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Abstract

Obesity has reached epidemic proportions and is recognised as a significant global health problem. Increased food intake and decreased

physical activity are traditionally to blame for the development of obesity; however, many variables such as behaviour, diet, environment,

social structures and genetics also contribute to this multifactorial disease. Complex interactions among these variables (for example,

gene–environment, gene–diet and gene–gene) contribute not only to individual differences in the development of obesity, but also in

treatment response. Mouse models have historically played valuable roles in understanding the genetics of traits related to energy balance

and obesity. In the present review, we survey past use and examine new advances in mouse models designed to uncover the genetic

architecture of obesity and its component traits. We discuss traditional models such as inbred strains and selectively bred lines and

their contributions and shortcomings. We consider the evolution of mouse models into more informative resources such as outbred crosses

and the Hybrid Mouse Diversity Panel, as well as novel next-generation approaches such as the Collaborative Cross. Moreover, the genetic

architecture of voluntary exercise and the interactive relationship between host genetics and the gut microbiome are presented as novel

phenotypes that augment studies using body weight and body fat percentage as endpoints. Understanding the intricate network of

phenotypic, genotypic and environmental variables that predispose individuals to obesity will elucidate biological networks involved in

the development of obesity. Knowledge obtained from advances in mouse models will inform human health and provide insight into

inter-individual variability in the aetiology of obesity-related diseases.
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The prevalence of overweight and obese individuals is a

significant global problem(1). Obesity develops due to an

imbalance between energy intake and energy expenditure.

Energy balance represents a conglomerate of traits, each

influenced by numerous variables such as behaviour, diet,

environment, social structures and genetics. Complex interac-

tions among these variables (for example, gene–environment,

gene–diet, gene–gene) contribute not only to individual

differences in the development of obesity, but also in the

response to interventions and treatments (Fig. 1).

Mouse models have historically played valuable roles in

understanding the genetics of traits related to energy balance

and obesity in many mammalian species including companion

animals, agricultural species and man. Initially, mouse models

were successful in identifying individual genes that had large

effects and that were inherited in a simple Mendelian

pattern(2). Mice with naturally occurring mutations, as well

as those with mutations that were genetically engineered or

chemically induced, have played a crucial role in furthering

our understanding of how specific genes may contribute

to disease aetiology. In many instances (for example, the

ob/ob and db/db mice, and the melanocortin-4 receptor

(MC4R) knock-out mouse)(3–5), these mutations have ident-

ified key proteins involved in obesity and the regulation of

energy balance. Yet, investigation into the role of these

target proteins has revealed that they do not work in isolation

and that the alteration or absence of a single protein cannot

explain common obesity-related phenotypes in human

populations(6). Thus, it is generally accepted that obesity and

energy balance are highly complex and polygenic traits,

regulated by numerous genes that have an impact on many

physiological systems, and that interact not only with each

other but also with many environmental stimuli.

Recent advancements in genetics research have employed

the use of genome-wide association studies (GWAS) to deter-

mine the genetic underpinnings of energy balance and obesity
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in human populations. Several SNP have been implicated in

obesity, yet many have failed to replicate across studies(7–9),

and confirmed findings account for only a small percentage

of the phenotypic variance across the population tested(10).

To date, GWAS have consistently identified two SNP signifi-

cantly associated with obesity, one in an intron of the FTO

gene and one downstream from the MC4R gene. These two

SNP have relatively small effects, accounting for less than

2 % of the variance in adult BMI(11,12). In conjunction with

the relatively low level of explanatory power with regard to

percentage phenotypic variance, GWAS have additional limi-

tations. For example, hundreds of thousands to million of

SNP may be evaluated in a single sample, reducing the stati-

stical power to identify significant associations. Moreover,

heterogeneity requires extremely large sample sizes to reveal

moderate to small genetic effects, limiting the discovery of

contributions of rare alleles(13–15).

