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CR MAPPINGS OF CIRCULAR CR MANIFOLDS 

ANDRÉ BOIVIN AND ROMAN DWILEWICZ 

ABSTRACT. Let M be a circular CR manifold and let A7 be a rigid CR manifold in 
some complex vector spaces. The problem of the existence of local CR mappings from 
M into N is considered. Conditions are given which ensure that the space of such CR 
mappings depends on a finite number of parameters. The idea of the proof of the main 
result relies on a Bishop type equation for CR mappings. Roughly speaking, we look 
for CR mappings from M into N in the form F = (f,g), we assume that g is given, then 
we find/ in terms of g and some parameters, and finally we look for conditions on g. 
It works independently of assumptions on the Levi forms of M and N, and there is also 
some freedom on the codimension of the manifolds. 

1. Introduction. A smooth embedded submanifold M of Cn is called Cauchy-
Riemann (CR) if the complex dimension of the complex part of the tangent fibre Tp{M) 
to M at p does not depend on/7, i.e., if dimc(7

7
/?(M) n \f^-\Tp(M)) = l(p) = const. The 

above constant is the CR dimension of M, which we denote by dimcR M. By a CR func
tion f: U —> C, U open in M, we mean a smooth function which satisfies the tangential 
Cauchy-Riemann equations on M. A mapping from M into C* is called a CR mapping if 
each component is a CR function. For an introduction to CR theory, see [Bo]. 

The problem of local CR mappings between CR manifolds goes back to Poincaré [P], 
where he considered the case of real analytic hypersurfaces in C2. There is a vast literature 
devoted to the subject, including several review papers (see, for instance, [F2], [V]). Most 
of the papers about CR mappings deal with hypersurfaces with strong assumptions on 
the Levi form, or, in the higher codimensional case, with special classes of manifolds like 
standard or quadric CR manifolds (see, for instance, [ES], [FI], [SI], [S2], [Su], [T]). 

In this paper we have chosen to study local CR mappings F:M —» N from circular 
CR manifolds M into rigid CR manifolds N. There exist some similarities between this 
problem and the problem of holomorphic mappings of circular or Reinhardt domains 
(e.g., see [F2, Section 3] for a survey of the latter). A CR manifold M C Ck+m is called a 
circular CR manifold if it is given locally by an equation of the form 

(1.1) M: y = h(\w]l...,\wm\% h = (A,,.. .,/*,), A(0) = 0, dh(0) = 0, 

where (z,w) = (zu.. .,zk,wu.. .,wm) G Ck+m, z = x + iy. A CR manifold N C Cl+n is 
called a rigid CR manifold if it is given locally by an equation 

(1.2) N: T=<p(tu...9Zn),<p = (<pu...9<pl), # ) = 0 , ^ ( 0 ) = 0, 
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CR MAPPINGS 397 

where (77,0 = (771,..., 77/, £ 1,.. . , f „) G Cl+n, 77 - a + rr. 
For CR mappings F between such types of manifolds it will be natural to assume that 

they are of the form F — (f,g), where g depends only on w's. Under these assumptions 
we consider the following two questions: How many CR mappings F:M—> iV exist? and 
What is the form of these mappings? 

Our aim here is to apply an analytic disc approach (see Section 2) to study these 
questions. Recently, Baouendi and Rothschild [BR] also applied analytic discs to CR 
mappings but in a very different context than in our paper. Although it is our belief 
that our approach, with some modifications, can be carried out for more general CR 
manifolds (work in progress), we have chosen in this paper to concentrate on the above 
special cases because under these restrictions we were able to obtain explicit formulas 
(as in Theorems I and II), to allow some freedom on the codimension of the manifolds 
(as in Theorems I and 6.1) and to show that our method works independently of the type 
of points on the CR manifolds, in particular, independently of the behaviour of the Levi 
form. 

Our idea of the proof of the main result relies on a Bishop type equation for CR 
mappings, which came from the Bishop equation for the lifting of analytic discs (see 
Sections 2 and 3). Roughly speaking, we look for CR mappings from M into N of the 
form F = (f, g); we assume that g is given, then we find / in terms of g and some 
parameters, and finally we look for suitable conditions on g. 

