A NOTE ON ROOT DEGISION PROBLEMS IN GROUPS

SEYMOUR LIPSCHUTZ AND MARTIN LIPSCHUTZ

1. Introduction. Consider a positive integer $r>1$. We say that the r th root problem is solvable for a group G if we can decide for any $W \in G$ whether or not W has an r th root, i.e. whether or not there exists $V \in G$ such that $W=V^{r}$.

Baumslag, Boone and Neumann [1] proved that there exists a finitely presented group with all root problems unsolvable. Here we are concerned with the relationship between the different root problems. We prove:

Theorem 1. Let r and s be positive integers such that neither divides the other. Then the corresponding root problems are independent.

Theorem 2. Let $r_{1}, r_{2}, \ldots, r_{n}$ be positive integers such that each has a prime divisor which does not divide any of the others. Then the corresponding root problems are independent.

Recall that a group G with generators x_{1}, x_{2}, \ldots and defining relations R_{1}, R_{2}, \ldots is said to be recursively presented if there exists an effective process which lists the words R_{n}. We say that the decision problems $D_{1}, D_{2}, \ldots, D_{n}$ for groups are independent if for any subset $\left\{i_{1}, \ldots, i_{m}\right\}$ of $\{1, \ldots, n\}$ there exists a recursively presented group with $D_{i 1}, \ldots, D_{i_{m}}$ solvable, but the remaining D_{i} 's unsolvable.

Our proofs use a one-to-one recursive function $\phi: \mathbf{N} \rightarrow \mathbf{N}$ whose image, $\operatorname{Im} \phi$, is non-recursive, i.e. given a positive integer k, we can compute $\phi(k)$ but we cannot decide if k belongs to $\operatorname{Im} \phi$. Such functions are known to exist; c.f. Britton [2, Lemma 2.31]. We will also use the following theorem which follows from elementary properties of free products.

Theorem A. Let G be the free product of groups A_{i}. Then the r th root problem is solvable for G if the word problem and r th root problem are solvable for the factors A_{i}.
2. Proof of Theorem 2. Let p be a prime and let $\phi: \mathbf{N} \rightarrow \mathbf{N}$ be a one-to-one recursive function with a non-recursive image (see introduction). Let G_{p} be the group with generators

$$
x_{1}, x_{2}, x_{3}, \ldots \text { and } y_{1}, y_{2}, y_{3}, \ldots
$$

[^0]and defining relations
$$
x_{\phi(1)}=y_{1}^{p}, \quad x_{\phi(2)}=y_{2}^{p}, \quad x_{\phi(3)}=y_{3}^{p}, \ldots
$$

Clearly G_{p} is recursively presented since ϕ is recursive. We claim:
Lemma. The word problem is solvable for G_{p}. The r th root problem is unsolvable for G_{p} if p divides r, and solvable if p does not divide r.

Proof of Lemma. Observe that G_{p} is the free product of the infinite cyclic groups generated by the y_{i} and the infinite cyclic groups generated by the x_{j} for $j \notin \operatorname{Im} \phi$. Since ϕ is recursive, we can always write $W \in G_{p}$ as a word in the x 's and y 's so that y_{i} does not appear next to x_{j} whenever $\phi(i)=j$. This gives the syllable (free product) length of W. Thus we can solve the word problem for G_{p}.

Suppose p divides r, say $r=p t$. Then $x_{i}{ }^{t}$ has an r th root if and only if $i \in \operatorname{Im} \phi$; if $\phi(j)=i$ then y_{j} is an r th root of $x_{i}{ }^{t}$. But $\operatorname{Im} \phi$ is non-recursive; hence the r th root problem is unsolvable for G_{p} if p divides r.

On the other hand, suppose p does not divide r. Since the word problem is solvable for G_{p} and since G_{p} is a free product, it suffices to solve the r th root problem for a factor H of G_{p}. Let $V \in H$. Then $V=y_{i}{ }^{m}$ or $V=x_{i}{ }^{m}$. We claim that V has an r th root if and only if r divides m. This is clearly true in the case that $V=y_{i}{ }^{m}$, or $V=x_{i}{ }^{m}$ for $i \notin \operatorname{Im} \phi$. Suppose $\phi(j)=i$; then $V=x_{i}{ }^{m}=$ $y_{j}{ }^{m p}$. But p does not divide r; hence V has an r th root if and only if r divides m. Thus the r th root problem is solvable for H, and hence it is solvable for G_{p}. Accordingly, the lemma is proved.

