section 3.2,
let X= (Xp)p be a sequence of independent random variables uniformly dis-
tributed on S1. We define Xn for n� 1 by multiplicativity as in formula (3.7).

Lemma 4.2.6 Let (a(n))n�1 be any sequence of complex numbers with
bounded support. For any T � 2 and σ � 0, we have

ET

(∣∣∣∣∑
n�1

a(n)

nσ+it

∣∣∣∣2) =∑
n�1

|a(n)|2
n2σ

+ O

(
1

T

∑
m,n�1
m�=1

|a(m)a(n)|
(mn)

σ− 1
2

)

= E
(∣∣∣∣∑
n�1

Xn
nσ

∣∣∣∣2)+ O

(
1

T

∑
m,n�1
m�=1

|a(m)a(n)|
(mn)

σ− 1
2

)
,

where the implied constant is absolute.

Proof We have

ET

(∣∣∣∣∑
n�1

a(n)

nσ+it

∣∣∣∣2) =∑
m

∑
n

a(m)a(n)

(mn)σ
ET

(( n
m

)it)
.

We now apply Lemma 3.2.6 and separate the “diagonal” contribution where
m = n from the remainder. This leads to the first formula in the lemma, and
the second then reflects the orthonormality of the sequence (Xn)n�1.
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4.2 Strategy of the Proof of Selberg’s Theorem 83

When applying this lemma, we call the first term the “diagonal” contribu-
tion and the second the “off-diagonal” one.

Proof of Proposition 4.2.5 We have PT=QT + RT, where QT is the contri-
bution of the primes and RT the contribution of squares and higher powers of
primes. We first claim that RT is uniformly bounded in L2 for all T. Indeed,
using Lemma 4.2.6, we get

ET(|RT|2) = ET

(∣∣∣∣∑
k�2

∑
p�X1/k

1

k
p−kσ0p−kit

∣∣∣∣2)

=
∑
pk�X
k�2

1

k2
p−2kσ0 + O

(
1

T

∑
k,l�2

∑
pk,ql�X
p �=q

1

kl
(pq)

−2σ0+ 1
2

)

� 1+ X2 log X

T
� 1

since X � Tε for any ε > 0.
From this, it follows that it is enough to show that QT/�T converges in law

to a standard complex Gaussian random variable N. For this purpose, we use
moments, that is, we compute

ET

(
QkTQT

)
for integers k,  � 0, and we compare with the corresponding moment of the
random variable

QT =
∑
p�X

p−σ0 Xp.

After applying Lemma 3.2.6 again (as in the proof of Lemma 4.2.6), we find
that

ET

(
QkTQT

)
= E(QkTQ



T)+ O

(
1

T

∑
m�=n
(mn)−σ0+1/2

)
,

where the sum in the error term runs over integers m (resp. n) with at most k
prime factors, counted with multiplicity, all of which are � X (resp. at most
 prime factors, counted with multiplicity, all of which are � X). Hence this
error term is

� 1

T

( ∑
p�X

1

)k+
� Xk+

T
.
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84 The Distribution of Values of the Riemann Zeta Function

Next, we note that

V(QT) =
∑
p�X

p−2σ0 V(X2
p) =

1

2

∑
p�X

p−2σ0 .

We compute this sum by splitting in two ranges p � Y and Y < p � X (recall
that σ0 depends on T). The second sum is

�
∑

Y<p�X

1

p
= log

(
log X

log Y

)
+ O(1)� log log log T

by Proposition C.3.1 and (4.2). On the other hand, for p � Y = T1/(log log T)2 ,
we have

p−2σ0 = p−1 exp

(
−2
(logp)

(log T)
W

)
= p−1

(
1+ O

(
W

(log log T)2

))
,

which, in view of (4.2), implies that V(QT) ∼ 1
2 log log T = �2

T as T →+∞.
It is finally again a case of the Central Limit Theorem that QT/

√
V(QT), and

hence also QT/�T, converges in law to a standard complex Gaussian random
variable, with convergence of the moments (Theorem B.7.2 and Theorem B.5.6
(2), Remark B.5.8), so the conclusion follows from the method of moments
since Xk+/T → 0 as T →+∞.