We now formulate some of the main results of the paper. For the proofs and other 
results and examples, see Section 5 and Section 6. 

THEOREM I. Let M be a circular CR manifold locally given by (1.1), and N be a 
rigid CR manifold locally given by (1.2). 

(a) Assume that a holomorphic mapping g = g(w) is given such that F = (f,g), 
F(0) = 0, is a CR mapping from M into N, then the mapping f is of the form 

k 

(1.3) /(*, w) = a(Uz) + / £ a0$tz0 + p(w) for (z, w) G M, 
0=1 

where a = a(x), a(0) = 0, is a real vector-valued function, p = p(w), p(0) — 0, is a 
holomorphic vector-valued function, and ap = -g-s /3 = 1, . . . , k. Also we have 

(1.4) Eaphp(r) + ^p(rew)) = p(g(rei9)) whererew = ( r , A . - •,rm<f0"). 

Moreover, after a holomorphic change of variables in a neighbourhood of the origin of 
Cl+n, the function p = p(w) can be made identically equal to zero, 

(b) Conversely, ifg = g(w) is holomorphic and iff is of the form (1.3) with (1.4) 
being satisfied, then F = (f,g)is a CR mapping from M into N. 

THEOREM II. Let M be a circular CR manifold as in (1.1), with rank(^)a /3 > k, 
and let N be a rigid CR manifold as in (1.2) with dimcR M = dimcR N = m. Assume that 
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398 A. BOIVIN AND R. DWILEWICZ 

go = go(w) is a one-to-one holomorphic mapping between neighbourhoods of the origin 
in Cm, and such thatFo = (fo,go):M—+ N, F0(0) = 0, is a CR embedding. Then (maybe 
after a holomorphic change of variables in a neighbourhood ofN) it follows that 

(i) (f o go = a\ hi + • • • + akhkfor some constant vectors a\,..., ak; 
(ii) f0(z) = axz\ + • • • + akzk; 

(Hi) for any holomorphic mapping g = g(w) between neighbourhoods of the origin in 
Cm such that F = if, g), F(0) = 0, is CRfromMinto N, we have that g = go o G, 
with G = (G\,..., Gm) satisfying */i(|G(w)|) = A^Qw]), where A is a constant 
k x k matrix, lh is the transpose of h, and\G(w)\ — ( |Gi(w)|,..., |Gw(w)|). 

2. Definitions, notation, analytic discs and polydiscs. If a = (a\,...,ap) G CP, 
\a\ will denote the vector (\a{ | , . . . , \ap\) and ||a|| will denote {\ax |

2 + • • • + \ap\
2)1/2. By D 

we shall denote the unit disc {Ç G C : |£| < 1}, and by 9f(D) the space of holomorphic 
functions in D. Consider a map xp:D —» CP, with each component belonging to !tf(D) 
and to some differentiability class on D. The mapping ip, or sometimes the image IJJ(D) 

will be called an analytic disc in C\ The restriction of ^ to S1 = ÔD, or sometimes the 
image ^(S1), will be called the boundary of the disc. The point ^(0) will be called the 
center of the disc. 

For any compact K C W1, and 0 < a < 1, let (^(K) be the Banach algebra of func
tions from K into R with the Lipschitz norm \\u\\a = supxGA: \u(x)\ + supx>;Ç^ !*_*[« < 
oo. If u = («i,...,Uj) is vector-valued, then we use the same notation for the norm, 
namely ||w||a = (\\u\ \\2

a + • • • + ||^/||a)1//2, which should not lead to any confusion. 
Fix 0 < a < 1 in this paper. It is well known (see, for instance, [HT, Section 3]) that 

for a function x G Ca(Sl ) there exists a unique function y = Tx G C* (Sl ) such that JC + iy 
is the boundary value of a holomorphic function/ in D with â/(0) = 0. The operator 
T is called the conjugation operator on the circle. The operator T is a bounded linear 
operator T: Ca(Sl) -> C^S1). 

For any function x G C(Sl ), we denote its mean value by 

(2.1) J(x)=±j\(e>9)d0. 

