A NOTE ON INDUCED MODULES
CHARLES W. CURTIS

1. Introduction. In this paper, 4 denotes a ring with an identity element
1, and B a subring of 4 containing 1 such that B satisfies the left and right
minimum conditions, and 4 js a finitely generated left and right B-module.
The identity element 1 is required to act as the identity operator on all
modules which we shall consider. For any left B-module V, there is a standard
construction of a left A-module which is, roughly speaking, the smallest
A-module containing V. Namely, we form the tensor product group 4 ®z V,
and define the module operations in this group according to the rule

) a(Z a; ® vi) = Z aa; @ v, a,a; € 4, v € V.

If @ is taken from B instead of 4, then (1) defines the structure of a left
B-module on 4 ® 5 V, and there is a natural B-homomorphism

(2) ev—1Qw, v €V,

of Vinto 4 ®p V, such that 4 ® z V is generated, as an A-module, by (V).
In case A is the group algebra of a finite group, and B is the group algebra
of a subgroup H of G, the representation of G afforded by the module 4 ® 5 V
is the induced representation, defined first by Frobenius, of the representation
of H afforded by V. The theory of induced modules A ® 5 V in general has
been treated extensively by Higman (3), (4), and Hochschild (5).

The purpose of this note is to investigate the following question.

(I) Let V be a left B-module. Does there exist a B-homomorphism = of
A ®p V onto V such that me = 1, where € is given by (2)?

The existence of 7 is clearly equivalent to the requirement that ¢ map 1/
monomorphically (that is, with kernel zero) onto a B-direct summand of
A®pV.

The condition (I) is satisfied for all left B-modules V in case B is a semi-
simple ring. Higman has observed in (2) that (I) holds for all left B-modules
V whenever 4 is the group algebra of a finite group over an arbitrary field,
and B the group algebra of a subgroup of G. The question (I) for general
non-semi-simple rings B is of interest for the following reason. Following Jans
(6), we say that a ring 4 with left minimum condition has unbounded repre-
sentation type if there exist indecomposable left 4-modules with arbitrarily
long composition series. Jans (6) and others have discovered criteria for 4
to be of unbounded representation type in case A is a finite dimensional
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algebra over a field. Little seems to be known, however, about the following
question.

(IT) Let B be a subring of 4, and suppose that B has unbounded repre-
sentation type. Does 4 then have unbounded representation type also?

In § 3 we shall give examples to show that in general the answers to both
questions are negative. Our contribution to the study of (II) is the remark,
already made in the group algebra case by Higman (2) that an affirmative answer
to (I) for all left B-modules V implies an afirmative answer to (I1). To prove
this assertion, let 7 be an indecomposable left B-module which possesses a
composition series. Then 4 ®p V is a finitely generated left B-module, and
has a composition series both as a left B-module and as a left 4-module. Then
A ®p Vis a direct sum of a finite number of indecomposable left 4-modules
Ui, ..., U, Each U;in turn is a direct sum of indecomposable B-submodules.
By (I), 4 ® 3 VV has a B-direct summand isomorphic to V. Therefore, by the
Krull-Schmidt Theorem, some U, has a B-direct summand isomorphic to
V, and hence U, has a composition series as a B-module at least as long as
a composition series for V. Because any irreducible left 4-module is a homo-
morphic image of the finitely generated left B-module 4, we see that the
B-composition length of all irreducible left A-modules is bounded by the
B-composition length of 4. Combining our remarks, we conclude that if B
has indecomposable modules with arbitrarily long composition series, the same
assertion holds for A4, as we wished to prove.

2. Main results. We give some sufficient conditions for condition (I) to
hold. The first is rather trivial, but it includes the group algebra case. By a
projection of A upon B we shall mean an endomorphism ¢ of the additive
group of A such that ¢(4) = B, and ¢(b) = b for all b € B.

TueoreEM 1. Suppose there exists a projection T of A upon B which is both a
left and right B-homomorphism. Then condition (I) holds for every left B-module
V.

Proof. Let € be the homomorphism of V into A1 @ V given by (2). Then
=71 ® 1 defines a homomorphism of 4 ® g VV onto V such that 7e = 1,
because 7 is a right B-homomorphism of 1 upon B which reduces to the
identity on B. Because 7 is also a left B-homomorphism of 1 onto B, 7 is a
B-homomorphism, and the Theorem is proved.

CoROLLARY. (Higman (2).) Let A4 = KG be the group algebra of a finite
group G over a field K, and let B = KH be the group algebra of a subgroup H
of G. Then (I) holds for every left B-module V.