The other propositions will now be proved in order. Some of the arithmetic
results that we will used are only stated in Appendix C (with suitable
references).

Proof of Proposition 4.2.1 We appeal to Hadamard’s factorization of the Rie-
mann zeta function (Proposition C.4.3) in the form of its corollary, Proposition
C.4.4. Let t ∈ �T be such that there is no zero of zeta with ordinate t (this only
excludes finitely many values of t for a given T). We have

log |ζ(σ0 + it)| − log |ζ( 1
2 + it)| = Re

(∫ σ0

1/2

ζ ′

ζ
(σ + it)dσ

)

=
∫ σ0

1/2
Re

(
ζ ′

ζ
(σ + it)

)
dσ .

For any σ with 1
2 � σ � σ0, we have

−ζ
′

ζ
(σ + it) =

∑
|t−Im(�)|<1

1

σ + it − � + O(log(2+ |t |)),

by Proposition C.4.4, where the sum is over zeros � of ζ(s), counted with
multiplicity, such that |σ + it − �| < 1.
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4.3 Dirichlet Polynomial Approximation 85

We fix t0 ∈ �T and integrate over t such that |t − t0| � 1. This leads to∫ t0+1

t0−1

∣∣log |ζ(σ0 + it)| − log |ζ( 1
2 + it)|

∣∣dt
�

∑
| Im(�)−t0|�1

∫ t0+1

t0−1

∫ σ0

1
2

∣∣∣∣Re

(
1

σ + it − �
)∣∣∣∣ dtdσ .

An elementary integral (!) gives∫ t0+1

t0−1

∣∣∣∣Re

(
1

σ + it − �
)∣∣∣∣ dt � ∫

R

∣∣∣∣Re

(
1

σ + it − �
)∣∣∣∣ dt

=
∫

R

|σ − β|
(σ − β)2 + (t − γ )2 dt = π

for all σ and �. Hence we get

1

T

∫
|t−t0|�1

∣∣log |ζ( 1
2 + it − �)| − log |ζ(σ0 + it − �)|

∣∣dt � (σ0 − 1
2 )
m(t0)

T
,

where m(t0) is the number of zeros � such that |t0 − Im(�)| � 1. This is
� log(2+ |t0|) by Proposition C.4.4 again. Finally, by summing the bound

1

T

∫
|t−t0|�1

∣∣∣log
∣∣∣ζ ( 1

2 + it − �
) ∣∣∣− log |ζ(σ0 + it − �)|

∣∣∣dt
�
(
σ0 − 1

2

) log(2+ |t0|)
T

over a partition of �T in� T intervals of length 2, we deduce that

ET(|LT − L̃T|)� (σ0 − 1
2 ) log T = W.

We have W= o(�T) (by a rather wide margin!), and the proposition
follows.

The last two propositions are more involved, and we present their proofs in
separate sections.

4.3 Dirichlet Polynomial Approximation

We will prove Proposition 4.2.3 in this section, that is, we need to prove that

ET(|1− ZTDT|2),
where ZT(t) = ζ(σ0 + it), tends to 0 as T → +∞. This is arithmetically the
most involved part of the proof.
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First of all, we use the approximation formula

ζ(σ0 + it) =
∑

1�n�T

n−σ0−it + O

(
T1−σ0

|t | + 1
+ T−1/2

)
for t ∈ �T (see Proposition C.4.5). Multiplying by DT, we obtain

ET(ZTDT) =
∑
m�1
n�T

aT(m)μ(m)ET((mn)
−σ0)

+ O

(
T1/2

∑
m�1

aT(m)ET((|t | + 1)−1)+ T−1/2
∑
m�1

aT(m)m
−σ0

)
.

We recall that |aT(n)| � 1 for all n, and aT(n) = 0 unless n � Tε, for any
ε > 0. Hence, by (3.4), this becomes

ET(ZTDT) = 1+ O

(
1

T

∑
n�T
m�=n

aT(m)(mn)
−σ0(logmn)

)
+ O(T−1/2+ε)

= 1+ O(T−1/2+ε)

for any ε > 0 (in the diagonal terms, only m = n = 1 contributes, and in the
off-diagonal termsmn �= 1, we have ET((mn)

−it )� T−1 log(mn)). It follows
that it suffices to prove that

lim
T→+∞

ET(|ZTDT|2) = 1.

