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Abstract Apex predators play a critical role in maintaining
the health of ecosystems but are highly susceptible to habitat
degradation and loss caused by land-use changes, and to
anthropogenic mortality. The leopard Panthera pardus is
the last free-roaming large carnivore in the Western
Cape province, South Africa. During –, we carried
out a camera-trap survey across three regions covering
c. , km of the Western Cape. Our survey comprised
 camera sites sampling nearly , camera-trap nights,
resulting in the identification of  individuals. We used two
spatially explicit capture–recapture methods (R programmes
secr and SPACECAP) to provide a comprehensive density
analysis capable of incorporating environmental and an-
thropogenic factors. Leopard density was estimated to be
. and . leopards/ km, using secr and SPACECAP,
respectively. Leopard population size was predicted to be
– individuals for our three study regions. With these
estimates and the predicted available leopard habitat for the
province, we extrapolated that theWestern Cape supports an
estimated – individuals. Providing a comprehensive
baseline population density estimate is critical to understand-
ing population dynamics across a mixed landscape and help-
ing to determine the most appropriate conservation actions.
Spatially explicit capture–recapture methods are unbiased
by edge effects and superior to traditional capture–mark–
recapture methods when estimating animal densities. We
therefore recommend further utilization of robust spatial
methods as they continue to be advanced.
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Introduction

The exponential growth of the human population is
threatening all levels of biodiversity, including large

carnivores, with % of species’ populations experiencing
continuing declines (Estes et al., ; Ripple et al., ).
Large carnivores are particularly at risk of extinction
because of their small population sizes, slow reproductive
rates, complex social structures and requirement for
large and contiguous habitats with sufficient prey (Cardillo
et al., ; Ripple et al., ). These characteristics, and
their vulnerability to negative interactions with humans,
have driven declines of some of the most wide-ranging
carnivores (Cardillo et al., ; Ray et al., ;
Swanepoel et al., ; Wolf & Ripple, ).

Although the leopard is considered the most adaptable
large carnivore (Ripple et al., ), range declines of –%
globally, –% in Africa and –% in southern
Africa indicate that leopard populations are not as re-
silient to anthropogenic influences as previously believed
(Jacobson et al., ). Major anthropogenic threats to
leopards include ongoing habitat loss and fragmentation
(Harcourt et al., ; Crooks, ; Swanepoel et al.,
), depletion of prey resources (Woodroffe, ;
Karanth & Chellam, ), unsustainable hunting levels
(Woodroffe, ; Harcourt et al., ) and direct perse-
cution by people (Harcourt et al., ; Treves & Karanth,
; Treves et al., ; Treves & Naughton-Treves,
; McManus et al., ; Swanepoel et al., ).
Increasing human population density and loss of habitat
increase the likelihood of resource competition with people,
often resulting in human–carnivore conflict (Woodroffe,
; Cardillo et al., ). Persecution often includes
indiscriminate use of lethal methods to manage livestock
depredation by carnivores (e.g. snares, poisoned carcasses,
gin traps (leg-hold traps), gun traps, live trapping) and tar-
geted (often retaliatory) hunting (McManus et al., ).
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Estimating a species’ density across various types of land
cover (i.e. habitat and vegetation type) and land uses (i.e.
residential/urban land, cultivated land, commercial and
recreational land and areas protected for conservation)
can help determine how population numbers are affected
by landscape features. Density estimates are not equally
robust, and under- or overestimating populations can have
substantial implications for conservation management and
policy (Foster & Harmsen, ; Hayward et al., ). For
example, Soisalo & Cavalcanti () demonstrated how
overestimating jaguar Panthera onca populations by five
individuals per  km inflated the overall population
estimate by , individuals across their , km

study region. Density estimation also depends upon data
quality, with a large enough sample size and capture prob-
ability for the chosen analysis method (Foster & Harmsen,
).