If x is a vector-valued function, then J and T are defined to act component-wise. 
If we want to find analytic discs (locally) with boundaries on a CR manifold M C Ck+n 

given by an equation y = h(x, w), /z(0,0) = 0, dh(0,0) = 0, then we have to solve the 
Bishop equation (see [Bi], [HT]) 

(2.2) x = c — T[h(x, w)], 

for the given data (c, w) — (c\,..., ck, w\,..., w„), Wj G Of{D) Pi Ca{D)J = 1 , . . . , m, 
c G Rk

9 where ||wy||a and ||c|| are sufficiently small. Such a solution exists, is unique, 
xt G Ca(Sl), i = l,...,k, and J(x) — c (see [HT], [BP]). It corresponds in a one-
to-one manner to the lifted analytic disc (z, w) with boundary on the manifold, where 
z = (z , , . . . , zk\zt G !H(D)nCa(D%i=h . . . ,* , and ||z||£ < const{||c|| + ||w||£}, (see 
[HT, p. 339]). 
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It is natural to ask whether it is possible to lift polydiscs to a CR manifold. More 
precisely, if we have a holomorphic function 

w(Ci,...,0) = h(Ci , . . . ,C/) - - - w m(Ci , - - . ,0) ) for|C,|<l,...,|Cy|<l, 
which is, say, C1 up to the boundary of the polydisc, then is it possible to find a holo
morphic mapping < = (0 , . . . , ( / ) -* (z(Q, w(Q) such that S z ( ^ ) = h($z(eie\ w(ewj), 
where ée = (ei6>,..., e'*'), for 0 < 0p < 2TT, /? = 1,... j ? 

We note that as in the 1-dimensional case, the real part !Rz() should satisfy a Bishop's 
type equation: 5Rz() = J[5Rz()] — 7J/z(5ftz(-), w(-)) ], where this time J denotes the mean 
operator over the Silov boundary of the unit polydisc, i.e., 

(2.3) JWz()] = J - /** • • • f Uz(eW<,-.., eie')de, • • • d6h 

(ziry Jo Jo 
and the operator T assigns to the boundary values of the real part of a holomorphic func
tion restricted to the Silov boundary of the unit polydisc the boundary values of its imag
inary part with mean value zero. 

Contrary to the 1-dimensional case, the above Bishop equation cannot always 
be solved when j > 1, even in the rigid case (simple example: h(w(ë6x,ë92)^ — 
S(e2/^ e~ll°2)). Some additional conditions are needed. However, if such a lifting of poly
discs exists, then it is unique up to a constant vector. 

3. Bishop's type equation for CR mappings. As we have seen in the last section, 
analytic discs with boundaries on a CR manifold M are determined by their w's coordi
nates and real parameters. We use this idea for the construction of local CR mappings 
between CR manifolds; namely if M C Ck+m and TV C C/+w are given by 

M: y = h(x,w\ A(0,0) = 0, dh(0,0) = 0, 

N: T=<p(a,09 ¥>(0,0) = 0, <fy>(0,0) = 0, 

and if F = (f,g):M —* N is CR, then we will show that the ' / ' part is determined by 
the 'g' part and some parameters. Obviously since F is CR, g should satisfy additional 
restrictions. In this section we describe a general procedure, under the hypothesis on the 
existence of analytic polydiscs, on how to retrieve/ from g. 

Assume that a smooth family of analytic polydiscs {*Ds}seS ls g i y e n with the Silov 
boundaries on M, and that the polydiscs are smooth up to the Silov boundary (these 
smoothness conditions can be relaxed). Moreover we assume that the Silov boundaries 
d^Ds of the polydiscs fill up a neighbourhood of the origin in M, which, for simplicity, 
we denote again by M. So we have \Jses ^s^s = ^. More precisely, assume that we 
have the mapping <D: S x R; —> M, given by 

