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Abstract

We consider the semilinear Schrödinger equation{
−4u + V(x)u = f (x, u), x ∈ RN ,
u ∈ H1(RN ),

where f (x, u) is asymptotically linear with respect to u, V(x) is 1-periodic in each of x1, x2, . . . , xN and
sup[σ(−4 + V) ∩ (−∞, 0)] < 0 < inf[σ(−4 + V) ∩ (0,∞)]. We develop a direct approach to find ground
state solutions of Nehari–Pankov type for the above problem. The main idea is to find a minimizing
Cerami sequence for the energy functional outside the Nehari–Pankov manifoldN− by using the diagonal
method.
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1. Introduction

Consider the following semilinear Schrödinger equation:{
−4u + V(x)u = f (x, u), x ∈ RN ,
u ∈ H1(RN), (1.1)

where V : RN → R and f : RN × R → R satisfy the following basic assumptions,
respectively:

(V) V ∈ C(RN) is 1-periodic in each of x1, x2, . . . , xN and

sup[σ(−4 + V) ∩ (−∞, 0)] := Λ < 0 < Λ := inf[σ(−4 + V) ∩ (0,∞)];
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(F1) f ∈ C(RN × R) is 1-periodic in each of x1, x2, . . . , xN , F(x, t) :=
∫ t

0 f (x, s) ds ≥ 0
and f (x, t) = o(|t|), as |t| → 0, uniformly in x ∈ RN ;

(F2) f (x, t) = V∞(x)t + f∞(x, t), where V∞ ∈ C(RN) is 1-periodic in each of
x1, x2, . . . , xN and inf V∞ > Λ̄, f∞(x, t) = o(|t|) as |t| → ∞, uniformly in x ∈ RN .

Let A = −4 + V . Then A is self adjoint in L2(RN) with domain D(A) = H2(RN)
(see [4, Theorem 4.26]). Let {E(λ) : −∞ < λ < +∞} and |A| be the spectral family
and the absolute value of A, respectively, and |A|1/2 be the square root of |A|. Set
U = id − E(0) − E(0−). Then U commutes with A, |A| and |A|1/2, and A =U|A| is
the polar decomposition ofA (see [3, Theorem IV 3.3]). Let

E = D(|A|1/2), E− = E(0)E, E+ = [id − E(0)]E.

For any u ∈ E, it is easy to see that u = u− + u+, where

u− := E(0)u ∈ E−, u+ := [id − E(0)]u ∈ E+

and
Au− = −|A|u−, Au+ = |A|u+ ∀u ∈ E ∩D(A). (1.2)

Define an inner product

(u, v) = (|A|1/2u, |A|1/2v)L2 , u, v ∈ E

and the corresponding norm

‖u‖ = ‖ |A|1/2u‖2, u ∈ E, (1.3)

where (·, ·)L2 denotes the inner product of L2(RN), ‖ · ‖s denoting the norm of Ls(RN).
By (V), E = H1(RN) with equivalent norms. Therefore, E embeds continuously in
Ls(RN) for all 2 ≤ s ≤ 2∗. In addition, one has the decomposition E = E− ⊕ E+

orthogonal with respect to both (·, ·)L2 and (·, ·).
Under assumptions (V), (F1) and (F2), the solutions of problem (1.1) are critical

points of the functional

Φ(u) =
1
2

∫
RN

(|∇u|2 + V(x)u2) dx −
∫
RN

F(x, u) dx ∀u ∈ E;

Φ is of class C1(E,R) and

〈Φ′(u), v〉 =

∫
RN

(∇u∇v + V(x)uv) dx −
∫
RN

f (x, u)v dx ∀u, v ∈ E. (1.4)

In view of (1.2) and (1.3),

Φ(u) =
1
2

(‖u+‖2 − ‖u−‖2) −
∫
RN

F(x, u) dx (1.5)

and
〈Φ′(u), u〉 = ‖u+‖2 − ‖u−‖2 −

∫
RN

f (x, u)u dx ∀u = u− + u+ ∈ E.
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In [11], Szulkin and Zou firstly studied problem (1.1) with asymptotically linear
term f by variational methods, and proved the existence of a nontrivial solution
provided that V and f satisfy (V), (F1), (F2) and the following weak assumption.

