
ON THE COMMUTATIVITY OF J-RINGS 

JIANG LUH 

1. Introduction. A ring R is called a J-ring if there exists an integer 
n > 1 such that xn = x for every x 6 R. The following beautiful theorem due 
to Jacobson (4, 5) is a generalization of Wedderburn's theorem, which asserts 
that every finite division ring must be a field. 

THEOREM (Jacobson). Every J-ring is commutative. 

This theorem was established by essential use of Zorn's lemma. Raymond 
and Christine Ayoub (1) have proved this theorem for a certain class of 
exponents n without recourse to transfinite methods. Herstein (2, 3) recently 
supplied an elegant but elementary proof of the Wedderburn theorem and the 
Jacobson theorem in the division case. 

The purpose of this note is to give an elementary proof of the Jacobson 
theorem for any value of n. The technique of the present work is somewhat 
similar to that of Herstein in the division case. 

2. Preliminaries. In preparation for the proof of the theorem, we shall 
first recall the basic concepts and results involved. 

A ring R is called a ^-ring if a prime p and a positive integer k exist such 
that xpk = x and px = 0 for every x Ç R. 

LEMMA 1. If X is an element of a ring R such that xn = x for some integer 
n > 1 and if h and k are positive integers, h = k (mod n — 1), then xh = xk. 

This result can be obtained easily by induction; see (1). 

LEMMA 2. Let Rbe a J-ring. Then R has no nilpotent elements other than zero 
and every idempotent element is in the centre of R. 

Proof. That R has no nilpotent elements other than zero is obvious. Now, 
if e = e2 and x are elements of R, then 

(ex — exe)2 = (ex — exe)e(x — xe) = (exe — exe)(x — xe) = 0. 

By noting that R has no nilpotent elements F^O, we have ex = exe. Also, by a 
precisely similar argument, we obtain that xe — exe. Thus, for every x Ç R, 
ex = xe, i.e. e is in the centre. 

LEMMA 3. Let Rbe a ring and a Ç R. If apm = a for some prime p and positive 
integer my then avm~l is idempotent. 
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Proof. It is an immediate consequence of Lemma 1 and the fact 

(pm - l)\(2pm - 2) - (pm - 1). 

LEMMA 4. Let R be a finite pk-ring. Then R is isomorphic to a direct sum of 
finitely many division rings. 

Proof. I t is easy to see that there are minimal ideals Ii, I2, . . . , In of R 
such that 

R = Ii + Ii + . . . + In (direct sum). 

Each Ii is generated by any non-zero element at in It and hence is generated 
by an idempotent element, namely, et = af"~x. In fact, It = {ret\ r G R} = Re^ 
We need only show that It (i = 1, 2, 3, . . . , n) are division rings. Indeed, for 
any r G R, eiirei) = (ret)ei = ret

2 = reiy so et is a left unity of the ring It. 
Moreover, for any 5 G R and any non-zero element ret G Iu ret is a generator 
of the ideal It and ret s = rset = rsrvk~lei = rsrpk~2et ret G Ret ret. Hence 
Ii = Reird = It reu so 1̂  is a division ring. 

By Wedderburn's theorem and Lemma 4 we immediately have the following 
lemma. 

LEMMA 5. A finite ring R is a pk-ring if and only if it is isomorphic to a direct 
sum of fields of characteristic p. 

LEMMA 6. A ring R is a J-ring if and only if it is isomorphic to a direct sum 
of finitely many pk-rings. 

This lemma has been recently proved by the author of this note. The proof 
can be found in (6). 

3. Proof of the theorem of Jacobson. By virtue of Lemma 6, we need 
only show that every pk-r'mg is commutative. 

Let Rbe a. £fc-ring and let a be an arbitrary non-zero element in R. Denote 
by C the centralizer of a, i.e. C = {r\ r G R, ra = ar). To show that R is 
commutative it will be sufficient to show that C = R. 

Assume contrarily that C 9^ R. Then there exists b G R such that b G C. 
Let e = avk~l and 

P = {0,e,2e,..., (p- l)e). 

I t is easy to see that P is a field isomorphic to the field Zv of integers modulo 
the prime number p. Since, by Lemma 3, e commutes with every element in R 
and bpk = b, the ring P(b) obtained by adjoining b to P is a finite pk-ring. More 
precisely, 

(pk-i 

P(b) =]J2 njeb
j\nje Zp 

From Lemma 5, Pib) is isomorphic to a direct sum of subfields of P(b). 
Since eb G P(b) but eb G C, there exists a direct summand F containing 
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elements which do not commute with a. The multiplicative group of non-zero 
elements of F must be cyclic generated b y / , say. Clearly,/ $ C. Suppose that 
F contains precisely pm elements. Then fpm = / and p™-1 is the unity element 
of F. 

Now, we define a mapping T on R by ir(y) = yf — fy, for all y £ R. By a 
trivial verification we have that 

**(y) = yfm -fpmy = yf-fy = Ay) 

for all y £ R. Thus, irpm = T. 
For any g 6 F, y £ R, we obtain 

Tf(gy) = (gy)f -f(gy) = gy/ - g/y = g(yf-fy) = ^ ( y ) , 

since g commutes with / . 
Now, if we define mapping gl on i£ by (gl) (y) = gy for all y € R, then 

ir&O = (gl)* for all g 6 R. 
Consider the polynomial fm-iX*m - pm~lX over the field F. It has all its 

pm roots as the elements of F. Hence 

rpm—lYPm rVm—^Y = TT ({pm~1Y' a\ 

Thus, we get 
0 = {fvm-lI)vvm - (f*-1!)* = XI ((f^-1/)^ - gJ). 

0~£F 

If, for every non-zero element g 6 i7, (fpm~1I)ir — g l annihilates no non-zero 
element in/pW~1i?, we would have (fpm~~1I)ir(y) = 0, or 3 / — fy = 0 for every 
y G fvm~lR. Particularly, for y = fm-la, we would have 

(f**-ia)f - fif^-'a) = 0, 

or af = /a . This contradicts the assumption that / does not commute with a. 
Therefore, there exist g ^ 0 in F and x ^ 0 injP"1-1^ such that 

(cr-i/k-g/xx) = o, 
or 

(A) xf = fx + gx 6 Zx. 

Here g = fl for some positive integer t < pm since the multiplicative group of 
non-zero elements of F is cyclic generated by / . 

Set 

w = \P^lp:Zpijf
ixi\piJezP 

\ j=i t=i i 

Obviously, W is closed under addition. W is also closed under multiplication 
according to (A). Thus, W is a finite pk-v'mg and hence by Lemma 5 is commu
tative. 

Since fxplc~l and xfv7n~l are in W, we have 

fx^-^xp™'1 = xf^-i-fx**-1, 
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or fx = xf. Thus, from (A), gx = 0. But j*™-1 is the unity element of the 
field i^and there is g' G 7? such that g'g = fm-\ We obtain fm~xx = g'gx = 0. 
Since x £ fpm-lR, x = f™-^! for some xx G R. It follows that 

0 = f^-ix = pm~lxi = x, 

a contradiction. Therefore, C = R, and R is commutative. 
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