0>(s, 0) = 0(s, 0X,..., 0j) = (z(s, é \ w(s, ew)), where ei0 = (ei9x,..., e% 

so that for each s G S we get an analytic polydisc (DS(Q = (z(s, Q, w(s, £)), £ = 
(£i, . . . , (/) £ Jy — {|Ci I < U • • • J 101 < * }• ^ e assume that the mapping O is smooth 
in both variables s and 0, and that the mapping *DS is holomorphic in £ and smooth up to 
the Silov boundary ds(Ds. Since dim^M = k + 2m, we see that the minimal number of 
parameters is k + 2m —j in order that the Silov boundaries {d^Ds}sÇ.^ fill up M. 
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LEMMA 3.1. Let M and N be two generic CR manifolds embedded in Ck+m and 
Cl+n respectively. Let {rDs}seS ^e a smooth family ofanalytic poly discs with their Silov 
boundaries on M and such that \Jse^d^Œ)s — M. If a CR mapping F — (/",g):M —> 
N exists, where f = (f\,... , / ) , then f satisfies a Bishops type equation on the Silov 
boundary of the poly discs; that is: 
(3.1) 

ty(z(s9>),Mts,')) =j[W{z(s,')Ms,-))} - T[^(^f{z(s,')Msr)),g(z(s,')M^ •)))]• 

PROOF. If F — (f, g): M —-> N is CR, then it can be holomorphically extended to the 

poly disc. This follows, for instance, from the Baouendi-Trèves approximation theorem 

[BT]. Therefore F((DS) is an analytic polydisc with its Silov boundary on N, and is of the 

form F(®y): £ —• lf(z(s, Q, w(s, Q), g(z(s> 0? w(s> C)) ) • We have the following relations 

between 5R/ and S / for £ = el°: 

<èf(z(s, e \ w(s, eie)) = <p {$tf{Z(s, ei6\ w(s, ei6)),g{z{s, eie), w(s, ei6)) ) . 

It follows from the discussion in Section 2 that 5R/ satisfies equation (3.1). 

REMARK 3.2. Note that equation (3.1) is not sufficient for the existence of a CR 
mapping F in the above form. The function/ should also satisfy a system of PDEs (see 
Section 5). Note also that equation (3.1) takes especially a simple form if Wis rigid, and 
in this case, after suitably choosing the family of analytic discs, the function/ can be 
determined by J(5R/). 

4. An application of Bishop's equation to CR mappings of circular CR manifolds. 
In this section we apply the procedure described in Section 3 to "the most natural" CR 
manifolds for lifting poly discs, namely for mappings from circular CR manifolds (1.1) 
to rigid manifolds (1.2). For the CR manifold M the most natural family of polydiscs to 
lift is 

fwi(Ci,...,Cn) = riCi, 

(4.1) : f o r | C i | < l , . . . , | C n | < l , 

l w w ( 0 , . . . , < m ) = rmÇn 

where r\,..., rm are positive real numbers that are sufficiently small. The lifted polydiscs 
are of the form (x + ih(r),r\Ç\,... ,rw£„), r = ( n , . . . ,rw), x = (xj , . . . ,xk) G Rk, with 
||r|| and \\x\\ sufficiently small. 

LEMMA 4.1. With the above assumptions and notation, let F:M~^ N, F = (f, g), be 
a CR mapping, where g = (gi , . . . ,g„) depends only on w, is holomorphic and is given. 
Then the mapping f is of the form 

(4.2) /(z, rei0) = a(x, r) + H(r, ei9\ reie = (r{e
i9>,..., rme?9"\ x = Rz, 
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where a = a(x,r) is a real vector-valued smooth function and H = H(r,el9\ for fixed r, 
is the boundary values of a holomorphic function in the unit poly disc: 

(4.3) //(r,G,...,G-)= E ^......i.toC1 •••£", 
7i, . . . ,7 l f I>0 

PROOF. First recall that the CR mapping F extends holomorphically to the polydiscs, 
and that the images of the polydiscs under F are (analytic) polydiscs too. Also since the 
manifold TV is rigid, we have ^f(z,rel9) — (f(g(rel9)) and we have that for fixed z and 
r, el9 -^f(z,rel9) is the boundary values of a holomorphic function. By using (3.1) we 
obtain Uf(z,rei9) = J[Uf(z,rew)] - T[(f(g(rei9))\ We note that the first term on the 
right-hand side of this equation depends smoothly on JC and r, because y = Sz = h{r). 
If we denote this term by a(x, r), and H(r, eld) = — T[(p(g(rel9)} ] + *V (g(re10)), then we 
immediately get the lemma. 