In mice, early studies on the genetic architecture of complex

traits employed linkage analysis based on simple F2 crosses of

phenotypically divergent inbred strains to identify obesity loci,

but the mapping resolution of such crosses proved prohibitive

for identifying target genes(2). Currently, in light of the ability

to evaluate human populations directly using GWAS, mouse

models have evolved to better address the complexity of the

genetic architecture of obesity and related traits. Novel

approaches include more complex population structures of

advanced intercross lines (AIL) derived from inbred lines

and heterogeneous outbred stocks, as well as association anal-

ysis based on haplotype–phenotype relationships across large

numbers of inbred strains. Moreover, a unique and novel

mouse population, the Collaborative Cross (CC), was designed

specifically to model the genetic diversity of the human

population(16,17). Modern mouse models offer specific advan-

tages over GWAS in that it is possible to completely control

environmental variables, population structure and trait var-

iants, lending more power to detect statistically significant

associations(15). Furthermore, studies using mouse models

enable the interrogation of obesity-related phenotypes that

are not easily amenable to large-scale analysis in humans,

including, for example, levels of voluntary exercise.

In the present review, we summarise recent advances in the

development and use of mouse models designed to under-

stand the genetic architecture of obesity and its component

traits. We highlight innovative and novel approaches to under-

standing the complexity of obesity, such as the CC, which will

provide unprecedented resolution for mapping complex traits.

In addition, we describe recent advancements in applying

mouse models to begin to dissect genetic predisposition to

previously understudied traits such as voluntary exercise,

and the interactive relationship between host genetics and

composition of the gut microbiome.

Obesity

Social constructs:
Attitudes, traditions

Energy
intake:

Macronutrient content,
total intake

Peripheral endocrine systems:
Hormones, gut peptides

Neuroendocrine systems:
Hormones, peptides, neurotransmitters

Genes

Environment:
Accessibility of food, toxins, climate, availability of physical activity options

Microbiota Epigenetics

Energy
expenditure:

Metabolic rate, physical
activity, thermogenesis

Fig. 1. Weight maintenance is complex, involving both central and peripheral inputs that are simultaneously affected by highly interactive genetic architecture

(involving 100s or even 1000s of genes) and multiple environmental stimuli. Here, we have attempted to depict only a fraction of the components that contribute to

obesity, specifically focusing on the novel phenotypes described in the body of the text (exercise, diet and the gut microbiome) and the potential interactions

among them.
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Mouse models for understanding the genetic architecture
of obesity and related traits

Inbred mouse strains

Phenotypic differences in body weight and adiposity across

multiple inbred mouse strains reveal how genetic background

influences phenotypic expression(18,19). Exploiting this

phenotypic variability, interbreeding strains with high and

low values for a specific phenotype, creates segregating

populations allowing for the detection of genome regions

associated with the phenotype of interest, or quantitative

trait loci (QTL). To date, hundreds of QTL for body weight

and adiposity have been described(20), yet little is known

about the actual genes and the responsible genetic variation

that may contribute to the expression of obesity-related

phenotypes(20). Many of these QTL were identified using F2

intercross or backcross populations. QTL mapping of F2 inter-

cross and backcross populations is generally low in power

and generalisibility since identified QTL typically account for

such small proportions of the phenotypic variation and are

background strain dependent(21). Furthermore, few F2 inter-

cross QTL studies have used obese or obesity-prone mouse

strains such as New Zealand obese (NZO) or KK, biasing

the results toward more common inbred strains(20). Recombi-

nant inbred lines offer increased mapping resolution due to

increased recombination resulting from generations of

inbreeding(22–25). However, many traits may not be mapped

to any region of the genome because the two founder strains

of the recombinant inbred lines share a large proportion of

genetic variation. For example, 48·6 % of genomic regions in

BXD strains will not be mapped due to shared variation(26).

Recent advances in computational analysis such as haplo-

type association mapping (HAM) enable QTL mapping by

simultaneously evaluating dozens of inbred strains, providing

more statistical power for identifying significant QTL and

incorporating more of the variation within the mouse

genome. HAM overcomes the resolution issue of traditional

F2 and backcrosses(26) by enabling mapping of QTL to

much smaller confidence intervals, potentially harbouring

fewer candidate genes. HAM is not without limitations, how-

ever. For example, the power to detect genetic contributions

of small effect is low, making it more difficult to identify

QTL associated with complex traits such as obesity(26–28). In

addition, population structure must be taken into account

when performing the analysis to eliminate false-positive

associations(26–28).

