JOHN M'COWAN, Esq., M.A., D.Sc., President, in the Chair.

A Summary of the Theory of the Refraction of their approximately Axial Pencils through a Series of Media bounded by coaxial Spherical Surfaces, with Applications to a Photographic Triplet, &c.

By PROFESSOR CHRYSTAL.

[The Paper will be published in the next Volume.]

On a Diophantine Equation.

By R. F. DAVIS, M.A.

In the consideration of Question 12612 appearing in the *Educa*tional Times for January of this year, proposed by the Rev. Dr. Haughton, F.R.S., of Trinity College, Dublin, the following Diophantine Equation suggests itself:

What values of x make $8x^3 - 8x + 16 = \square$?

Since it may be written $8x(x^2-1)+16=\square$ it is obvious that $x=0_1\pm 1$ are solutions. Also that x=2 is a solution. Moreover $x=-\frac{3}{2}$ when substituted gives -27+12+16=1 and is therefore a solution,—marking approximately a limit to the negative root.

I. Put $8x^3 - 8x + 16 = (px^2 + x - 4)^2$; then after reduction and division by x^2 , we have

$$p^{1}x^{2} - 2x(4-p) + 1 - 8p = 0$$
 ... (A)