REMARK. Note that if h is an embedding, then the mappings (4.2) and (4.3) can be 
stated using functions of y instead of r. 

5. Proof of Theorem I. The main purpose of this section is to prove Theorem I. 
Also in this section and the next one, we will be able, by imposing further natural restric
tions on the manifolds, to obtain explicit formulas for those CR mappings. This in turn 
will allow us to give conditions which will guarantee that the space of such CR mappings 
is finite dimensional. Also we give examples to show the necessity of most of these extra 
conditions. 

PROOF OF THEOREM I. Let M be a circular CR manifold as in (1.1), and let N be 
a rigid CR manifold as in (1.2). The mapping F\M —> N should satisfy the system of 
tangential Cauchy-Riemann equations on M. Antiholomorphic tangent vector fields to 
Mare of the form 

- dh\ wa d dhk wa ô d 
(5.1) Xa = -1-T-] r-rz i-r- | r ^ + ^ ^ , <x= l , . . . , m . 

vra \wa\ oz\ ora \wa\ oz^ owa 

Since the vector fields {^a}a=i given by (5.1) form a basis of the antiholomorphic tan
gent space to M, we have Xa(F) = Xa(f, g) = 0, a = 1, . . . , m. We only need to consider 
the ' / ' part since the 4g' part automatically satisfies the equations by our assumptions. 
Moreover, we will assume that in (4.3), the real part of the free term of// (that is, when 
7i = • • • = 7/H = 0) is included in the function a(x,r). Therefore, and without loss of 
generality, we suppose that the free term of// is purely imaginary. 

To study the equations Xa(f) = 0, we first find^a(|w>g|) and^(#3). Using (5.1) and 
Opiz, w) = \ In j^y, we obtain 

1 1 ' i s 

(5.2) Xa{\w0\)=-èa0^- = -èa0e
i6\ Xa(90)=l--&, a,p=l,...,m, 

I \Wfj\ I lWj} 
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where 8ap is the Kronecker symbol. Now, using the form (4.2) of/, we get 

Xa(a(xyr) + H(r,eid^w\...,eie">M)) = 0, a= l , . . . ,m. 

Using (5.1), (5.2), and after simplification, the above equations become 

* f ^ d f l x da 57/ ÔH 1 
- 2 / > TT^^— + r̂— + -z ~^i = 0 for a = l , . . . ,m, 

^ , V dra dz^ / dra dra dÇa wa 

where (<* = e/6>a = w a / |w a | . Now using (4.3) with (a = el9a, and comparing the coeffi
cients of el°l é9m in the above equation, we obtain the following relations: 

For 7i = • • • = lm = 0, we have 

(5 3) _2 / y (dh^r)da(x>r)\ + Sa(x9r) + dfto,...,o(r) = Q 

For7i +• • • +7W > 1, we have 

(5.4) a A I ^ = 7 a ^ 2 > ) _ 

First we consider (5.4). lîhlu^lm(r) ^ 0 at some point r G £/, we get |̂ 7,,...,7w,(r)l = 

^ î , - , ^ ] 1 ' •*rmw f° r s o m e positive constants c7lv.^w. This holds also for the case 
h^u..^m(r) = 0 by simply allowing the constants clu_ilm to be nonnegative. So we have 
hi, i (r) = c-v, 7 r?1 •• -rl™, for some complex constants c-v, <\ such that lev -v 1 = 

Now we take a closer look at equation (5.3). Since a is a real vector-valued function, 
and the real part of the free term of// is zero, taking the real and imaginary parts of (5.3), 
we obtain 

(5.5) — = 0, 2 J - ^ T = -z foror= l,...,/w. 