The Hybrid Mouse Diversity Panel (HMDP) has been pro-

posed as a solution to challenges with population structure

in association studies(2). Comprised of 100 inbred strains and

seventy-one recombinant inbred lines, the HMDP is specifi-

cally designed to map traits with small variance contributions

and to increase power to detect loci with small effects(2). The

combination of recombinant inbred and classical inbred

strains will disrupt long spans of linkage disequilibrium

within each of the populations, thereby increasing mapping

resolution. Preliminary mapping studies using the HMDP

have replicated existing QTL identified in classical inbred

crosses, yet with greater mapping resolution(2).

Selectively bred mouse lines

Selective breeding experiments, which have been used for

decades to gain an understanding of the genetic underpin-

nings of growth, fatness and other traits related to obesity

and energy balance, can capture extreme phenotypic variation

beyond the range of the founding population(29). For

example, high growth selection lines have been established

with mean body weights of up to 77 g, far exceeding the

body weights within the base populations from which these

lines were selected, as well as body weight in at least 400

inbred mouse strains(29,30).

Experiments evaluating the genetic underpinnings of obes-

ity-related traits using selection lines have identified several

QTL for early growth, obesity, fatness and exercise behaviour

(wheel running)(31–33). A large QTL analysis of obesity-related

traits in 993 mice from an F2 population derived from a cross

between M16i, a mouse strain selected for high growth and

body weight at 3–6 weeks of age and inbred, and L6, selected

for low growth at 6 weeks of age, revealed many significant

QTL for growth and fatness(31,32). In addition, several epistatic

effects (gene £ gene interactions) were identified(34). Evaluat-

ing epistasis in QTL analyses aids in the discovery of loci that

may have small main effects but large effects when combined

with interacting loci(34). Similarly, extensive research examin-

ing adiposity and body composition traits has been performed

using Large (LG/J) and Small (SM/J) mice, inbred lines

selected for large and small body size at age 60 d(35–37).

Several QTL for adiposity and body weight were identified,

each of only small effect. Furthermore, pleiotropic QTL for

adiposity and tail length demonstrated interaction in the gen-

etic control of obesity and body size(35,36).

Although evidence from mice, other model species such as

Caenorhabditis elegans (38) and humans point to the contri-

bution of literally hundreds of genes to the genetic architec-

ture of body weight, a recent study in dogs paints a

distinctly different picture(39). Boyko et al.(39) found that

only a few genes of large effect collectively explain most varia-

bility in canine body size. This unusual genetic architecture

was attributed to several unique aspects of selection in dogs.

For example, the authors speculated that many of the

modern breeds of dogs were created during the Victorian

era where novelty was a focus of selection and breeders

favoured the preservation of discrete mutations(39). Repeated

selection for rare or novel traits in dogs contributed to genetic

variation, thus increasing the power to identify causal genes.

Advanced intercross lines (AIL)

AIL have been used to refine the mapping of genetic loci

associated with obesity- and energy balance-related traits, as

well as to identify new genetic variation. AIL offer increased

mapping resolution of QTL through increased recombination

resulting from random intercrosses over multiple generations

of breeding(40). Initial AIL experiments using the LG/J by

SM/J cross with continued interbreeding through generations

F9 and F10 resulted in five times the mapping resolution of

the original F2 population(41). This F10 AIL identified ninety
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significant single trait QTL for phenotypes related to obesity

such as increased size, adipose deposition and body weight,

many of which were multiple narrow QTL with small effect

size resolved from original large single peak QTL in F2/F3

populations. Such studies only further highlight the complex-

ity of the genetic architecture of obesity, and the potentially

enormous number of genes involved.