We expand the mean-square using the formula for DT and obtain

ET(|ZTDT|2) =
∑
m,n

μ(m)μ(n)

(mn)σ0
aT(m)aT(n)ET

((m
n

)it |ZT|2
)

.

Now the asymptotic formula of Proposition C.4.6 translates to a formula for
ET
(
(m/n)it |ZT|2

)
, namely,

ET

((m
n

)it |ZT|2
)
= ζ(2σ0)

(
(m,n)2

mn

)σ0

+ ζ(2− 2σ0)

(
(m,n)2

mn

)1−σ0

ET

(( |t |
2π

)1−2σ0
)

+ O(min(m,n)T−σ0+ε)

for any ε > 0, where the expectation is really the integral

1

2T

∫ T

−T

( |t |
2π

)1−2σ0

dt,
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and we recall that (m,n) denotes here the gcd of m and n.
Using the properties of aT(n), the error term is easily handled, since it is at

most

T−σ0+ε∑
m,n

(mn)−σ0aT(m)aT(n)min(m,n) � T−σ0+ε
(∑
m

m1/2aT(m)

)2

� T−σ0+2ε

for any ε > 0. Thus we only need to handle the main terms, which we write as

ζ(2σ0)M1 + ζ(2− 2σ0)ET

(( |t |
2π

)1−2σ0
)

M2, (4.8)

where

M1 =
∑
m,n

μ(m)μ(n)

(mn)2σ0
aT(m)aT(n)(m,n)

2σ0

and M2 is the other term. Using the multiplicative structure of aT, the first term
factors in turn as M1 = M′

1M′′
1, where

M′
1 =

∑
m,n

μ(m)μ(n)

[m,n]2σ0
bT(m)bT(n),

M′′
1 =

∑
m,n

μ(m)μ(n)

[m,n]2σ0
cT(m)cT(n).

We compare M′
1 to the similar sum M̃′

1 where bT(n) and bT(m) are replaced
by characteristic functions of integers with all prime factors � Y, forgetting
only the requirement to have � m1 prime factors. By Example C.1.7, we have

M̃′
1 =

∏
p�Y

(
1− 1

p2σ0

)
.

The difference M′
1 − M̃′

1 can be bounded from above by

2e−m1
∑
m,n

|μ(m)μ(n)|
[m,n]2σ0

e�(m),

where the sum runs over integers with all prime factors � Y (this step is a
case of what is called “Rankin’s trick”: the condition �(m) > m1 is handled
by bounding its characteristic function by the nonnegative function e�(m)−m1 ).
Again from Example C.1.7, this is at most

2(log T)−100
∏
p�Y

(
1+ 1+ 2e

p

)
� (log T)−90

https://doi.org/10.1017/9781108888226.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.005


88 The Distribution of Values of the Riemann Zeta Function

(by Proposition C.3.6). Thus

M′
1 ∼

∏
p�Y

(1− p−2σ0)

as T →+∞. One deals similarly with the second term M′′
1, which turns out to

satisfy

M′′
1 ∼

∏
Y<p�X

(1− p−2σ0),

and hence

M1 ∼ ζ(2σ0)
∏
p�X

(1− p−2σ0) =
∏
p>X

(1− p−2σ0).

Now, by the choice of the parameters, we obtain from the Prime Number
Theorem (Theorem C.3.3) the upper bound∑
p>X

p−2σ0 �
∫ +∞

X

1

t2σ0

dt

log t
� X1−2σ0

(2σ0 − 1) log X
= X1−2σ0

2
√

W
� 1

2
√

W
.

Since this tends to 0 as T →+∞, it follows that∏
p>X

(1− p−2σ0) = exp

(∑
p>X

(
1

p2σ0
+ O

(
1

p4σ0

))

= exp

(
−
∑
p>X

p−2σ0

)
(1+ o(1))

converges to 1 as T →+∞.
There only remains to check that the second part M2 of the main term (4.8

tends to 0 as T →+∞. We have

M2 =
∑
m,n

μ(m)μ(n)

mn
aT(m)aT(n)(m,n)

2−2σ0

=
∑
m,n

μ(m)μ(n)

[m,n]2−2σ0
aT(m)aT(n)(mn)

1−2σ0 .