Combining the above form of h1{^.,7m with (4.2) and (4.3), we get that/(z, w) = a(Uz) + 
*S/*o,...,o(|H) + P(w)> where p(w) = £7l+...+7OT>i ^ . . . ^ w ] 1 • * * wlnm- Now integrating 
the second part of the system of (5.5) with respect to ra% we get 3/zo,...,oM — 
£#=1 hp(r)^fa^ + c(x) for some smooth real vector-valued function c(x). Using the fact 
that F maps M into N, we get 

E h0(r)^ + c(x) + 3(p(re*)) = v ^ e ' " ) ) , 
/ 3 = 1 ^ 

and if we set r — 0 here, we get c(x) = 0. Moreover, if we set x = 0, we obtain 
that 9Ao,...foM = ££=i M ^ l ^ a n d finally> denoting ^ by a0 we obtain (1.3) of 
Theorem I. It is obvious that after a holomorphic change of variables we can make/? = 0. 
This completes the proof of part (a). 

The proof of (b) is obvious. The proposition is proved. 

Let us note that it follows immediately from (5.5) that if r a n k ( - ^ ) < k for all 
r, then we cannot control in general all the coefficients a$ in (1.3) and it is very easy to 
see that the family of all mappings from M to N can depend on an infinite number of 
parameters. But we can show the following consequence of Theorem I: 
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COROLLARY 5.1. (a) With the assumptions of Theorem I and additionally that 
rank(-^-) > kfor some r sufficiently small it follows that the mapping f is of the 
form 

(5.6) /(z, w) — a\Z\ + • • • + aiPk +p(w) for (z, w) G M, 

where a\, ...,am are real constant vectors, andp = p(w) is a holomorphic vector-valued 
function with p(0) = 0. Also we have 

(5.7) a, A,(r) + • • • + akhk{r) + %(p(rei$)) = <f(g(rew)). 

Moreover, after a holomorphic change of coordinates in a neighbourhood of the origin 
ofCl+n, the function p can be made identically equal to zero. 

(b) Conversely, iff is of the form (5.6) with (5.7) and g = g(w) is holomorphic, then 
F — (f,g) is a CR mapping from M into N. 

PROOF OF COROLLARY 5.1. Using the assumption about r a n k ( - ^ ) we can 

solve the system of equations (5.5) with respect to jj^-, and get ^ ^ = ippir), f3 = 
1, . . . , &, for some functions i/^ that depend on r only. Obviously both sides of these 
equations must be constant. So we obtain that a(x) = a\X\ + • • • + akxk + a0 for some 
constant vectors a0, •. •, #*• If we look again at (5.5), and substitute these constant vec
tors for | £ , we obtain £*=1 ap

0-^ = ^h°drf
r\ a = 1, . . . , m, which gives 9A0,.,o(r) = 

a\h\ + • • • +akhk+âo, where âo is a constant vector. Since/(0) = 0 and because >> = h(r) 
on M, we must have ao = 0 = âo, and we get (5.6) and (5.7). The proof of (b) is obvious. 

6. Counting the CR mappings. In this section we will again assume that M C Ck+m 

is a circular CR manifold defined by ( 1.1 ), and that N C C/+w is a rigid CR manifold given 
by (1.2). 

In the previous section, for a given mapping g we constructed a CR mapping F = (f,g) 
from M into N, under the assumption that F exists. Obviously, the construction is not 
possible for an arbitrary g. In this section we consider the following problem: 

How many holomorphic mappings g = g(w) exist such that F = (f,g)\M —» N is 
a CR mapping from a neighbourhood ofO in M into a neighbourhood of0 in N with 
F(0) = 0, and is there a relation between those g s? 

In Theorem I we obtained a general form for such mappings, and the condition on g is 
implicitly hidden in (1.4). In general, it is impossible to find a relation between different 
g's, if for instance we have that g = g(w) and g = g(w) both satisfy the hypothesis of 
Theorem I, and that the images of a neighbourhood of 0 in Cw under g and g intersect 
only at 0 G Cn. Therefore one of the natural assumptions is that there exists a mapping g 
which is a surjection onto a neighbourhood of 0 in Cw and which satisfies the assumptions 
of Theorem I. Obviously it is possible to consider intermediate cases but we do not want 
to go in this direction. 