Conservationists and ecologists constantly seek to im-
prove the methodology for estimating animal population
abundances and densities (Griffiths & van Schaik, ;
Karanth & Nichols, ; Karanth & Nichols, ). The
use of camera traps and photo capture–recapture analysis
is a common and effective non-invasive practice for ob-
taining data on wildlife population dynamics, particularly
of rare or elusive species (Foster & Harmsen, ). Leo-
pards, like many other large felids, are challenging to
monitor because of their large home ranges, low population
density and primarily solitary and elusive nature (Karanth &
Nichols, ; Treves & Karanth, ). Global population
estimates across the leopard’s vast geographical distribution
do not account for the health and sustainability of smaller,
isolated regional metapopulations across a variety of habitat
types, countries and levels of human landscape modification
and pressure.

Camera-trap surveys have become an important data
collection method for population and density studies
because they are non-invasive, practical and affordable
(Karanth, ; Karanth & Nichols, ; Foster &
Harmsen, ). The capture–recapture method relies on
individuals being identifiable (Karanth, ; Silver et al.,
) and has been the predominant approach used in
felid density studies.

More recently, spatial capture–recapture or spatially
explicit capture–recapture methods have become popular
because they provide comprehensive analyses that can in-
corporate environmental and anthropogenic factors when
estimating animal densities. These methods enable density
analyses to include spatio-temporal data from capture
histories, providing direct estimates of population density
that remain unbiased by edge effects (Chase Grey et al.,
). By allowing for flexibility in individual heterogeneity
with the consideration of capture probability relative to trap
location, spatial covariates such as habitat, and intrinsic fac-
tors such as sex and age (Foster & Harmsen, ; Efford &

Fewster, ), spatially explicit capture–recapture models
are becoming increasingly robust and comprehensive.

These statistical and methodological advances provide
multiple options that can be applied to specific study ques-
tions while making population density estimates increasing-
ly reliable. Inaccurate density estimates can lead to biased
population estimates, with serious implications for conser-
vation management (Soisalo & Cavalcanti, ).

The estimation of a baseline population density for
leopards in South Africa’s Western Cape province is
fundamental for understanding how this regionally im-
portant population responds to landscape-scale threats
and changes. By estimating densities across landscapes of
varying resource availability and threats, we can examine
drivers of regional density variation and improve conserva-
tion management for disjunct populations.

Study area

This study covers c. , km in three areas (Langeberg,
Overberg and Garden Route) in the Western Cape, South
Africa (Fig. ). The topography varies from the Cape Fold
Mountain peaks with an altitude of . , m that extend
, km east to west, to coastal and low-lying valleys
at ,  m altitude (Thamm & Johnson, ). Biomes
included in our study are Thicket, Afro-temperate forest
(Forest), Sandstone fynbos (Fynbos), Nama-Karoo, Succu-
lent-Karoo and Savanna (Mucina & Rutherford, ).

In the Langeberg we deployed camera traps in the
greater Riversdale/Heidelberg area on the southern slopes
of Langeberg Mountain Range, in the greater Greyton area
on the southern slope of Riviersonderend Mountain Range
and in the Robertson Wine Valley (Breede River Valley)
situated between the Langeberg and Riviersonderend
Mountain Ranges. In the Overberg we surveyed the greater
Hermanus area to the west, the greater Cape Agulhas and
Arniston areas to the south along the coast, and the greater
De Hoop Nature Reserve area to the eastern extent of the
surveyed region. Along the Garden Route we surveyed
temperate forest along the southern slopes of the Outeniqua
and Tsitsikamma Mountains from George in the west to
the Bloukrans River in Plettenberg Bay in the east.

Methods

Camera-trap surveys

We undertook seven large-scale camera-trap surveys during
June –March , focusing on likely presence of leo-
pards inside and outside protected areas and across different
agricultural land-use zones (livestock, crops, forestry). We
used Cuddeback Attack IR (Cuddeback, Green Bay, USA)
digital infrared cameras and selected camera-trap locations
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based on the highest likelihood of leopard activity as deter-
mined by physical evidence (scat, spoor and territorial scent
and scratch markings on trees), as well as habitat type and
topography (Karanth & Nichols, ). At each camera-
trap station, we positioned two cameras to capture both
flanks of a passing leopard. The stations were placed –
km apart to achieve even coverage of the sampling area
and camera stations remained active for a minimum of 
months to ensure maximum likelihood of leopard activity
being captured without violating the closed population as-
sumption (Karanth & Nichols, ; Devens et al., ).