We now prove Theorem 2. Let $\left\{i_{1}, \ldots, i_{m}\right\}$ be a subset of $\{1,2, \ldots, n\}$ and let G be the direct product

$$
G=G_{z 1} \times G_{z 2} \times \ldots \times G_{z_{m}}, \quad z_{j}=p_{i j}
$$

By the above lemma, the r_{i} th root problem is solvable for G if and only if $i \notin\left\{i_{1}, \ldots, i_{m}\right\}$. Thus, Theorem 2 is proved.
3. Proof of Theorem 1. Let $d=\operatorname{gcd}(r, s)$; say $r=d a$ and $s=d b$. Then $\operatorname{gcd}(a, b)=1$; also $a \neq 1$ and $b \neq 1$ since neither r nor s divides the other. Let G be the group with generators

$$
x_{1}, x_{2}, x_{3}, \ldots \quad \text { and } \quad y_{1}, y_{2}, y_{3}, \ldots
$$

and defining relations

$$
x_{\phi(1)}{ }^{d}=y_{1}{ }^{\tau}, \quad x_{\phi(2)}{ }^{d}=y_{2}{ }^{\tau}, \quad x_{\phi(3)^{d}}{ }^{d}=y_{3}{ }^{r}, \ldots
$$

Clearly G is recursively presented since ϕ is recursive. We claim that the s th root problem is solvable for G, but the r th root problem is not. This will prove our theorem since we can interchange r and s to obtain a group for which the r th root problem is solvable but the s th root problem is not.

Note that G is the free product of the groups

$$
H_{\imath}=\left\langle x_{\phi(i)}, y_{i} ; x_{\phi(i)}{ }^{d}=y_{i}{ }^{r}\right\rangle, \text { and } K_{j}=\left\langle x_{j}\right\rangle, j \notin \operatorname{Im} \phi .
$$

Observe that $x_{k}{ }^{d}$ has an r th root if and only if $k \in \operatorname{Im} \phi$; hence the r th root problem is unsolvable for G because $\operatorname{Im} \phi$ is non-recursive. It remains to show that the s th root problem is solvable for G. We claim, first of all, that the word problem is solvable for G. Let $W \in G$, i.e. let W be a word in the x 's and y 's. Now if a y_{i} appears next to an x_{j} in W, then we can decide whether or not they belong to the same factor of G because we can decide whether or not $\phi(i)=j$. Moreover, we can solve the word problem for the factors of G. Thus we can determine the syllable length of W, and hence solve the word problem for G. Accordingly, it suffices to solve the s th problem for the factors of G. That is, given an element V in a factor of G, we have to decide whether or not V has an s th root. There are two cases.

Case I. V is a power of y_{i}, or a word in Y_{i} and x_{j} with $\phi(i)=j$. Then V belongs to H_{i}. How H_{i} is a free product of two infinite cyclic groups with a cyclic amalgamation. The sth root problem is solvable for such a group; cf. [3]. Thus we can decide whether or not V has an s th root.

Case II. V is a power of x_{i}; say $V=x_{i}{ }^{n}$. We claim that V has an s th root if and only if s divides n. If $i \notin \operatorname{Im} \phi$ then V would belong to the infinite cyclic group K_{i} generated by x_{i}, and the claim clearly holds. On the other hand, suppose $i \in \operatorname{Im} \phi ;$ say $\phi(k)=i$. Then V belongs to the group

$$
H_{k}=\left\langle x_{\imath}, y_{k} ; x_{\imath}{ }^{d}=y_{k}{ }^{\tau}\right\rangle
$$

We view H_{k} as a free product with an amalgamation. If s divides n then clearly V has an sth root. Suppose, however, that V has an sth root. We claim that one such sth root U has syllable length one. If d does not divide n, then U must have syllable length one. If d does divide n, then V belongs to the center of H_{k}. It follows that V has an s th root U which is cyclically reduced. This s th root U has syllable length one.

We now have that $V=U^{s}$ where U has syllable length one. There are two possibilities:

Case A. $U=x_{i}{ }^{c}$. Then $x_{2}{ }^{c s}=U^{s}=V=x_{i}{ }^{n}$, whence s divides n.
Case B. $U=y_{k}{ }^{e}$. Then $y_{k}{ }^{e s}=U^{s}=V=x_{i}{ }^{n}$. Then V lies in the amalgamated subgroup, whence $y_{k}{ }^{e s}$ is a power of $y_{k}{ }^{r}$; say

$$
e s=r f
$$

Recall $r=a d$ and $s=b d$ where $\operatorname{gcd}(a, b)=1$. It follows that b divides f; say $f=b g$. Using the relation $x_{i}{ }^{d}=y_{k}{ }^{r}$, we have

$$
V=U^{s}=y_{k}^{e s}=y_{k}{ }^{\tau f}=x_{i}{ }^{d f}=x_{i}{ }^{d b g}=x_{i}{ }^{s g} .
$$

But $V=x_{i}{ }^{n}$; hence s divides n.
We have shown in Case II that $V=x_{i}{ }^{n}$ has an s th root if and only if s divides n. Thus we can decide whether or not V has an s th root.

Accordingly, the sth root problem is solvable for G, and therefore the theorem is proved.

References

1. G. Baumslag, W. W. Boone, and B. H. Neumann, Some unsolvable problems about elements and subgroups of groups, Math. Scand. 7 (1959), 191-201.
2. J. L. Britton, Solution of the word problem for certain types of groups. I, Glasgow Math. J. 3 (1956), 45-54.
3. S. Lipschutz, On powers in generalized free products of groups, Arch. Math. (Basel) 19 (1968), 575-576.

Temple University, Philadelphia, Pennsylvania; William Paterson College, Wayne, New Jersey

[^0]: Received February 25, 1972 and in revised form, May 2, 1972.