Before the formulation of the next theorem, we need some notation. Let go = go(w) 
be a surjective mapping from a neighbourhood of 0 in Cm onto a neighbourhood of 0 
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in C". Without loss of generality we can assume that for a generic w" = (w„+\,..., wm) 
the mapping (wi , . . . , w„) —> go(w\ ,...,wn, w") is not identically zero. For a generic 
point £ = (£1 , . . . , £„) G C", which is sufficiently close to the origin there exists w with 
g(w) = £. We denote by go the maximal branch of the inverse of the above mapping 
passing through w = (w\ w"\ where w' — (w\,..., w„), and w" as above; i.e., we have 

g o ( g o ( £ w " W ) = £-
If we have any other mapping g — g(w) from a neighbourhood of 0 in Cm into a 

neighbourhood of 0 in Cn (not necessarily surjective), then we use the notation 

G(w) = (G1(w),...,G„(w),w//) = (go(g(w),w / ,),w , /), 
|G(w)| = (|Gi(w)|,..., \G„(w% \wn+l | , . . . , \wm\). 

We use the same notation if the sequence 1, . . . , n is replaced by an arbitrary strictly 
increasing sequence of n numbers between 1 and m, with the obvious change in the 
meaning of w' and w". This should not lead to any confusion. 

THEOREM 6.1. Let M d Ck+m be a circular CR manifold as in (1.1), and let N C 
Cl+n be a rigid CR manifold as in (1.2). Assume that there exists go = go(w) which is 
holomorphic and is surjective from a neighbourhood of0 in Cm onto a neighbourhood 
ofO in Cn, and such that F0 = (fo, go): M-+N, F0(0) = 0, is CR Then for any other CR 
mapping F = (f,g):M —+ N with g = g(w) being holomorphic, we have the following 
relation between g and go: 

(6.1) f a°hp(\G(w)\) = i:a^(\w\X 
0=\ 0=1 

where a°o, ap, f3 = 1 , . . . , k, are the constants from Theorem 1 which correspond to go and 
g respectively. 

In particular, if m = n, i.e., dimcRM = dimcR N, and if go is a biholomorphic map
ping between neighbourhoods of the origin in Cm, then we get 

k k 

T^(\gô\g{w))\\ = J2aphp(\w\). 

PROOF. From Theorem I, we can assume thatfo a n d / have the form as in (1.3), 
i.e.9fo(z,w) = a0(ftz) + / £ ^ = 1 ^ ( I H ) (hereto = 0), and/(z,w) = a(Rz) + 
*5Z!g=i tf/^CM) + P(w)> where the coefficients a\, a$ are real constant vectors. Again 
using Theorem I, we have 

k k 

(6.2) YJ a°php(\M) = ^(go(w)), J2 V ^ O H ) + ^P(w) = ^(g(^))-
0=1 0=1 

Using the assumption about go, and the notation introduced before the statement of the 
theorem, we get 

E f l ^ ( | ( f l o « V ) V ) | ) = v ( 0 . 
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Combining this equality with the second equality of (6.2), we obtain 

£ a°ph0(\G(w)\) = E ^ ( I H ) + %Kw). 
0=1 0=1 

We note that the above equality can hold only if the function/? is constant, which means 
in our case thatp = 0; so we get (6.1). The theorem is proved. 

From the above theorem we see that without additional assumptions on the rank of 
the constant vectors a@ or on the independence of the functions hp one cannot expect 
that the set of all CR mappings from M into N will depend only on a finite number 
of parameters (see examples below). Several different assumptions can be considered 
leading to quite similar results with quite similar proofs. In order to avoid repetition of 
the same arguments, we consider only one case given in Theorem II, which, we think, is 
the most important one, for instance, for classification purposes. 

