A NOTE ON ROOT DECISION PROBLEMS IN GROUPS

SEYMOUR LIPSCHUTZ AND MARTIN LIPSCHUTZ

1. Introduction. Consider a positive integer r > 1. We say that the rth root problem is solvable for a group G if we can decide for any $W \in G$ whether or not W has an rth root, i.e. whether or not there exists $V \in G$ such that $W = V^r$.

Baumslag, Boone and Neumann [1] proved that there exists a finitely presented group with all root problems unsolvable. Here we are concerned with the relationship between the different root problems. We prove:

THEOREM 1. Let r and s be positive integers such that neither divides the other. Then the corresponding root problems are independent.

THEOREM 2. Let r_1, r_2, \ldots, r_n be positive integers such that each has a prime divisor which does not divide any of the others. Then the corresponding root problems are independent.

Recall that a group G with generators x_1, x_2, \ldots and defining relations R_1, R_2, \ldots is said to be *recursively presented* if there exists an effective process which lists the words R_n . We say that the decision problems D_1, D_2, \ldots, D_n for groups are *independent* if for any subset $\{i_1, \ldots, i_m\}$ of $\{1, \ldots, n\}$ there exists a recursively presented group with D_{i_1}, \ldots, D_{i_m} solvable, but the remaining D_i 's unsolvable.

Our proofs use a one-to-one recursive function $\phi : \mathbf{N} \to \mathbf{N}$ whose image, Im ϕ , is non-recursive, i.e. given a positive integer k, we can compute $\phi(k)$ but we cannot decide if k belongs to Im ϕ . Such functions are known to exist; c.f. Britton [2, Lemma 2.31]. We will also use the following theorem which follows from elementary properties of free products.

THEOREM A. Let G be the free product of groups A_i . Then the rth root problem is solvable for G if the word problem and rth root problem are solvable for the factors A_i .

2. Proof of Theorem 2. Let p be a prime and let $\phi : \mathbf{N} \to \mathbf{N}$ be a one-to-one recursive function with a non-recursive image (see introduction). Let G_p be the group with generators

 x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots

Received February 25, 1972 and in revised form, May 2, 1972.

702

and defining relations

$$x_{\phi(1)} = y_1^p, \qquad x_{\phi(2)} = y_2^p, \qquad x_{\phi(3)} = y_3^p, \ldots$$

Clearly G_p is recursively presented since ϕ is recursive. We claim:

LEMMA. The word problem is solvable for G_p . The rth root problem is unsolvable for G_p if p divides r, and solvable if p does not divide r.

Proof of Lemma. Observe that G_p is the free product of the infinite cyclic groups generated by the y_i and the infinite cyclic groups generated by the x_j for $j \notin \text{Im } \phi$. Since ϕ is recursive, we can always write $W \in G_p$ as a word in the x's and y's so that y_i does not appear next to x_j whenever $\phi(i) = j$. This gives the syllable (free product) length of W. Thus we can solve the word problem for G_p .

Suppose p divides r, say r = pt. Then x_i^t has an rth root if and only if $i \in \text{Im } \phi$; if $\phi(j) = i$ then y_j is an rth root of x_i^t . But Im ϕ is non-recursive; hence the rth root problem is unsolvable for G_p if p divides r.

On the other hand, suppose p does not divide r. Since the word problem is solvable for G_p and since G_p is a free product, it suffices to solve the rth root problem for a factor H of G_p . Let $V \in H$. Then $V = y_i^m$ or $V = x_i^m$. We claim that V has an rth root if and only if r divides m. This is clearly true in the case that $V = y_i^m$, or $V = x_i^m$ for $i \notin \text{Im } \phi$. Suppose $\phi(j) = i$; then $V = x_i^m = y_j^{mp}$. But p does not divide r; hence V has an rth root if and only if r divides m. Thus the rth root problem is solvable for H, and hence it is solvable for G_p . Accordingly, the lemma is proved.

We now prove Theorem 2. Let $\{i_1, \ldots, i_m\}$ be a subset of $\{1, 2, \ldots, n\}$ and let G be the direct product

$$G = G_{z_1} \times G_{z_2} \times \ldots \times G_{z_m}, \qquad z_j = p_{i_j}$$

By the above lemma, the r_i th root problem is solvable for G if and only if $i \notin \{i_1, \ldots, i_m\}$. Thus, Theorem 2 is proved.

