Eighth Meeting, Friday, June 14th, 1895.

John M‘Cowan, Esq., M.A., D.Sc., President, in the Chair.

A Summary of the Theory of the Refraction of their approxi. mately Axial Pencils through a Series of Media bounded by coaxial Spherical Surfaces, with Applications to a Photographic Triplet, \&c.

By Professor Cimrystal.
[The Paper will be published in the next Volume.]

On a Diophantine Equation.
By R. F. Davis, M.A.
In the cousideration of Question 12612 appearing in the Educational Times for January of this year, proposed by the Rev. Dr. Haughton, F.R.S., of Trinity College, Dublin, the following Diophantine Equation suggests itself:

$$
\text { What values of } x \text { make } 8 r^{3}-8 c+16=\square \text { ? }
$$

Since it may be written $8 x\left(\cdot e^{2}-1\right)+16=\square$ it is obvious that $x=0_{1} \pm 1$ are solutions. Also that $r=2$ is a solution. Moreover $x=-\frac{3}{2}$ when substituted gives $--27+12+16=1$ and is therefore a solution,--marking approximately a limit to the negative root.
I. Put $8 x^{3}-8 x+16=\left(p x^{2}+x-4\right)^{2}$; then after reduction and division by x^{2}, we have

$$
p^{1} x^{2}-2 x(4-p)+1-8 p=0 \quad \ldots \quad \ldots \quad \ldots \quad(\mathrm{~A})
$$