(F3) F̃(x, t) := 1
2 t f (x, t) − F(x, t) ≥ 0 for all (x, t) ∈ RN × R, and there exists a constant

δ0 ∈ (0, λ0) such that if f (x, t)/t ≥ λ0 − δ0 then F̃(x, t) ≥ δ0, where λ0 = min{−Λ,Λ}.

Similar results can be found in [7]. We point out that condition (F3) was firstly used
by Jeanjean [5]. Under the same assumptions given above, moreover with f (x, t) odd
in t, Ding and Lee [1, 2] proved that problem (1.1) has infinitely many geometrically
distinct solutions.

If u0 ∈ E is a nontrivial solution of problem (1.1), then u0 ∈ N
−, where

N− = {u ∈ E \ E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0 ∀v ∈ E−}.

The set N−, first introduced by Pankov [9], is a subset of the Nehari manifold

N = {u ∈ E \ {0} : 〈Φ′(u), u〉 = 0}.

In general, the set N− contains infinitely many elements of E. In fact, we can
demonstrate that for any u ∈ [E(µ1) − E(Λ)]E \ {0} with µ1 = inf V∞, there exist
t = t(u) > 0 and w = w(u) ∈ E− such that w + tu ∈ N−; see Lemma 2.12.

Set m := infu∈N− Φ(u). Now a natural question arises: whether m is attained? or
whether there exists ū ∈ N− such that Φ′(ū) = 0 and Φ(ū) = m? Since ū is a solution
at which Φ has the least ‘energy’ in the set N−, we shall call it a ground state solution
of Nehari–Pankov type. In [10], based on the Nehari-manifold method, Szulkin and
Weth developed an approach to find ground state solutions of Nehari–Pankov type
for problem (1.1) with superlinear term f . In fact, they proved that problem (1.1)
has a solution ū ∈ N− such that Φ(ū) = m > 0 provided that (V) and the Nehari-type
assumption

(Ne) t 7→ f (x, t)/|t| is strictly increasing on (−∞, 0) ∪ (0,∞) and some other standard
assumptions on f are satisfied.

We point out that the Nehari-type assumption (Ne) is very crucial in Szulkin and
Weth [10].

In this paper, we will develop a direct approach to find ground state solutions of
Nehari–Pankov type for problem (1.1) with asymptotically linear term f . The main
idea is to find a minimizing Cerami sequence for Φ outside N− by using the diagonal
method, part of which comes from recent papers [12–15] of the author; see Lemma
2.13. From the work of Szulkin and Weth [10], it seems very difficult to find ground
state solutions of Nehari–Pankov type for problem (1.1), but this can be made more
concise by using our approach.

Before presenting our theorem, in addition to (V) and (F1), we make the following
assumptions.
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(F2′) f (x, t) = V∞(x)t + f∞(x, t), where V∞ ∈ C(RN) is 1-periodic in each of
x1, x2, . . . xN and inf V∞ > 0, and there exists a u0 ∈ E+ \ {0} such that

‖u0‖
2 − ‖w‖2 −

∫
RN

V∞(x)(u0 + w)2 dx < 0 ∀w ∈ E−; (1.6)

t f∞(x, t) ≤ 0, f (x, t) f∞(x, t) < 0 for 0 < |t| ≤ α0 for some α0 > 0, f∞(x, t) = o(|t|) as
|t| → ∞, uniformly in x ∈ RN ;

(F2′′) f (x, t) = V∞(x)t + f∞(x, t), where V∞ ∈ C(RN) is 1-periodic in each of
x1, x2, . . . , xN and inf V∞ > Λ̄, f∞(x, t) = o(|t|) as |t| → ∞, uniformly in x ∈ RN , and
0 < t f (x, t) < V∞(x)t2 for x ∈ RN and t , 0;

(WN) t 7→ f (x, t)/|t| is nondecreasing on (−∞, 0) ∪ (0,∞).