PROOF OF THEOREM II. It suffices to apply Corollary 5.1 to get immediately (i) and 
(ii). In order to prove (iii), let us take a closer look at (i): 

(6.3) ¥>(go(w)) = ai Ai(M) + • • • + akhk(\w\) 

where tp = (ip\,..., </?/) and where a\,..., ak are some constant vectors in C'. Because 
FQ is an embedding, we have that k < I and rank(ai,..., ak) = k. Since go is invertible, 
the function (p = (<pi,..., (pi) is uniquely determined by (6.3), and we obtain </?(£) = 

fliAi(lsô'(OI) + --- + «*Mlsô1(OI). 
Take any other holomorphic mapping g that satisfies the assumptions of Theorem 6.3. 

Then, by Corollary 5.1, the mapping/ satisfies (5.6) for some set of constant vectors 
b\,...,bk and a holomorphic function p(w). Combining (1.4) with the above formula for 
<p(Q, and denoting G = (G\,..., Gm) = g^1 °g ,we obtain 

(6.4) M , ( M ) + ' ' ' + M * ( M ) + S(/>M) = fli*i(|G(w)|) + • • -+akhk(\G(w)\). 

From this equality we can express the imaginary part of the holomorphic function p = 
p(w) in terms of Aa(|G(w)|) and /za(|w|). But it is easy to see that such representation 
is possible only if the function p = p(w) is constant. Because p(0) = 0, consequently 
p = 0. Hence from these arguments, we get that the term S(/?(w)) = 0 in (6.4). Since 
rank(<zi,..., ak) = k, we can express /za(|G(w)|) in terms of /^(|w|), namely 

k 

ha(\G(w)\) = J2 0<*/?MM)> <*= 1,. . . ,*, 
0=1 

for some real constants aap. The above equality gives (iii) and completes the proof of the 
theorem. 

COROLLARY 6.2. With the assumptions of Theorem II and additionally assuming 
that the CR codimension of M is equal to its CR dimension, i.e. that k — m, then we have 
that the conclusion of Theorem II holds and moreover that G is of the form 

G(w) = (Gi(w),..., Gw(w)), Ga(w) = c^0" vii°", oc = 1,. . . ,m, 
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where c\,..., cm G C are constants, andjap are nonnegative integers. Moreover, if g is 
biholomorphic, then 

G(w\,..., wm) = (c\ w,-,,..., cmwjm)9 

where c\9... 9cm G C are constants, and (J\,... Jm) is a permutation of( 1 , . . . , m). 
In particular, if m = 1, and if the function h vanishes to infinite order atw = 0, then 

either G(w) = 0 or G(w) — eltw, where t G R. 

The proof of the corollary is easy and is left for the reader who should also compare 
this result with the theorem of Shimizu ([F2, Theorem 3.6], [Sh]). 

EXAMPLE 6.3. Let M C C2, k = 1, m = 1, be given by y = \w\2, and let N c C3, 
/ = 1, n = 2, by r = |£i |2. So we have dimcR M < dimcR N, and it is very easy to see that 
the family of all embeddings of M into N depends on an infinite number of parameters. 

EXAMPLE 6.4. In this example we want to show that if dimcRM = dimcRjV but 
r a n k ( ^ ) < dimcR N9 then the family of embeddings of M into TV also can be infinite 
dimensional. Let h = h(r) be a real-valued smooth function defined for r > 0. Let M C 
C4 be given by y\ = A(|wi|),}>2 = A(|w2|), and let TV C C4 be given by T\ = h(\^\\),T2 = 
h(\£\ |). It is easy to see that any holomorphic mapping F of the form F(z\ ,z2, w\, w2) = 
(z\ 9Z2,w\9 g(z\,Z2, wj, W2)) maps M into N. 

EXAMPLE 6.5. In this example we want to show a simple application of Corol
lary 6.2. Let M C C4 be given by y\ = exp(— l/ |wi|) , y2 = exp(—l/|w2|), and let 
TVcC4begivenbyri = exp(- l / (4 |^ i | ) ) , r 2 - exp(- l / (9 |£2 | ) ) . Using Corollary 6.2 
it is very easy to find all CR embeddings F = (f9g):M —> TV, where g — g(w) depends on 
w only. Namely the embeddings are of the form F(z, w) — {eltxz\, ëhz2, \elh w\, \elt2w2) 
or (e"2z2, e

lhz\, \elhw2, \elhw{)9 where t\912 are some real constants. 
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