Proof. Let g1 =1, g, ..., g, be a set of representatives of the left cosets
gd1 of H in G. Then 4 is a free right B-module with basis gy, ..., g,. Then
the mapping 7: >_g:b; — b1, b; € B, is a projection of .1 upon B which satisfies
the hypothesis of Theorem 1.
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For the rest of the section we assume that there exists a projection X\ of 4
upon B which is assumed only to be a left B-homomorphism. This hypothesis
is automatically satisfied, for example, whenever B is a quasi-Frobenius ring,
since a quasi-Frobenius ring B is an injective left (as well as right) B-module
(see (1)). With the projection X we shall associate a two-sided ideal I, in B
which measures the extent to which X fails to be a right B-homomorphism. We
begin by defining for each ¢ € 4 and b € B the element

f(a, d) = Nabd) — Na)b
of B. We then define I to be the set of all finite sums Zf(ai, b;), with a; in
A and b; in B. The function f satisfies the conditions
f(=a,b) = fla, = 8) = — f(a, b),
of @y b)) = f(bay b.),
and

.f(aiy b1>b = f(aiv blb) - f(a'ibi) b)r

for all @,a; € A4 and b, b; € B. From these formulas it follows at once that
I, is a two-sided ideal.

Our main result can be stated as follows.

THEOREM 2. Let B be a subring of A such that A is a projective right B-module,
and let \ be a left B-projection of A upon B with associated ideal I in B. Then
for every left B-module V such that I,V = 0, the mapping e:v — 1 @ v maps
V' monomorphically onto a B-direct summand of A @p V.

Proof. We have to prove that there exists a B-homomorphism 7 of 4 @z V
onto V such that e = 1. Because 4 is a projective right B-module, the first
theorem of (7) implies that 4 is a direct sum of submodules a¢;B, 1 < i < s,
such that each a;B is B-isomorphic to a right ideal ¢;B in B generated by an
idempotent e¢,. The isomorphism 6; of a;B onto e;B can be chosen so that
0;(a;) = e, 1 <1 <s, and it follows that a.,e; = a; for each 7. From the
properties of tensor products, it follows that 4 ® 5 V can be expressed as a
direct sum

3) A®BV=Z@(aiB®V)=ZI®(a,®V).
i=1 i=

For any element x = Zai Ruy v, €V, 0of 4 Q@p V, we define

(4) w(x) = 21 Aai)ew:

First we check that = is well-defined. If x = 0, then because of the direct
sum decomposition (3) we havea; ® v; = 0for7 = 1,...,s. Moreover, since
0:(a:b)o = 0,(a;)by, b € B,v € V, there exists a homomorphism ¢;0of ;B @ V
into V such that o,(a:d ® v) = 0;(a:b)v, b € B, v € V, and we have

0=o90;(a;® Ui) = ei(ai)vi = €.
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Then from (4) we have 7(x) = 0. 7 is obviously additive. We next verify that
me = 1. We can express the identity element 1 in 4 in the form 1 = Zaib,-,
where we may assume that e;b; = b;, 1 < 7 < s. Then for » € V, we have

me(@) = 7(1 ® v) = W(Z a; ® biv) = > Nadedw = 2, Na)bw
> (Mady) = flayb))e = 2, NMad)v = A(1)v = v

since A(1) = 1, and I,V = 0. Finally we prove that = is a B-homomorphism.
Let & € B; then we have for each 1,

§

bay = Z a;Bji

j=1

where the 8,; € B, and we may assume that ¢;8;:e; = 8;; for all 2 and j. Then
we have

br(z a; ® v,-) =) Z Naew; = Z Nba)ew,,

It

while on the other hand we have
T(Z a; @ Z Bjﬂ’i)

1r(b S e ® vi) = w(Z Zj) a8, ®vi> j

o Naei( X Bawn) = 2 T MNapbyeas

2 X (M) — fapBiens = TN Z aby)ea
zi) Nba)ew; = bw(Z a; ® v,-) ,

since f(a;, 8;:) € Ixand I,V = 0. This completes the proof of the theorem.
From Theorem 2 and the remarks in § 1, we have the following corollary.

Il

COROLLARY 1. Let A and B satisfy the hypothesis of Theorem 2, and suppose
that B/I\ has unbounded representation type. Then A has unbounded repre-
sentation type.

COROLLARY 2. Let A be a projective right B-module, where B is a quasi-
Frobenius ring. Moreover, for some left B-projection \ of A upon B, let NI\ = 0,
where N is the radical of B. Then for every finitely generated left B-module
V,e:v— 1 Q® vmaps V monomorphically onto a B-direct summand of -1 @5 V.