The procedure is very similar: we factor M2 = M′
2M′′

2, where M′
2 has

coefficients bT instead of aT, and M′′
2 has cT. Applying Example C.1.7 and

Rankin’s trick to both factors now leads to

M2 ∼
∏
p�X

(
1+ 1

p2−2σ0

(
− 1

p2σ0−1
− 1

p2σ0−1
+ 1

p4σ0−2

))

=
∏
p�X

(
1− 2

p
+ 1

p2σ0

)
.
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We deduce from this that the contribution of M2 to (4.8) is

∼ ζ(2− 2σ0)ET

(( |t |
2π

)1−2σ0
) ∏
p�X

(
1− 2

p
+ 1

p2σ0

)
.

Since ζ(s) has a pole at s = 1 with residue 1, this last expression is

� T1−2σ0

2σ0 − 1

∏
p�X

(
1− 1

p

)
� T1−2σ0

(2σ0 − 1) log X
.

In terms of the parameter W, since 2σ0 − 1 = 2W/ log T and X = T1/
√

W, the
right-hand side is simply exp(−2W)W−1/2, and hence tends to 0 as T →+∞.
This concludes the proof.

4.4 Euler Product Approximation

This section is devoted to the proof of Proposition 4.2.4. We need to prove
that DT exp(PT) converges to 1 in probability. This involves some extra
decomposition of PT: we write

PT = QT + RT,

where QT is the contribution to (4.1) of the prime powers pk � Y.
In addition, for any integer m � 0, we denote by expm the Taylor

polynomial of degree m of the exponential function at 0, that is,

expm(z) =
m∑
j=0

zj

j !
.

We have an elementary lemma:

Lemma 4.4.1 Let z ∈ C and m � 0. If m � 100|z|, then

expm(z) = ez + O(exp(−m)) = ez(1+ O(exp(−99|z|))).
Proof Indeed, since j !� (j/e)k for all j � 0 and |z| � m/100, the difference
ez − expm(z) is at most∑

j>m

(m/100)j

j !
�
∑
j>m

(
em

100j

)j
� exp(−m).

We define

ET = expm1
(−QT) and FT = expm2

(−RT),
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where we recall that m1 and m2 are the parameters defined in (4.5). We have
by definition DT = BTCT, with

BT(t) =
∑
n�1

bT(n)μ(n)n
−σ0−it and CT(t) =

∑
n�1

cT(n)μ(n)n
−σ0−it,

where bT and cT are defined after the statement of Proposition 4.2.1, for
example, bT(n) is the characteristic function of squarefree integers n such that
n has � m1 prime factors, all of which are � Y.

The idea of the proof is that, usually, QT (resp. RT) is not too large, and then
the random variable ET is a good approximation to exp(−QT). On the other
hand, because of the shape of ET (and the choice of the parameters), it will be
possible to prove that ET is close to BT in L2-norm, and similarly for FT and
CT. Combining these facts will lead to the conclusion.

We first observe that, as in the beginning of the proof of Proposition 4.2.5,
by the usual appeal to Lemma 3.2.6, we have

ET(|QT|2)� �T and ET(|RT|2)� log �T.

Markov’s inequality implies that PT(|QT| > �T) tends to 0 as T →+∞. Now
by Lemma 4.4.1, whenever |QT| � �T, we have

ET = exp(−QT)
(
1+ O((log T)−99)

)
.

Similarly, the probability PT(|RT| > log �T) tends to 0, and whenever |RT| �
log �T, we have

FT = exp(−RT)
(
1+ O((log log T)−99)

)
.

For the next step, we claim that

ET
(|ET − BT|2

)� (log T)−60, (4.9)

ET
(|FT − CT|2

)� (log log T)−60. (4.10)

We begin the proof of the first estimate with a lemma.