Capture–recapture identification

Individual leopards can be identified from clear photo-
graphs of both flanks by their unique rosette markings.
Identification from single flank photos is possible, but
needs to be based upon the observation of characteristics
such as the animal’s overall size, neck girth, injuries or
scars. Although such characteristics may be useful, incor-
rectly identified individuals could bias density estimates,
resulting in overestimation of the population if flank photos
of the same animal were erroneously assigned to two indi-
viduals. We therefore only utilized double flank capture
events for identification.

Data analysis

Spatially explicit capture–recapture methods for density
analyses are more comprehensive and reliable than tra-
ditional capture–recapture analyses (Borchers & Efford,
; Kalle et al., ; Gopalaswamy et al., ; Chase
Grey et al., ; Thapa et al., ) and produce lower

density estimates than non-spatial methods (Obbard et al.,
; Gerber et al., ; Gopalaswamy et al., ; Noss
et al., ; Braczkowski et al., ). We calculated density
estimates using two spatially explicit capture–recapture
methods within the programming environment R ..
(R Development Core Team, ): () the maximum
likelihood based estimator programme secr .. (Efford
et al., ; Efford, , ), which is a more robust
version of programme DENSITY (Efford, ), and () the
Bayesian estimator programme SPACECAP .. (Gopalaswamy
et al., ). Previous studies have applied these two pro-
grammes to compare density estimates (Kalle et al., ;
Thapa et al., ) and to compare results of spatially explicit
capture–recapture with non-spatial methods (Noss et al.,
; Braczkowski et al., ). We used these programmes
for comparison of two spatially explicit capture–recapture
methods and to determine the most robust and inclusive
density estimate range for each study region.

For the analysis with secr we categorized camera traps as
count detectors, which allows repeat detections. Count data
can result from devices such as automatic camera traps.
Count detectors record the presence of an animal at a trap
location without restricting movement and allow.  detec-
tion of an individual at a particular site on any occasion. The
secr.fit function was run for each regional survey phase
using models of time (g*T) and behavioural response
(g*b), as well as buffers of , , ,  and  km
surrounding the minimal convex polygon around camera
stations in each camera-trapping area. These buffers
ensured inclusion of all leopard home ranges within reach
of camera traps (Kalle et al., ) and made density estima-
tion more reliable by determining the point at which the
density estimate stabilized (Kalle et al., ; Chase Grey
et al., ).

FIG. 1 (a) Location of the study areas in the Western Cape province, South Africa. (b) Camera-trap surveys conducted across the
Langeberg (, km), Garden Route (, km) and Overberg (, km) areas. Data from camera stations with identified
leopards were analysed with programmes SPACECAP and secr with various buffers.
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SPACECAP was used to estimate abundance and density
using spatially-explicit capture–recapture models to derive
spatial Bayesian estimates with trap response. A grid of
equally spaced points  km apart was generated in QGIS
. (QGIS Development Team, ) and clipped to the sur-
veyed area containing the camera trap array combined with
an extended surrounding area, known as the state-space, at
distances of , , ,  and  km. These points represent
all potential home range centres of all leopards within the
survey. The potential home range centres file included the
geographical coordinates and habitat suitability of each of
these points within the state-space. We determined habitat
suitability using Maxent .. (Phillips et al., ; Phillips
et al., ) model output comprising environmental vari-
ables, including eight WorldClim bioclimatic variables
obtained from WorldClim website (Hijmans et al., ),
human footprint index (WCS&CIESIN, ), altitude, an-
thropogenic biomes (Ellis & Ramankutty, ), Globcover
 (FAO, ), South African National Bio-diversity
Institute ecosystem status of vegetation types (Rouget
et al., ), and a subset of location data obtained from
two leopards resident in the area that were equipped with
GPS collars. We used the Natural Breaks function (Jenks,
) in ArcMap .. to code the model output as either 
(not suitable = –.) or  (suitable = .–.).
The habitat suitability generated in this way (Jenks
method) was recorded for each point and a home range cen-
tre input file was generated for each area’s buffer distances
(Fig. ).