Proof. Because V is finitely generated, 1 is a direct sum of indecomposable
left B-modules 17;, 1 < 2 < t. If we can prove Corollary 2 for each 1/, then
it is clear that Corollary 2 will hold for V. Therefore we may assume that V
is indecomposable. The hypothesis that NI, = 0 implies that I, is a sum of
minimal left ideals in B. We prove first that /41 # 0 implies that V' is injective.
This result is a familiar one in the theory of quasi-Frobenius rings (see (8)),
but for the sake of completeness we sketch the proof. We have I, = Z[xei,
where the e; are primitive idempotents in B. Because NI, = 0, Iye; # 0
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implies that Ie; is the unique minimal subideal in the indecomposable left
ideal Be; of B. Now L,V # 0 implies that for some e;, Ire;V # 0, and there
exists v € V such that Lyew is a non-zero submodule of V. The mapping
be; — bew is a B-homomorphism of Be; onto Bew, and since Be; has a unique
minimal subideal not contained in the kernel of the homomorphism, it follows
that Be;v is isomorphic to Be;. On the other hand, Be; is an injective left
B-module; hence Bew is an injective submodule of V. Since V is indecompos-
able we must have Beg =V, and V is injective. We have now shown that for
a given indecomposable left B-module TV, either I,V = 0 and Theorem 2
applies to V, or V is injective. It remains to prove that if 7 is injective, then
e:v— 1 ® v maps V monomorphically onto a B-direct summand of 4 @ V.
Because B is quasi-Frobenius, B is also injective as a right B-module, and there
exists a right B-projection p of 4 upon B. Then (p ® 1)e = 1, and it follows
that e is a monomorphism of V into A1 ® 5 V. Because e(V) is injective, (1)
is a B-direct summand of 4 ® 3 V, and Corollary 2 is proved.

3. Examples. First we give an example to show that in general the
answer to (II) is “‘no”” even when both 4 and B are quasi-Frobenius rings.
Let K be any field of characteristic p > 0, and let B be the group algebra
over K of any finite group with a non-cyclic p-Sylow subgroup. Higman has
proved in (2) that B has unbounded representation type. Moreover B is
quasi-Frobenius (in fact a symmetric algebra), and can be imbedded in the
algebra A consisting of all # by #n matrices over K, where # is the dimension
of B over K. But 4 is a simple algebra, and has only one indecomposable
module. Therefore the answer to (1) is negative in this case, and there must
also exist left B-modules for which (I) does not hold either.

Finally we give an example of a pair (4, B), with B quasi-Frobenius, and
A a free right B-module, such that for some lelt B-projection \ of 4 onto B,
we have I = B. We show, furthermore, that in this case there do exist left
B-modules V such that (1) is not a direct summand of 4 Q5 V.

Let K be an arbitrary field, and let » be an even integer, n > 2. Let [
denote the n by #n identity matrix, and J the n by n matrix es; + €32 + . . .
+ ey .1, where e;; denotes the matrix with a 1 in the (4, 7) position and zeros
elsewhere. Let 4 be the algebra of 2xn by 2n matrices generated by the identity
matrix 1, and the matrices

_<0 I) b_<] I+J>
*=\r 1) ~\o -J/)

where the entries in @ and & stand for # by % blocks. Then we have
a®=a+1, "t #£ 0, " =0, ab + ba = b+ 1.

Let B = K[b]; then B is a quasi-Frobenius subalgebra of 4, and 4 is a free
right B-module with basis {1, a}. The elements {1, a} form also a basis for
4 as a free left B-module, so that every element in 4 can be expressed
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uniquely in the form 8y + Bia, with 8o and 8, in B. Define a mapping \: 4 — B
by setting A(Bo + B1a) = Bo. Then \ is a left B-homomorphism of 4 onto B
whose restriction to B is the identity mapping. The ideal I, defined by \
contains

Nab) = NMa)b =N(—ba+b+1) =b+1,

which is an invertible element in B since & is nilpotent. Therefore I, = B.
Now let L be a left ideal in B; then AL =~ 4 ®5 L, and the mapping e: ] —/
is a B-homomorphism of L — AL. In particular, let L = K" !; then
AL = Kb ' 4+ Kab"'. Let M be a left B-submodule of 4L not contained
in L. Then M must contain an element

m = £ 4 nab™ !, &1 €K, n # 0.
Then
bm =n(—ab+ b+ 1)t =9b"1 € M,

and M M (L) # 0. Therefore (L) is not a left B-direct summand of 4L.
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