Obviously, if inf V∞ > Λ̄, take µ̄ ∈ (Λ̄, inf V∞); then u0 ∈ (E(µ̄) − E(0))E satisfies
(1.6). Therefore, (F2′′) implies (F2′); (WN) is a weak version of the Nehari-
type assumption (Ne), and it yields that F̃(x, t) is nondecreasing on t ∈ [0,∞) and
nonincreasing on t ∈ (−∞, 0]. Hence, it is slightly stronger than (F3).

We are now in a position to state the main results of this paper.

Theorem 1.1. Assume that V and f satisfy (V), (F1), (F2′) and (WN). Then problem
(1.1) has a solution ū ∈ E such that Φ(ū) = infN− Φ > 0. Moreover,∫

RN
{|∇ū|2 + [V(x) − V∞(x)]ū2} dx < 0.

Corollary 1.2. Assume that V and f satisfy (V), (F1), (F2′′) and (WN). Then problem
(1.1) has a solution ū ∈ E such that Φ(ū) = infN− Φ > 0. Moreover,∫

RN
{|∇ū|2 + [V(x) − V∞(x)]ū2} dx < 0.

We point out that, as a consequence of Theorem 1.1, the least energy value m has a
minimax characterization given by

m = Φ(ū) = inf
v∈E+

0 \{0}
max

u∈E−⊕R+v
Φ(u),

where E+
0 is defined by (2.6). Note that this minimax principle is much simpler than

the usual characterizations related to the concept of linking.
The following functions satisfy all assumptions of Corollary 1.2.

Example 1.3. f (x, t) = V∞(x) min{|t|%, 1}t, where % > 0 and V∞ ∈ C(RN) is 1-periodic
in each of x1, x2, . . . , xN and inf V∞ > Λ.

Example 1.4. f (x, t) = V∞(x)[1 − (1/ln(e + |t|))]t, where V∞ ∈ C(RN) is 1-periodic in
each of x1, x2, . . . , xN and inf V∞ > Λ.

Example 1.5. f (x, t) = ζ(x, |t|)t, where ζ(x, s) is 1-periodic in each of x1, x2, . . . , xN
and nondecreasing for s ∈ [0,∞), ζ(x, s)→ 0 as s→ 0 and ζ(x, s)→ V∞(x) as s→∞,
uniformly in x ∈ RN , inf V∞ > Λ and 0 < ζ(x, s) < V∞(x) for s , 0.
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2. Proof of main result

Let X be a real Hilbert space with X = X− ⊕ X+ and X−⊥ X+. For a functional
ϕ ∈ C1(X,R), ϕ is said to be weakly sequentially lower semicontinuous if for any
un ⇀ u in X one has ϕ(u) ≤ lim infn→∞ ϕ(un), and ϕ′ is said to be weakly sequentially
continuous if limn→∞〈ϕ

′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X.

Lemma 2.1 ([1, Theorem 4.5], [6], [7, Theorem 2.1]). Let X be a real Hilbert space
with X = X− ⊕ X+ and X−⊥ X+, and let ϕ ∈ C1(X,R) be of the form

ϕ(u) = 1
2 (‖u+‖2 − ‖u−‖2) − ψ(u), u = u− + u+ ∈ X− ⊕ X+.

Suppose that the following assumptions are satisfied:

(LS1) ψ ∈ C1(X, R) is bounded from below and weakly sequentially lower
semicontinuous;

(LS2) ψ′ is weakly sequentially continuous;
(LS3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

κ := inf ϕ(S +
ρ ) > supϕ(∂Q),

where

S +
ρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {w + se : w ∈ X−, s ≥ 0, ‖w + se‖ ≤ r}.

Then, for some c ∈ [κ, sup Φ(Q)], there exists a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0.

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.
We set

Ψ(u) =

∫
RN

F(x, u) dx ∀u ∈ E.

Lemma 2.2. Suppose that (F1) and (F2′) are satisfied. Then Ψ is nonnegative, weakly
sequentially lower semicontinuous, and Ψ′ is weakly sequentially continuous.

Using Sobolev’s embedding theorem, one can check the above lemma easily, so we
omit the proof.

The following lemma is interesting and shows an important behavior of
nondecreasing functions.