Lemma 4.4.2 For t ∈ �T, we have

ET(t) =
∑
n�1

α(n)n−σ0+it,

where the coefficients α(n) are zero unless n � Ym1 and n has only prime
factors � Y. Moreover |α(n)| � 1 for all n, and α(n) = μ(n)bT(n) if n has
� m1 prime factors, counted with multiplicity, and if there is no prime power
pk dividing n such that pk > Y.
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Proof Since

ET = expm1
(−QT) =

m1∑
j=0

(−1)j

j !

( ∑
pk�Y

1

kpk(σ0+it)

)j
,

we obtain by expanding the j th power an expression of the desired kind, with
coefficients

α(n) =
∑

0�j�m1

(−1)j

j !

∑
p
k1
1 ···p

kj
j =n

p
ki
i �Y

1

k1 · · · kj .

We see from this expression that α(n) is 0 unless n � Ym1 and n has only
prime factors � Y. Suppose now that n has � m1 prime factors, counted with
multiplicity, and that no prime power pk > Y divides n. Then we may extend
the sum defining α(n) to all j � 0, and remove the redundant conditions
p
ki
i � Y, so that

α(n) =
∑
j�0

(−1)j

j !

∑
p
k1
1 ···p

kj
j =n

1

k1 · · · kj .

But we recognize that this is the coefficient of n−s in the expansion of

exp

(
−
∑
k�1

1

k
p−ks

)
= exp(− log ζ(s)) = 1

ζ(s)
=
∑
n�1

μ(n)

ns

(viewed as a formal Dirichlet series, or by restricting to Re(s)> 1). This means
that, for such integers n, we have α(n) = μ(n) = μ(n)bT(n).

Finally, for any n � 1 now, we have

|α(n)| �
∑
j�0

1

j !

∑
p
k1
1 ···p

kj
j =n

1

k1 · · · kj = 1,

since the right-hand side is the coefficient of n−s in exp(log ζ(s)) = ζ(s).
Now define δ(n) = α(n)− μ(n)bT(n) for all n � 1. We have

ET
(|ET − BT|2

) = ET

(∣∣∣∣∑
n�1

δ(n)

nσ0+it

∣∣∣∣2),
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which we estimate using Lemma 4.2.6. The contribution of the off-diagonal
term is

� 1

T

∑
m,n�Ym1

|δ(n)δ(m)|(mn) 1
2−σ0 � 4

T

( ∑
m�Ym1

1

)2

� T−1+ε

for any ε > 0, hence is negligible. The diagonal term is

M =
∑
n�1

|δ(n)|2
n2σ0

�
∑
n�1

|δ(n)|2
n

.

By Lemma 4.4.2, we have δ(n) = 0 unless either n has > m1 prime factors,
counted with multiplicity, or is divisible by a power pk such that pk > Y
(and necessarily p � Y since δ is supported on integers only divisible by such
primes). The contribution of the integers satisfying the first property is at most∑

�(n)>m1
p|n⇒p�Y

1

n
.

We use Rankin’s trick once more to bound this from above: for any fixed real
number η > 1, we have∑

�(n)>m1
p|n⇒p�Y

1

n
� η−m1

∏
p�Y

(
1+ η

p
+ · · ·

)
� η−m1(log Y)η

� (log T)−100 log η+η

by Proposition C.3.6. Selecting η = e2/3 � 2, for instance, this shows that this
contribution is� (log T)−60.

The contribution of integers divisible by pk > Y is at most( ∑
p�Y
pk>Y

1

pk

)( ∑
p|n⇒p�Y

1

n

)
� 1

Y

( ∑
√

Y<pk�Y
k�2

1

) ∏
p�Y

1

1− p−1

� Y−1/2(log Y),

which is even smaller. This concludes the proof of (4.9).
The proof of the second estimate (4.10) is quite similar, with one extra

consideration to handle. Indeed, arguing as in Lemma 4.4.2, we obtain the
expression

FT(t) =
∑
n�1

β(n)n−σ0+it,
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for t ∈ �T, where the coefficients β(n) are zero unless n � Xm2 and n has only
prime factors � X, satisfy |β(n)| � 1 for all n, and finally satisfy β(n) = μ(n)
if n has � m2 prime factors, counted with multiplicity, and if there is no prime
power pk dividing n with Y < pk � X.