Additional AIL resources for fine-mapping complex traits

such as obesity include heterogeneous outbred stocks of

mice. Outbred stocks are derived from multiple founder

inbred strains and numerous random matings, resulting in

a population with closely spaced recombinants (,2 cM)

and fine mapping resolution (,1 cM) for QTL of small

effect(42,43). GWAS performed in outbred stocks identified

hundreds of QTL with effect sizes less than 2 %. Many of

these QTL replicated existing QTL identified in crosses

between inbred strains that had been included in the creation

of the heterogeneous stock(42). In some instances, large-effect

QTL were identified with mapping intervals encompassing

three or fewer genes, uncovering significant targets for

causal genes(42).

The mapping approaches discussed above have provided

valuable information as to the general genetic architecture of

obesity and related traits. Numerous genetic loci have been

identified, emphasising the complex and polygenic nature of

the genetic architecture of obesity, but specific target genes

have yet to be determined. Although these approaches have

been informative, several shortcomings have been recognised.

For example, the lack of genetic diversity among traditional

inbred laboratory mouse strains has left large regions of the

genome unmapped, and has afforded little power to detect

small effects and identifying QTL that are largely strain depen-

dent(21). AIL and outbred stocks have been established to

increase mapping resolution and increase power to identify

loci of small effect. However, the lack of genetic diversity

still exists, and mapping power remains too low for identifi-

cation of the underlying causative genetic variation(42,43). To

address these shortcomings, a unique and innovative mouse

model designed to mimic human genetic diversity, the CC,

has been created.

The Collaborative Cross, a next-generation mouse model

The CC is a large panel of recombinant inbred mouse lines

derived from a genetically diverse set of eight founder strains

created to advance discovery of the genetic underpinnings

of complex traits, such as energy balance and body weight

regulation (Fig. 2) (16,17). The eight founder strains consist

of five standard laboratory strains (C57BL A/J, C57BL/6 J,

129S1/SvImJ, NOD/LtJ and NZO/H1LtJ) and three wild-

derived strains (WSB/EiJ, CAST/EiJ and PWK/PhJ), represent-

ing each of the subspecies of Mus musculus and capturing

an unprecedented high degree of genetic diversity(44,45). Not

only were the eight founder strains chosen specifically for

their genetic diversity, but also to include genetic variants

specifically linked to known complex disorders such as type

1 and 2 diabetes, obesity and insulin insensitivity (NOD/LtJ

and NZO/H1LtJ)(46). This genetic diversity affords the CC

increased mapping precision for complex traits, a distinct

advantage over AIL and existing recombinant inbred

lines(16,17). It is expected that the mapping resolution of the

fully inbred lines will be approximately 1 Mb, more precise

than the finest resolution presented thus far(23,42,47). Further-

more, the CC lines will be completely sequenced, and

sequences for each line will be archived and available for

shared use. Contrarily, each new individual in a specific

cross or AIL is genetically unique and thus must be individu-

ally genotyped or sequenced, making experiments in these

populations costly and labour intensive(16,17,46). The genetic

variability and eternal reproducibility of the CC makes it a

superior resource for systems genetics research. This large

reference panel of recombinant inbred strains will enable

the evaluation of complex gene–environment and gene–

gene interactions, providing a platform for the investigation

into the genetic architecture underlying complex interactions

among diverse phenotypes and molecular networks(16).

Initial analysis of genetic architecture confirmed that gene-

rations F5–F12 of the incipient CC lines (i.e. during the

inbreeding process) encompassed the total genetic diversity

of the eight founder strains with alleles from all eight strains

dispersed among the genomes of each incipient CC line(44).