We ran SPACECAP with a  km pixel area, and set
the model definitions to ‘Trap response present’, ‘Spatial
Capture–Recapture’, ‘half normal’ detection function and
the capture encounters ‘Bernoulli’s process’. The ‘Trap
response present’ option implements a ‘trap-specific’ behav-
ioural response in which the probability of capture at a spe-
cific trap increases (or decreases) after the initial capture. The

‘Spatial Capture–Recapture’ option runs a spatially explicit
capture–recapture analysis. The Markov-Chain Monte
Carlo settings varied between study areas and buffers.
Markov-Chain Monte Carlo iterations were set between
, and , with a burn-in period between ,
and , iterations and a thinning rate of . The data aug-
mentation numbers were c. – times the number of ani-
mals identified in each regional survey and varied between
 and ,. We assessed chain convergence with the
Geweke diagnostic test produced within the SPACECAP out-
put in the form of z-score values. Z-scores between−. and
+. implied adequate convergence and confirmed that the
Markov-Chain Monte Carlo analysis was run with a suffi-
ciently long burn-in period. The SPACECAP output also pro-
duces a Bayesian P-value to provide additional assessment of
the model fit where P-values close to  or  imply that the
model is inadequate. The adequacy of the data augmentation
number can be checked in the ‘density plot for psi’ and
‘density plot for N’ files included within the output files.
All densities obtained with SPACECAP produced z-scores
that achieved convergence, as well as sufficient model fit
and data augmentation number. The output also included
pixel-specific density estimates (animals per km), which
we used to create a pixel density map of the study areas
and compare leopard densities across various land covers
and uses to illustrate relationship with anthropogenic factors.

Results

Camera-trap data and sampling effort

The total sampling effort for the Overberg (November –
March ) was , camera-trap nights across a total
of  camera-trap locations ( cameras). This yielded 

leopard photographs (captures), with eight individuals

FIG. 2 Maxent probability
distribution model of leopard
habitat suitability in the Western
Cape and considering this study’s
 km buffers around camera-trap
areas. Distribution model is
reclassified with Natural Breaks
function.
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identified in  of them. These individuals were detected at
nine of the  camera-trap sites (Table ).

The total sampling effort for the two phases of the
Langeberg survey (April –December ) consisted
of , camera-trap nights across a total of  camera-trap
locations ( cameras). This yielded  leopard captures,
from which  individual leopards were identified in 

photographs, and these individuals were detected at  of
the  camera-trap sites (Table ).

The total sampling effort for the three phases of the
Garden Route survey area (May –December ) was
, camera-trap nights across a total of  camera-trap
locations ( cameras). This yielded  leopard captures,
of which  individual leopards were identified in  photo-
graphs, and these individuals were detected at  of the 
camera-trap sites (Table ). The total sampling effort was
, camera-trap nights across  camera-trap locations
( cameras), with  leopard captures and  identified
individuals (Table ).

Density estimates

The spatially explicit capture–recapture density estimates
varied by region and between regional phases, and estimates
from secrwere lower than those from SPACECAP. The effect
of using various buffers within the two programmes, par-
ticularly SPACECAP, demonstrated the sensitivity to buffer
width and data augmentation size (Kalle et al., ). We cal-
culated mean density estimates from stabilized buffer values
to ensure the study area was large enough to avoid capturing
any individuals residing outside the buffered region during
the survey.

In the Overberg, secr density estimates stabilized at
. leopards/ km (CI .–.). Both phases in the
Langeberg had density estimates that were stable across all
five buffers with a phase one density estimate of . leo-
pards/ km (CI .–.) and a phase two estimate of
. leopards/ km (CI .–.). The Garden Route’s
first phase had an estimated density of . leopards/ km

(CI .–.) with densities stable across all buffers, whereas
phase two had an estimated density of . leopards/ km

(CI .–.) and phase three produced a density estimate of
. leopards/ km (CI .–.; Table ). We calculated
the mean density for multi-phase study areas resulting in
. leopards/ km in the Overberg, compared to
. leopards/ km (CI .–.) in the Langeberg and
. leopards/ km (CI .–.) along the Garden
Route. The highest estimated density was Langeberg’s
phase two with . leopards/ km, and the lowest was
. leopards/ km in the Overberg (Table ).