Using this, and defining now δ(n) = β(n)−μ(n)cT(n), we get from Lemma
4.2.6 the bound

ET
(|FT − CT|2

)� ∑
n�1
δ(n) �=0

1

n2σ0
�
∑
n�1
δ(n) �=0

1

n
.

But the integers that satisfy δ(n) �= 0 must be of one of the following types:
(1) Those with cT(n) = 1, which (by the previous discussion) must either

have �(n) > m2 (and be divisible by primes � X only), or must be divisible
by a prime power pk such that pk > X (the possibility that pk � Y is here
excluded, because cT(n) = 1 implies that n has no prime factor < Y). The
contribution of these integers is handled as in the case of the bound (4.9) and
is� (log log T)−60.

(2) Those with cT(n) = 0 and β(n) �= 0; since

β(n) =
∑

0�j�m2

(−1)j

j !

∑
p
k1
1 ···p

kj
j =n

Y<p
ki
i �X

1

k1 · · · kj ,

as in the beginning of the proof of Lemma 4.4.2, such an integer n has at least

one factorization n = pk1
1 · · ·p

kj
j for some j � m2, where each prime power

p
ki
i is between Y and X. Since cT(n) = 0, either �(n) > m2, or n has a

prime factor p > X, or n has a prime factor p � Y. The first two possibilities
are again handled exactly like in the proof of (4.9), but the third is somewhat
different. We proceed as follows to estimate its contribution, say, N. We have

N =
∑

0�j<m2

Nj,

where

Nj =
∑
p�Y

∑
n=pkpk11 ···p

kj
j

Y<p
ki
i �X

1

n
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is the contribution of integers with a factorization of length j + 1 as a product
of prime powers between Y and X. By multiplicativity, we get

Nj �
( ∑
p�Y

∑
Y<pk�X

1

pk

)( ∑
p�X

∑
Y<pk�X

1

pk

)j−1

.

Consider the first factor. For a given prime p � Y, let l be the smallest integer
such that pl > Y. The sum over k is then∑

Y<pk�X

1

pk
� 1

pl
+ 1

pl+1
+ · · · � 1

pl
� 1

Y
,

so that the first factor is � π(Y)/Y � (log Y)−1. On the other hand, for the
second factor, we have∑

p�X

∑
Y<pk�X

1

pk
=
∑
p�Y

∑
Y<pk�X

1

pk
+

∑
Y<p�X

∑
Y<pk�X

1

pk

� π(Y)

Y
+

∑
Y<p�X

∑
Y<pk�X

1

pk
,

where we used the bound arising from the first factor. For a given prime p with
Y < p � X, the last sum over k is

1

p
+ 1

p2
+ · · · � 1

p
,

and the sum over p is therefore∑
Y<p�X

1

p
= log

(
log X

log Y

)
+ O(1) = log log log T+ O(1),

using the values of X and Y and Proposition C.3.1. Hence the final estimate is

N � 1

log Y
(log log log T)m2 � (log log T)(log log log T)m2(log T)−1 → 0

as T →+∞, from which we finally deduce that (4.10) holds.
With the mean-square estimates (4.9) and (4.10) in hand, we can now finish

the proof of Proposition 4.2.5. Except on sets of measure tending to 0 as
T →+∞, we have

BT = ET + O((log T)−25), ET = exp(−QT)
(
1+ O((log T)−99)

)
,

1

log T
� exp(−QT) � (log T)

(where the first property follows from (4.9)), and hence

BT = exp(−QT)
(
1+ O((log T)−20)

)
,
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again outside of a set of measure tending to 0. Similarly, using (4.10), we get

CT = exp(−RT)
(
1+ O((log log T)−20)

)
outside of a set of measure tending to 0. Multiplying the two equalities shows
that

DT = exp(−PT)
(
1+ O((log log T)−20)

)
with probability tending to 1 as T →+∞. This concludes the proof.

Exercise 4.4.3 Try to see what happens if one uses a single range pk � X,
instead of having the distinction between pk � Y and Y < pk � X.