Furthermore, phenotypic analysis of the eight founder strains

and 176 incipient CC lines revealed extreme diversity in

obesity- and metabolism-related traits. For example, body fat

percentages for the founder strains varied from 2 to 32 %

for the A/J and NZO/H1LtJ strains, respectively(48). Likewise,

body weights for the founder strains ranged from 13 g for

WSB/EiJ to 48 g for NZO/H1LtJ. Variation in adiposity and

body weight was mirrored in the incipient CC lines. Body

fat percentages ranged from 1 to 32 %(48). Body weights for

the incipient CC lines were slightly less varied, spanning

from 15 to 35 g. However, several of the traits measured in

the incipient CC lines surpassed the phenotypic variation

observed in the founder strains. For instance, average

wheel-running distances on days 11 and 12 of wheel access

ranged from 0 to 13 km in the founders and from 0 to 19 km

in the incipient CC lines(48). Moreover, body weight change

in response to wheel running varied from a 6 g loss to a 3 g

gain in the founder strains and from a 7 g loss to an 8 g gain

in the incipient CC lines(48). These findings demonstrate that

the genetic diversity highlighted in the eight founder strains

was captured in the incipient CC lines resulting in equivalent

or increased phenotypic diversity for complex obesity-related

traits(48).

Mapping experiments in the incipient CC lines as a proxy

for the power of the CC resource to uncover the genetic archi-

tecture of complex traits revealed significant novel QTL

for wheel-running traits and replicated previously described

QTL for body weight-, body fat- and metabolism-related

traits (Aylor et al.(44); WF Mathes, DL Aylor, DR Miller,

GA Churchill, EJ Chesler, F Pardo-Manuel de Villena, DW

Threadgill and D Pomp, in press). A significant body weight

QTL was identified on proximal chromosome 4, Bwq14,

which replicated existing QTL for body weight identified

using the KK strain, a strain phenotypically similar to

NZO(49,50). Expression QTL analysis for Bwq14 revealed

W. F. Mathes et al.S4
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twenty-one genes with significant local expression QTL. Using

allele effect estimates and existing SNP data sources for the

eight founder strains, the genes underlying Bwq14 could be

narrowed to a single positional candidate, aspartate-b-

hydroxylase, Asph (44).

The genetic and phenotypic diversity that has manifested in

the incipient CC lines provides strong evidence that the CC,

once fully inbred, will be a powerful tool for complex trait

analysis. Early success in mapping QTL for body weight in

the incipient CC lines confirms that the CC will aid in the dis-

covery of the genetic variables that predispose individuals to

obesity and related traits. The advantages of the CC over exist-

ing resources are clear. The CC will offer increased genetic

and phenotypic diversity that will translate into the discovery

of QTL within regions that were previously ‘blind’ to investi-

gation. The elaborate mating scheme used to create the CC

will eliminate strain-specific bias and reduce linkage disequili-

brium, allowing for mapping resolution precise enough to

identify specific genes that underlie complex traits. Moreover,

the CC will be an invaluable tool for the examination of gene–

environment interactions that contribute to energy balance-

and obesity-related phenotypes. Taken together, the CC will

inform human health by elucidating biological networks

involved in the development of obesity as well as providing

predictive models from which one can determine the variables

that may contribute to the aetiology of obesity-related diseases

on an individual basis.

Novel phenotypes: exercise

As described above, genetic architecture unquestionably

plays a major role in weight dysregulation and traits related

to obesity. However, behaviours such as food consumption

and exercise are also crucial in maintaining a balance between

energy intake and expenditure, and ultimately constancy of

body weight. In addition to weight loss and reductions in

adiposity, physical activity has also been associated with

reductions in TAG and LDL levels, increased HDL and

enhanced insulin sensitivity(51,52). Despite the growing body

of evidence of positive health benefits, especially with

regard to weight reduction(53), there remains considerable

variation in the amount that children and adults voluntarily

exercise(51,54). While a voluntary behaviour, the predisposition

to engage in exercise is heritable(55), and thus, the genes that

underpin physical activity traits are integral to our understand-

ing of the genetic architecture of obesity. As such, multiple

mapping studies have been directed at understanding the

genetic architecture of physical activity-related traits and
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A/J
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Fig. 2. The Collaborative Cross (CC) is a large panel of recombinant inbred mouse lines designed to model human genetic diversity. Each individual line of the

CC (one theoretical example depicted here) will represent a genetic mosaic of the eight founder strains. Derived from the crossbreeding of five classic inbred lines

(C57BL A/J, C57BL/6 J, 129S1/SvImJ, NOD/ltJ and NZO/H1LtJ) and three wild-derived mouse lines (WSB/EiJ, CAST/EiJ and PWK/PhJ), the CC captures more

than 90 % of the genetic diversity across the mouse genome. The genetic and phenotypic diversity of the eight founder strains captures genetic variants specifi-

cally linked to body size and known complex disorders such as type 1 and 2 diabetes, obesity and insulin insensitivity. Some images in this figure are courtesy of

Fernando Pardo Manuel de Villena.
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how they may have an impact on body weight and obesity.