SPACECAP produced an Overberg density estimate of
. leopards/ km (CI .–.), Langeberg phase one
and two density estimates of . (CI .–.) and . (CI
.–.) leopards/ km, respectively, and Garden T
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TABLE 2 Density estimates from programmes secr and SPACECAP, with standard error (SE), standard deviation (SD), % confidence intervals (CI), range of buffers that achieved mean
density estimate stabilization, area of regional  km buffer, number of leopards estimated within the surveyed area, and the Bayesian P-value for model fit.

Density estimate
(leopards/100 km2)

Buffer range of means’
stabilization (km)

35 km buffer area (km2)

Estimated no. of leopards P-value
secr
mean ± SE (95% CI)

SPACECAP
mean ± SD (95% CI) secr SPACECAP

secr
(95% CI)

SPACECAP
(95% CI) SPACECAP

Langeberg
Phase 1 0.29 ± 0.05 (0.20–0.41) 1.67 ± 0.26 (1.21–2.18) 15–35 15–30 0.86
Phase 2 0.70 ± 0.15 (0.57–1.76) 2.11 ± 0.35 (1.46–2.82) 15–35 25–35 0.55
Area mean 0.50 ± 0.10 (0.39–1.09) 1.89 ± 0.30 (0.89–2.50) 19,063.42 93.41

(74.35–205.88)
360.30
(169.70–476.60)

0.71

Garden Route
Phase 1 0.50 ± 0.26 (0.19–1.32) 1.44 ± 0.58 (0.55–2.54) 15–35 20–30 0.47
Phase 2 0.34 ± 0.11 (0.18–0.63) 0.92 ± 0.16 (0.65–1.22) 25–35 20–35 0.73
Phase 3 0.29 ± 0.13 (0.13–0.67) 0.51 ± 0.10 (0.36–0.70) 20–35 15–35 0.60
Area mean 0.38 ± 0.17 (0.17–0.87) 0.96 ± 0.28 (0.52–1.49) 6,680.34 25.39

(11.36–58.12)
64.13
(34.74–99.54)

0.60

Overberg
Phase 1 0.17 ± 0.10 (0.06–0.48) 0.69 ± 0.30 (0.39–1.28) 30–35 25–35 7,910.04 13.45

(4.75–37.97)
54.58
(30.85–101.25)

0.63

Overall mean 0.35 ± 0.12 (0.21–0.81) 1.18 ± 0.29 (0.60–1.76) 11,217.93 44.08
(30.15–100.66)

159.67
(78.42–225.79)

0.65

Total area without overlap1 29,258.43 132.25
(90.46–301.97)

479.01
(235.25–677.38)

The area total is without  km buffer land overlap between survey areas.
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Route phase one, two and three of . leopards/ km (CI
.–.), . leopards/  km (CI .–.) and . leo-
pards/ km (CI .–.), respectively. Again, we calcu-
lated the mean density for multi-phase areas; the Overberg
was . leopards/ km, compared to . leopards/
km (CI .–.) in the Langeberg and . leopards/
km (CI .–.) along the Garden Route (Table ).

Analysis with secr and SPACECAP resulted in an
overall estimated leopard density of . leopards/ km

(CI .–.) and . leopards/ km (CI .–.) re-
spectively. The output from SPACECAP includes a pixel
density file, which we converted into a fine-scale map
using QGIS, showing the variation of estimated animal
densities across each of the potential home range centres

FIG. 3 Pixelated ( km) SPACECAP
leopard density maps showing the
(a) Overberg, (b) Langeberg and
(c) Garden Route study areas.
Camera-trap sites shown are sites
with individually identified leopards.
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(Fig. ). Using these pixel density values, we also created
study area graphs depicting the sum of pixel densities across
land cover categories (CapeNature, ) and protected
areas (Department of Environmental Affairs, ; Fig. ).

Estimated population numbers

Combining this study’s total area with each region’s
 km buffer width (Garden Route ,. km; Overberg
,. km; Langeberg ,. km) with the regional
secr mean density estimates results in an estimate of  leo-
pards (CI .–.) in the Garden Route,  leopards (CI
.–.) in the Overberg and  leopards (CI .–.)
in the Langeberg (Table ). The total estimate for all areas
combined was  leopards (CI .–.; Table ). In
comparison, combining the total non-overlapping area
of all three study area’  km buffers (,. km) with
the overall secr mean density produces a population

estimate of  leopards (CI .–.) in the total study
area (Table ).