4.5 Further Topics

Generalizations of Selberg’s Central Limit Theorem are much harder to come
by than those of Bagchi’s Theorem (which is another illustration of the fact that
arithmetic L-functions have much more delicate properties on the critical line).
There are very few other cases than that of the Riemann zeta function where
such a statement is known (see the remarks in [95, §7] for references). For
instance, consider the family of modular forms f that is described in Section
3.4. The natural question is now to consider the distribution (possibly with
weights ωf ) of L(f , 1

2 ). First, it is a known fact (due to Waldspurger and
Kohnen–Zagier) that L(f , 1

2 ) � 0 in that case. This property reflects a different
type of expected distribution of the values L(f , 1

2 ), namely, one expects that the
correct normalization is

f �→ log L(f , 1
2 )+ 1

2 log log q√
log log q

,

in the sense that this defines a sequence of random variables on�q that should
converge in law to a standard (real) Gaussian random variable. Now observe
that such a statement, if true, would immediately imply that the proportion of
f ∈ �q with L(f , 1

2 ) = 0 tends to 0 as q → +∞, and this is not currently
known (this would indeed be a major result in the analytic theory of modular
forms).

Nevertheless, there has been significant progress in this direction, for
various families, in recent and ongoing work of Radziwiłł and Soundarara-
jan. In [96], they prove sub-Gaussian upper bounds for the distribution of
L-values in certain families similar to �q (specifically, quadratic twists of a
fixed modular form). In [97], they announce Gaussian lower bounds, but for
families conditioned to have L(f , 1

2 ) �= 0 (which, for a number of cases, is
known to be a subfamily with positive density as the size tends to infinity).
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In addition to these developments, it should be emphasized that Selberg’s
Theorem serves as a general guiding principle when studying any probabilistic
question for the Riemann zeta function on the critical line, and the ideas
in its proof are often the starting points toward other results. Indeed, some
of the deepest works in probabilistic number theory in recent years have
been devoted to studies of finer aspects of the distribution of the Riemann
Zeta function on the critical line. A particular focus has been a conjecture
of Fedorov, Hiary and Keating [39] that addresses the distribution of the
maximum of ζ(1/2 + it) when t varies over an interval of length 1 (and t
is taken uniformly at random in [−T,T] or [T,2T] with T →+∞). This leads
to links with objects like log-correlated fields, branching random walks, or
Gaussian multiplicative chaos. We refer to the Bourbaki seminar survey of
Harper [54] for a discussion of the work of Najnudel [90] and Arguin–Belius–
Bourgade–Radziwi–Soundararajan [1], and to Harper’s recent preprint [55] for
the latest developments in this direction.

One of the reasons that Central Limit Theorems are expected to hold is that
they are known to follow from the widely believed moment conjectures for
families of L-functions, which predict (with considerable evidence, theoretic,
numerical and heuristic) the asymptotic behavior of the Laplace or Fourier
transform of the logarithm of the special values of the L-functions. In other
words, taking the example of the Riemann zeta function, these conjectures
(due to Keating and Snaith [63]) predict the asymptotic behavior of

ET(e
s log |ζ( 1

2+it)|) = ET(|ζ( 1
2 + it)|s) =

1

2T

∫ T

−T
|ζ( 1

2 + it)|sdt

for suitable s ∈ C. It is of considerable interest that, besides natural arithmetic
factors (related to the independence of Proposition 3.2.5 or suitable analogues),
these conjectures involve certain terms which originate in Random Matrix
Theory. In addition to implying straightforwardly the Central Limit Theorem,
note that the moment conjectures also immediately yield the generalization
of (3.11) or (3.15), hence can be allowed to deduce general versions of
Bagchi’s Theorem and universality. Moreover, these moment conjectures (in
suitably uniform versions) are also able to settle other interesting conjectures
concerning the distribution of values of ζ( 1

2 + it). For instance, as shown
by Kowalski and Nikeghbali [78], they are known to imply that the image of
t �→ ζ( 1

2 + it), for t ∈ R, is dense in C (a conjecture of Ramachandra).

[Further references: Katz–Sarnak [62], Blomer, Fouvry, Kowalski,
Michel, Milićević, and Sawin [11].]
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