Moreover, as changes resulting from exercise remain consider-

ably variable within populations, especially with regard to

weight and adiposity, studies are now aiming to uncover the

genetic architecture regulating the change in weight and

adiposity in response to exercise (i.e. Mitchell et al.(56)).

Initial explorations into the genetic architecture of exercise-

related traits have been conducted in second-generation inter-

cross (F2), backcross, and advanced intercross (G4) mouse

populations. Using F2 crosses between low active (wheel run-

ning) C3H/HeJ and high active C57L/J have revealed multiple

QTL for running duration, distance and speed(57,58). Moreover,

analysis of body weight changes in response to exercise in this

population identified additional QTL for energy balance(59)

and loci that were pleiotropic for both exercise- and body

weight-related traits(60). QTL for weight change in response

to exercise did not co-localise with QTL for running traits or

previously described QTL for body weight.

Nehrenberg et al.(61) utilised a backcross between mice

selectively bred for high voluntary wheel running (high run-

ning (HR) line) and the inbred strain C57BL6/J to identify

novel exercise QTL as well as loci that were sex-specific.

The HR line originated from a long-term replicated arti-

ficial selection experiment for high voluntary wheel-running

behaviour on days 5 and 6 of a 6 d wheel exposure (for a

review, see Swallow et al.(62)). By generation 16, and continu-

ing through generation 50 and beyond, the HR lines (four

replicates) had diverged from the control lines (C lines; four

replicates) with an approximate 2·5- to 3·0-fold increase in

total revolutions per d. As demonstrated by the use of the

HR line in Nehrenberg et al.(61), selective breeding has not

only facilitated the uncovering of the genetic architecture of

weight-related phenotypes, but has aided in the search for

genetic loci associated with exercise phenotypes as well.

Using a different HR replicate (out of the possible four),

Kelly et al.(63) created an advanced intercross line population

(G4) and used it to identify forty-one significant and twenty

suggestive QTL for running traits (distance, duration and

speed) and body mass. Although several of these loci are

close in proximity to physical activity QTL identified in F2

and backcross populations, they do not overlap, suggesting

that they may be independent loci. However, the strains

used to create each of these populations differ in their

phenotypic expression for physical activity- and body

weight-related traits, making a direct comparison between

the two populations difficult. Each of the QTL identified in

the AIL explained only a small percentage of the phenotypic

variations observed in this population, with the largest effect

accounting for only 6·6 %(64). In addition to daily running

traits, Kelly et al.(63) identified seven significant and five sug-

gestive QTL representing the slope and intercept of a linear

regression across all 6 d of running, some representing a

combination of the daily traits. The QTL associated with the

trajectory of running across multiple days of wheel exposure

were the first of their kind and may provide valuable

information with regard to the continuation of exercise

programmes.

An additional strategy recently employed by Lightfoot

et al.(65) utilises HAM in thirty-eight inbred mouse strains. In

addition to discovering new and refining previously mapped

QTL for wheel running, the use of HAM across a diverse set

of genetic backgrounds allowed the expansion of genomic

coverage and the ability to more confidently generalise the

results. In the study by Lightfoot et al.(65), 448 mice from

thirty-eight inbred strains were phenotyped and genotyped

for physical activity-related traits such as running distance,

speed and time. Results identified twelve significant QTL for

running distance and speed, some with sex-specific effects.

QTL identified in this experiment did not replicate existing

QTL; however, existing QTL for physical activity traits are

based solely on crosses using C3H/HeJ, C57L/J and HR

lines(65). The three strongest QTL identified in this HAM

study had relatively narrow confidence intervals, spanning

genomic regions with few genes. In fact, only eight predicted

genes and one annotated gene fell within the confidence

intervals of these peaks(65).