With the regional SPACECAP mean density estimates
there would be c.  leopards (CI .–.) in the Garden
Route,  leopards (CI .–.) in the Overberg and 

leopards (CI .–.) in the Langeberg (Table ), yield-
ing a total estimate of  leopards (CI .–.; Table ).
Comparatively, using the total area of all three regions’
 km buffers (without overlap) and the overall SPACECAP
mean density provides a population estimate of  leopards
(CI .–.) for the entire study area (Table ).

Our study area of ,. km comprises % of the
Western Cape’s total area (, km). To provide a
population outlook at the provincial level we extrapolated
an ecologically useful Western Cape abundance estimate
using our secr and SPACECAP mean density estimates
and Swanepoel et al.’s () estimated , km of
remaining suitable leopard habitat in Western Cape (%
of the province). This suggests that the entire Western
Cape could harbour as few as  (CI .–.) and as
many as  (CI .–.) leopards (Table ).

Discussion

This study covered c. , km and is one of the most
extensive leopard camera-trap density estimate surveys con-
ducted in the Western Cape province of South Africa. We
compared the use of two spatially explicit capture–recapture
methods for a regionally imperilled disjunct leopard popu-
lation. Our comprehensive density analysis investigated
leopard persistence in a predominately human-modified
and privately-owned landscape with varying degrees of
conflict and persecution.

It is important to reiterate that our study area incorpo-
rates variation across vegetation types, landscape topography
and degree of landscape modification and fragmentation.
Because of its highly cultivated agricultural landscape
(mainly grain production, as well as livestock farming), the
Overberg is commonly considered as the breadbasket of the
Cape. The Langeberg’s Breede River Valley is encircled by
the Cape Fold Mountain ranges and is dominated by
fynbos, vineyards and orchards, whereas the Garden Route
is a long stretch of the south-western coast situated between
mountains to the north and the Indian Ocean to the south,
which harbours a unique mixture of fynbos, indigenous

FIG. 4 Sum of SPACECAP leopard pixel density estimates
(leopards/km) for different land-cover types in the Western
Cape study areas. ‘Agriculture’ includes cultivated commercial
fields, orchards and plantations, ‘urban’ includes residential and
urban commercial land, and ‘other’ includes dams, roads and
railways.

TABLE 3 Comparison of estimated population size of leopards using the total area within this study’s  km buffer distance (without regional
survey overlap) and Swanepoel et al.’s () estimate for suitable leopard habitat in the Western Cape.

Area secr (0.35 leopards/100 km2) SPACECAP (1.18 leopards/100 km2)

Total buffered area of this study (29,258.43 km2) 102.4 (95% CI 61.4–237.0) 345.3 (95% CI 175.6–515.0)
Suitable leopard habitat in the Western Cape (49,850 km2;

Swanepoel et al., 2013)
174.5 (95% CI 104.7–403.8) 588.2 (95% CI 299.1–877.4)
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temperate forest and forestry plantations. The agricultural
land in all three areas is utilized by leopards, as evidenced
by capture and recapture locations and suitable habitat
extending beyond natural vegetation (Fig. ) and protected
area boundaries (Fig. ). None of our identified territorial
adult leopards remained strictly within protected areas,
and most did not utilize any protected land within their
home range. Although protected areas play a crucial role
in the conservation of natural landscapes, they do not
encompass the entirety of remaining natural vegetation or
existing leopard habitat. In theWestern Cape % of conser-
vation areas contain suitable leopard habitat but only % of
leopard habitat occurs within conservation areas (Swanepoel
et al., ).

These findings, together with estimated leopard densities
within highly modified, cultivated and non-protected land
(Figs  & ), suggest that non-protected, mostly privately
owned land plays an important role in sustaining the
Western Cape leopard population. Both spatially explicit
capture–recapture methods suggest that the Langeberg
winelands region supports the highest leopard density and
the Overberg’s agricultural landscape the lowest. The sum
of each study area’s pixel densities is consistent with these
findings (Fig. ). Although densities estimates vary between
study areas, the composition of land-cover and protected
land utilized within each area is comparatively consistent
(Supplementary Tables  & ). The Langeberg’s leopard
pixel densities on agricultural land are higher than in the
other two study areas, and equal to the Garden Route’s
natural vegetation (Fig. ). This can be attributed to the

predominantly non-conflict crop cultivation (vineyard and
orchard) in a valley surrounded by natural mountain vege-
tation. Additionally, the majority (%) of the estimated
leopard pixel density on agricultural land across all study
areas occurs in cultivated commercial fields and % occurs
in forestry plantations, which can generally be considered
non-conflict agriculture.