3. Proof of Theorem 1. Let d = gcd(r, s); say r = da and s = db. Then gcd(a, b) = 1; also $a \neq 1$ and $b \neq 1$ since neither r nor s divides the other. Let G be the group with generators

 x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots

and defining relations

$$x_{\phi(1)}{}^d = y_1{}^r, \qquad x_{\phi(2)}{}^d = y_2{}^r, \qquad x_{\phi(3)}{}^d = y_3{}^r, \ldots$$

Clearly G is recursively presented since ϕ is recursive. We claim that the sth root problem is solvable for G, but the *r*th root problem is not. This will prove our theorem since we can interchange *r* and *s* to obtain a group for which the *r*th root problem is solvable but the *s*th root problem is not.

Note that G is the free product of the groups

$$H_i = \langle x_{\phi(i)}, y_i; x_{\phi(i)}^d = y_i^r \rangle$$
, and $K_j = \langle x_j \rangle, j \notin \operatorname{Im} \phi$.

Observe that x_k^d has an *r*th root if and only if $k \in \text{Im } \phi$; hence the *r*th root problem is unsolvable for *G* because Im ϕ is non-recursive. It remains to show that the *s*th root problem is solvable for *G*. We claim, first of all, that the word problem is solvable for *G*. Let $W \in G$, i.e. let *W* be a word in the *x*'s and *y*'s. Now if a y_i appears next to an x_j in *W*, then we can decide whether or not they belong to the same factor of *G* because we can decide whether or not $\phi(i) = j$. Moreover, we can solve the word problem for the factors of *G*. Thus we can determine the syllable length of *W*, and hence solve the word problem for *G*. Accordingly, it suffices to solve the *s*th problem for the factors of *G*. That is, given an element *V* in a factor of *G*, we have to decide whether or not *V* has an *s*th root. There are two cases.

Case I. V is a power of y_i , or a word in Y_i and x_j with $\phi(i) = j$. Then V belongs to H_i . How H_i is a free product of two infinite cyclic groups with a cyclic amalgamation. The sth root problem is solvable for such a group; cf. [3]. Thus we can decide whether or not V has an sth root.

Case II. V is a power of x_i ; say $V = x_i^n$. We claim that V has an sth root if and only if s divides n. If $i \notin \text{Im } \phi$ then V would belong to the infinite cyclic group K_i generated by x_i , and the claim clearly holds. On the other hand, suppose $i \in \text{Im } \phi$; say $\phi(k) = i$. Then V belongs to the group

$$H_k = \langle x_i, y_k; x_i^d = y_k^r \rangle.$$

We view H_k as a free product with an amalgamation. If s divides n then clearly V has an sth root. Suppose, however, that V has an sth root. We claim that one such sth root U has syllable length one. If d does not divide n, then U must have syllable length one. If d does divide n, then V belongs to the center of H_k . It follows that V has an sth root U which is cyclically reduced. This sth root U has syllable length one.

We now have that $V = U^s$ where U has syllable length one. There are two possibilities:

Case A. $U = x_i^c$. Then $x_i^{cs} = U^s = V = x_i^n$, whence s divides n.

Case B. $U = y_k^{e}$. Then $y_k^{es} = U^s = V = x_i^{n}$. Then V lies in the amalgamated subgroup, whence y_k^{es} is a power of y_k^{r} ; say

$$es = rf.$$

Recall r = ad and s = bd where gcd(a, b) = 1. It follows that b divides f; say f = bg. Using the relation $x_i^{\ d} = y_k^{\ r}$, we have

$$V = U^{s} = y_{k}^{es} = y_{k}^{rf} = x_{i}^{df} = x_{i}^{dbg} = x_{i}^{sg}.$$

But $V = x_i^n$; hence s divides n.

We have shown in Case II that $V = x_i^n$ has an sth root if and only if s divides n. Thus we can decide whether or not V has an sth root.

Accordingly, the sth root problem is solvable for G, and therefore the theorem is proved.

ROOT DECISION PROBLEMS

References

- 1. G. Baumslag, W. W. Boone, and B. H. Neumann, Some unsolvable problems about elements and subgroups of groups, Math. Scand. 7 (1959), 191-201.
- 2. J. L. Britton, Solution of the word problem for certain types of groups. I, Glasgow Math. J. 3 (1956), 45-54.
- 3. S. Lipschutz, On powers in generalized free products of groups, Arch. Math. (Basel) 19 (1968), 575-576.

Temple University, Philadelphia, Pennsylvania; William Paterson College, Wayne, New Jersey