Collectively, the findings discussed above have just begun

to uncover the genetic architecture of physical activity and

how it may relate to obesity and its related traits. Further

investigation is warranted to understand the complex relation-

ship among these traits and the genetic underpinnings of the

said relationship.

Host genetic control over composition of the gut
microbiome

The primary cause of obesity is an imbalance between energy

intake and expenditure, with traits related to energy balance

being exceptionally complex, simultaneously affected by

genetic architecture and interacting environmental factors.

Nonetheless, as we have described, mouse models have

been, and continue to be, fruitful in the elucidation of the

underlying genetic architecture of obesity. A vast majority of

studies, only a fraction of which are discussed above, attemp-

ting to identify genetic susceptibility of obesity have focused

on the penultimate outcome trait (i.e. weight and/or adi-

posity), with fewer studies examining traits associated with

the behavioural and physiological mechanisms contributing

to obesity (for example, food choice, intake and assimilation

efficiency; RMR; exercise propensity). As described above,

literature is now emerging that attempts to uncover the genetic

architecture of behaviours that negatively affect energy

balance, specifically exercise. Here we present an additional

new paradigm for the study of obesity, highlighting a recent

example(66), namely the analysis of host genes that influence

composition of the gut microbiome, a climax population of

microbial species that enter into intimate metabolic and

immune interactions with host gastrointestinal tissues and

potentially affect many nutritionally relevant traits and diseases.

Recent literature examining the role of the gut microbial

ecology may now enlighten the view that obesity simply

results from an excess of energy intake v. energy expenditure

(for a review, see Turnbaugh & Gordon(67)). This emerging

hypothesis predicts that lean and obese individuals possess

unique gut microbial populations that may in turn affect
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energy extraction and subsequent deposition of fat stores from

food sources. Thus, the impact of the gut microbial commu-

nity is most relevant for the proportion of intake that can be

metabolised. In other words, even when energy intake and

expenditure are held constant, variability in energy metab-

olism and fat deposition will vary depending on the compo-

sition of the gut microbes.

In mammals, the colonisation and establishment of

micro-organisms in the gastrointestinal tract begin at birth

and stabilise around the time of weaning(68). This dense

microbial population, up to 100 trillion organisms, is collec-

tively known as the gut microbiota(67). The gut microbiota is

populated by thousands of bacterial species belonging to a

small number of phyla, and varies dramatically among com-

munities(69) and individuals within a single population(70).

Contributing to the individuality of the gut microbiota are

differences in the relative ratios of dominant phyla and vari-

ation in genera and species found in an individual host(70).

The composition of the gut microbiota is undoubtedly

shaped by environmental factors, highly resistant to change

once established, and relevant to our understanding of

human diseases such as obesity, CHD(71), diabetes(72) and

digestive maladies(73). However, few studies have directly

tested, in the absence of confounding genetic diversity

(in human populations) and strong environmental effects,

the hypothesis that host genetic architecture may also play a

role in the gut microbiota composition(67,74,75).

In an attempt to control the strong environmental effects

exerted over the gut microbiota, several studies have tested

the impact of the host genotype on the gut microbiota utilising

comparisons of genetically distinct mouse inbred strains.

Friswell et al.(76) performed uterine transplantations in order

to eliminate any non-genetic maternal effects, and found

that mice with different genotypes that were born together

had similar microbiota. In another comparison, Loh et al.(77)

used germ-free inbred strains (C57BL/10, C3H, BALB/c),

inoculated individuals from a single mouse donor, and com-

pared the strains over a 13-week period. Between 4 and

8 weeks post-inoculation, cluster analyses revealed that C3H

and BALB/c mice were similar and distinct from C57BL/10.

But at 8 weeks post-inoculation, environmental effects (hous-

ing in different cages) appeared to play a greater role relative

to host genetic control on intestinal microbiota composition.