All three areas demonstrate a discrepancy between suit-
able habitat and land designated as protected for the conser-
vation and sustainability of biodiversity (Figs  & ). The
vast majority of each area’s estimated leopard pixel density
occurs on non-protected land with the highest percentage
occurring in the Overberg (%) (Fig. ; Supplementary
Table ).

Our secr and SPACECAP estimates are some of the lowest
national density estimates for leopards and are comparable
to three other studies in the Western Cape (Martins, ;
Mann, ; Devens et al., ; Table ). The difference be-
tween the estimates from the two programmes was greater
than expected, which could be attributed partially to the
extra Maxent habitat mask covariate modelling incorpo-
rated into the SPACECAP analyses. The likelihood method
requires substantially less computation time than the
Bayesian approach (seconds or minutes vs hours or days),
is less sensitive to buffer width and data augmentation size
and has greater convenience and versatility for customiza-
tion with covariates and models. SPACECAP entails checks
to verify that convergence is achieved, model fit is sufficient,
and data augmentation is adequate. Hence, it is more
appropriate and robust for small sample sizes. Our mean
SPACECAP density estimate of . leopards/ km is
directly comparable to results from Devens et al. (),
who reported mean density estimates of . and .–.
leopards/ km for SPACECAP and two GPS methods,
respectively (Table ). The GPS methods used data from
 collared leopards and incorporated home range size
(home range density estimate) and home range overlap of
same-sex neighbouring leopards (socially considerate dens-
ity estimate). Therefore, we suggest our SPACECAP results
are more accurate and reliable for determining the spatial
requirements of species. We recommend spatially explicit
capture–recapture methods for future research, with the
specific incorporation of GPS collar data, because these
methods are the most robust at capturing a species’ spatial
ecology within a population.

We extrapolated an ecological density (number of indivi-
duals per useable area) using our density estimates and a
prediction of , km suitable leopard habitat remaining
in the Western Cape (Swanepoel et al., ). Our findings
suggest that there are – leopards remaining (Table ).
However, this may be an optimistic estimation. Habitat
modelling is not infallible and identified suitable habitat is
not necessarily useable for wide-ranging species such as the
leopard. The available habitat estimate included fragmented

FIG. 5 Sum of SPACECAP leopard pixel density estimates
(leopards/km) for suitable leopard habitat within protected and
non-protected areas for each study area in the Western Cape.
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habitat, small isolated pockets of habitat and areas of habitat
subject to edge effects and anthropogenic pressures. These
factors can lead to habitat areas being unable to accommo-
date viable populations (Woodroffe & Ginsberg, ). In
addition, our maximum Western Cape population estimate
of  individuals is well below the minimum viable popu-
lation size necessary to maintain genetic diversity (Traill
et al., ). The genetic population structure of leopards
in the Western Cape and Eastern Cape provinces indicates
very low to moderate gene flow between the three subpopu-
lations (McManus et al., ).

Although highly adaptable, the leopard is a widely per-
secuted species that experiences varying levels of anthro-
pogenic threats and habitat loss. Our results suggest that
protected areas are inadequate to secure the long-term con-
servation of leopards in the Western Cape. By establishing
density and population size estimates in an increasingly
fragmented and modified landscape, we increase the under-
standing of how leopards can persist in human-dominated
areas, influencing conservation planning for the species. For
adaptive and wide-ranging species such as large carnivores,
non-protected and human-dominated areas are becoming
increasingly important for genetic dispersal and land-
scape connectivity (Boron et al., ). The threats and con-
servation conflicts affecting the leopard in South Africa’s
Cape region are affecting all apex carnivores globally.
Accurate density estimates are critically important as
numerous anthropogenic interests continue to threaten
leopards, their resources and habitat.
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