
1

Introduction

1.1 Motivation

The Mathieu group M24 together with its subgroups M23,M22,M12 and M11
are arguably the most famous, most studied and most beautiful groups that
exist. Indeed M24 and M12 acting with degrees 24 and 12 respectively are the
only quintuply transitive permutation groups other than the alternating and
symmetric groups, and similarly their point stabilizing subgroups M23 and M11
are the only quadruply transitive groups. A permutation group 𝐺 acting on a
set 𝑋 is said to be 𝑛-transitive if, and only if, given 𝑛 distinct points of 𝑋 ,
{𝑥1, 𝑥2, . . . , 𝑥𝑛} say, and any other 𝑛 distinct points {𝑦1, 𝑦2, . . . , 𝑦𝑛}, there is a
permutation 𝜋 ∈ 𝐺 such that 𝜋(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, . . . , 𝑛. In the case of M12
with 𝑛 = 5 this element 𝜋 is unique and we say that M12 is sharply 5-transitive;
similarly M11 is sharply 4-transitive. This implies that their orders are given by

|M12 | = 12 .11 .10 .9 .8 = 95 040 and |M11 | = 11 .10 .9 .8 = 7920.

The order of M24 has the form

|M24 | = 24 .23 .22 .21 .20 . |𝐻 |,
where 𝐻 denotes the stabilizer in M24 of five points; it emerges naturally in our
proof of the uniqueness of the Steiner system S(5, 8, 24) in Chapter 3. The fact
that the Mathieu groups are the only quintuply and quadruply transitive groups,
other than the alternating and symmetric groups, is now known to hold as a
consequence of the Classification of Finite Simple Groups, see Section 11.8.
However, up to now no direct proof of this remarkable fact has been found.
They were discovered by Emil Mathieu and their existence was announced in
two papers (Mathieu, 1861, 1873). Not only are these groups of huge interest
in their own right, but they are involved in many of the other sporadic simple
groups and play important roles in coding theory, sphere packing and other
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combinatorial structures. They arise most naturally as groups of permutations
preserving certain Steiner systems, see Chapter 2 of this book, in particular
S(5, 8, 24) and S(5, 6, 12) and their subsystems, and it is through these block
designs that they are best studied.

1.2 Other Constructions

As befits mathematical structures of such beauty and importance, the Mathieu
groups have been constructed in many different ways. Before proceeding to the
approach that is the subject of this book, I shall give a brief description of some,
but far from all, of these alternatives, which are fascinating in their diversity.

Mathieu himself in the aforementioned papers constructed the groups by
‘gluing together’ copies of the projective special linear groups L2 (11) and
L2 (23) acting on 12 and 24 points, respectively. Indeed, he believed his con-
struction could be carried out for primes larger than 11 and 23. In fact, numero-
logically speaking 𝑛 = 48 has much in common with 24 and 12: 𝑛− 1 is prime,
𝑛 − 2 is twice a prime and 𝑛 − 5 is also prime. But sadly M48 does not exist!
Of course Mathieu knew that the order of M12 divides the order of M24 but he
was not aware that it is in fact a subgroup.

Witt’s approach, see Witt (1938a,b), was to start with a well-known Steiner
system S(𝑙, 𝑚, 𝑛) and build successive transitive extensions S(𝑙+1, 𝑚+1, 𝑛+1),
𝑆(𝑙 + 2, 𝑚 + 2, 𝑛 + 2), . . . . Thus he started with the projective plane of order 4,
which is a Steiner system S(2, 5, 21), and showed that it can be extended to an
S(3, 6, 22). He then proved that this new system had a triply transitive group of
automorphisms, which is in fact a group of shape M22 : 2, the simple Mathieu
group M22 extended by an outer automorphism of order 2. This process could
then be repeated to form an S(4, 7, 23) preserved by the quadruply transitive
simple Mathieu group M23. Finally he extended this system to an S(5, 8, 24)
that has the magnificent, quintuply transitive simple group M24 as its group of
symmetries. This Steiner system cannot be extended to an S(6, 9, 25) as the
number of nonads in such a system would be

(
25
6

)/ (
9
6

)
,

which is not an integer.
Todd’s approach also focused on the Steiner system S(5, 8, 24) and his paper

(Todd, 1966) actually lists the 759 octads, but it is an alternative method that
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he lectured on in Cambridge in the late 1960s that I wish to mention here.1
The symmetric group S6 is exceptional in that it has an outer automorphism of
order 2. If we think of 𝐺 � S6 as permuting the six points of the projective line
{∞, 0, . . . , 4} then the copy of S5 fixing ∞ clearly has index 6 in𝐺, but so does
the transitive subgroup 𝐻 � PGL2 (5), which also has index 6. Thus 𝐺 acts
in a non-permutation identical way on two different sets of size 6. These two
sets are interchanged by the outer automorphism. In Sylvester’s terminology a
partition of six letters into three pairs is known as a syntheme and a set of five
synthemes that includes all 15 unordered pairs is a synthematic total or simply
a total. It is easy to see that there are just six possible totals, one of which is

∞/01 234 ∼

∞0 .14 .23
∞1 .20 .34
∞2 .31 .40
∞3 .42 .01
∞4 .03 .12

.