An alternative approach to the comparison of inbred strains

is a candidate gene approach. This approach, primarily driven

by transgenic mouse studies, aims to identify single genes that

strongly influence the gut microbiota. Thus far, identified

candidate genes have been primarily related to immune system

function(78) and metabolism(79). For example, the obese pheno-

type (ob/ob) of leptin-deficient mice, compared with lean mice,

has been shown to be associated with a 50 % reduction in the

abundance of Bacteroidetes while proportionally increasing

the gut population of Firmicutes(80). Subsequently, Turnbaugh

et al.(81) demonstrated that this shift in relative abundance of

Bacteroidetes and Firmicutes, among obese individuals,

resulted in greater capacity for energy extraction from the diet.

Benson et al.(66) have most directly tested the assumption of

host genetic control of the gut microbiome using a sophisti-

cated murine advanced intercross line model, in which the

genetic background was evaluated and environmental factors

controlled. This large G4 population (n 645) was originally

derived from an intercross between C57BL/6J and an

ICR-derived outbred line (HR), and designed to uncover the

genetic architecture of voluntary exercise while providing a

high level of mapping resolution (as discussed above, see

the Novel phenotypes: exercise section). DNA was extracted

from faecal samples, and using quantitative pyrosequencing,

sixty-four conserved taxonomic groups, which varied across

animals in the population, were defined. While a proportion

of the variation in the abundance of taxonomic groups

could be explained by environmental variables such as litter

and cohort, Benson et al.(66) found a substantial contribution

from the host genetic architecture. Using 530 fully informative

SNP markers, QTL analyses revealed eighteen loci that show

significant or suggestive genome-wide linkage with relative

abundances of specific microbial taxa (Fig. 3). Some loci con-

trolled individual microbial species, some controlled groups of

related taxa, and some had pleiotropic effects on groups of

distantly related organisms. These findings clearly establish

host genetics as a factor in determining composition of the

gut microbiome.

Benson et al.(66) have for the first time presented direct

evidence for environmental and host genetic loci that control

variability in the abundances of different taxa in the mouse

gut microbiome, and have therefore hypothesised that the

gut microbiota composition as a whole can be understood

as a complex, polygenic trait. Additionally, the genetic control

identified by Benson et al.(66) appears to encompass, for

example, host genetic factors such as those influencing

mucosal immunity. Consequently, host genetic loci that

affect composition of the gut microbiome are likely to partially

contribute to an individual’s overall predisposition to obesity

and other nutritionally relevant traits and diseases. How

changes in nutrition may influence this host–microbiome

relationship, and thus make an impact on weight regulation,

remains an interesting yet untested question.

Summary: the genetic architecture of obesity

The many mapping strategies presented within the present

paper have outlined significant progress in uncovering the

genetic architecture of obesity and related traits. Initial studies

examining obesity and related traits used simple F2 crosses of

inbred strains to parse out regions of the genome associated

with these traits. The need for finer mapping resolution and

greater capacity to detect small effects drove the development

of AIL, outbred crosses, and diverse populations such as the

HMDP to investigate the genetic architecture of complex

traits. From these studies it became clear that obesity is a

complex trait with genetic effects originating from literally

hundreds of small-effect QTL across the genome. In addition,

it was recognised that many environmental factors, and

interactions between genes and the environment, contribute

to the development of obesity and its related traits. The CC

is a next-generation mouse model designed to maximise gen-

etic and phenotypic diversity, refine mapping resolution, and
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enable the detection of small effects. Early evaluation of the

CC demonstrates that it has the potential to be a remarkable

tool for complex trait analysis and could potentiate significant

discoveries within the fields of genetics and systems biology.

The completion of the CC in 2012 may afford unprecedented

mapping precision to aid in the search for causal genes for

obesity and its related traits. It is important to note that

novel phenotypes such as physical activity and wheel running

in mice can contribute to the development of obesity.

Likewise, genetic sequences of host and gut microbiota may

influence energy utilisation contributing to obesity and

overweight. Understanding the complex interplay among

these traits will provide insight into the intricate network of

phenotypic, genotypic and environmental variables that

predispose individuals to obesity and its related traits.
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