It is readily checked that this total is preserved by

⟨𝑥 ↦→ 𝑥 + 1 � (∞)(0 1 2 3 4), 𝑥 ↦→ 2/𝑥 � (∞ 0) (1 2) (3 4)⟩ � PGL2 (5)
and so has just six images under the action of S6. Todd demonstrated longhand
that a transposition on the six points induces a permutation of cycle shape 23

on the totals, and vice versa, and similarly a 3-cycle on one side has cycle shape
32 on the other. These conjugacy classes of shapes 14 .2/23 and 13 .3/32 are
then used to define the 132 hexads of a Steiner system S(5, 6, 12) on the 6 + 6
points and totals, namely: 90 = ( (62) × 3) × 2 hexads consisting of four fixed
points on one side and a corresponding transposition on the other; 40 =

(6
3
) × 2

corresponding to three fixed points on one side and a corresponding 3-cycle
on the other side; together with the set of six points and the set of six totals.
Thus giving 90+ 40+ 2 = 132. The automorphism group of this Steiner system
is M12 which in turn is shown to act non-permutation identically on two sets
of size 12 and, in an analogous manner, the actions on the two 12s are used
to define a Steiner system S(5, 8, 24) on the 12+12 points. The automorphism
group of this system is, of course, M24.

In his Three Lectures on Exceptional Groups (see Conway, 1971 or Conway
and Sloane, 1988, Chapter 10) Conway directly constructs M24 by extending
PSL2 (23) acting on the 24-point projective line. He adjoins a permutation

𝛿 : 𝑥 ↦→ 𝑥3/9 (𝑥 ∈ 𝑄) and 𝑥 ↦→ 9𝑥3 (𝑥 ∈ 𝑁),
1 Graham Higman was himself describing this method in lectures in Oxford at around the same

time.
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where 𝑄 denotes the quadratic residues modulo 23 and 𝑁 denotes the non-
residues, and proceeds to deduce that the resulting group has the familiar
properties.

In Curtis (1989, 1990) the current author produces five elements of order 3
permuting the 12 pentagonal faces of a dodecahedron that together generate
M12, and seven involutions permuting the 24 heptagonal faces of the genus
3 Klein map that generate M24. Algebraic and combinatorial explanations for
these generators are also given. The details of these constructions are given in
Chapter 13 of this book.

1.3 The Construction of This Book

The main properties of M24 may be deduced from each of the above construc-
tions, and from many others not mentioned here. However, none of them helps
us to actually work within the group itself, to recognize when a permutation
on 24 letters is in our chosen copy of M24, or to write down a permutation
of the group having certain desirable properties. Of course modern algebra
packages such as GAP and Magma are wonderfully efficient for working with
permutation groups of such low degree, and it may seem indulgent to develop
techniques that are only relevant to a particular small family of groups. How-
ever, I would claim that the Mathieu groups are so exceptional, as has been
demonstrated earlier, and so intimately involved in other mathematical struc-
tures that a dedicated theory is justified. Moreover, it is our contention that a
deeper understanding of the intricacies and sheer beauty of these remarkable
structures is afforded by the approach described later.

1.4 The Centrality of M24

Besides being an extraordinary structure in its own right, the group M24 plays
a central role within the sporadic simple groups and hence within wider math-
ematics. Firstly, of course, the Conway group ·O that Conway himself often
called ‘M24 writ large’, grows out of M24 and the binary Golay code C by way
of the Leech lattice Λ. In his book entitled Twelve Sporadic Groups Robert
Griess (1998) describes the sporadic groups that are visible within ·O as the
‘first generation’. Due to their connection to Λ, see Conway et al. (1982), in
working with these groups many people have found MOG techniques useful.

The involvement of M24 does not stop with the first generation though, as
the largest Fischer group Fi24 contains maximal subgroups of shape 211. M24
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in an analogous way to Co1. However, in Co1 the elementary abelian group of
order 211 is isomorphic to C factored by the all 1s vector and the extension
is a semidirect product, that is to say it is a split extension as is indicated by
the colon in 211 : M24. In the Fischer group the elementary abelian group
is isomorphic to the even part of the dual code C ∗, see Chapter 4, and the
extension is non-split, which is indicated by the ‘upper dot’ in 211 ·M24. So
in the latter case this affine subgroup contains no copy of M24; however, the
techniques of this book have still proved useful, see Conway (1973) and Rowley
and Walker (2012, 2021). Moreover, the Conway group Co1 is involved in the
Monster group M, since the centralizer of an involution of Atlas class 2𝐵 has
shape 21+24+ .Co1. Accordingly, they have made extensive use of the MOG in
their investigations of both M and the Baby Monster B, see Rowley (2005);
Rowley and Walker (2004a,b).

The last sporadic simple group to be discovered was the Janko group J4 and
it too contains a subgroup of shape 211 : M24, see Section14.3. Indeed, it was
intensive use of the MOG by Benson and others, see Benson (1980), in their
work on J4 that led to the hexacode, see Chapter 6.

Besides its pivotal role in finite groups, M24 and the underlying combinatorial
structures crop up in unexpected places. For instance, in Berlekamp et al. (1982,
page 436) the Miracle Octad Generator is reproduced in connection with the
game Mogul.

A deep connection between the algebraic structures dealt with here and
number theory was discovered when John McKay noticed some intriguing
numerological coincidences that are explained briefly in Section 11.9; the
resulting investigations were christened Monstrous Moonshine by Conway; see
Conway and Norton (1979).

These structures and the techniques for working with them have recently
become of great interest to Theoretical Particle Physicists working in String
Theory. In Monstrous Moonshine the degrees of the irreducible complex rep-
resentations of the Monster group M are related to the modular function as
explained in Section 11.9; here it is those of M24 that are related to an object
they call a ‘mock modular form’, see Taormina and Wendland (2013, 2015a,b).
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