Lemma 2.3. Suppose that h(x, t) is nondecreasing in t ∈ R and h(x, 0) = 0 for any
x ∈ RN . Then(1 − θ2

2
τ − θσ

)
h(x, τ)|τ| ≥

∫ τ

θτ+σ

h(x, s)|s| ds ∀θ ≥ 0, τ, σ ∈ R. (2.1)
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Proof. Since h(x, t) is nondecreasing in t ∈ R, then, for any x ∈ RN ,

h(x, s) ≤ h(x, τ) ∀s ≤ τ; h(x, s) ≥ h(x, τ) ∀s ≥ τ. (2.2)

To show (2.1), we consider four possible cases. Since sh(x, s) ≥ 0, these follow from
(2.2):

Case 1. If 0 ≤ θτ + σ ≤ τ or θτ + σ ≤ τ ≤ 0, then∫ τ

θτ+σ

h(x, s)|s| ds ≤ h(x, τ)
∫ τ

θτ+σ

|s| ds ≤
(
1 − θ2

2
τ − θσ

)
h(x, τ)|τ|;

Case 2. If θτ + σ ≤ 0 ≤ τ, then∫ τ

θτ+σ

h(x, s)|s| ds ≤
∫ τ

0
h(x, s)|s| ds ≤ h(x, τ)

∫ τ

0
|s| ds

≤

(1 − θ2

2
τ − θσ

)
h(x, τ)|τ|;

Case 3. If 0 ≤ τ ≤ θτ + σ or τ ≤ θτ + σ ≤ 0, then∫ θτ+σ

τ

h(x, s)|s| ds ≥ h(x, τ)
∫ θτ+σ

τ

|s| ds ≥ −
(1 − θ2

2
τ − θσ

)
h(x, τ)|τ|;

Case 4. If τ ≤ 0 ≤ θτ + σ, then∫ θτ+σ

τ

h(x, s)|s| ds ≥
∫ 0

τ

h(x, s)|s| ds ≥ h(x, τ)
∫ 0

τ

|s| ds

≥ −

(1 − θ2

2
τ − θσ

)
h(x, τ)|τ|.

The above four cases show that (2.1) holds. �

Lemma 2.4. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then

Φ(u) ≥ Φ(θu + w) +
1
2
‖w‖2 +

1 − θ2

2
〈Φ′(u), u〉 − θ〈Φ′(u),w〉

∀θ ≥ 0, u ∈ E,w ∈ E−. (2.3)

Proof. For any x ∈ RN , it follows from (WN) and Lemma 2.3 that(1 − θ2

2
τ − θσ

)
f (x, τ) ≥

∫ τ

θτ+σ

f (x, s) ds ∀θ ≥ 0, τ, σ ∈ R. (2.4)

By virtue of (1.4), (1.5) and (2.4),

Φ(u) − Φ(θu + w) =
1
2
‖w‖2 +

1 − θ2

2
〈Φ′(u), u〉 − θ〈Φ′(u),w〉

+

∫
RN

[1 − θ2

2
f (x, u)u − θ f (x, u)w −

∫ u

θu+w
f (x, s) ds

]
dx

≥
1
2
‖w‖2 +

1 − θ2

2
〈Φ′(u), u〉 − θ〈Φ′(u),w〉 ∀θ ≥ 0,w ∈ E−.

This shows that (2.3) holds. �
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From Lemma 2.4, we have the following two corollaries.

Corollary 2.5. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then, for u ∈ N−,

Φ(u) ≥ Φ(tu + w) ∀t ≥ 0,w ∈ E−.

Corollary 2.6. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then

Φ(u) ≥
t2

2
(‖u+‖2 + ‖u−‖2) −

∫
RN

F(x, tu+) dx +
1 − t2

2
〈Φ′(u), u〉

+ t2〈Φ′(u), u−〉 ∀u ∈ E, t ≥ 0.

The following lemma is crucial to obtain a linking structure.

Lemma 2.7. Suppose that (V), (F1) and (F2′) are satisfied. If inf V∞ > 0, then

τ〈Φ′(u), τu + 2v〉

≥ τ2‖u+‖2 − ‖τu− + v‖2 + ‖v‖2 −
∫
RN

V∞(x)(τu + v)2 dx

+ τ2
∫
RN

u f (x, u)V∞(x) − [ f (x, u)]2

V∞(x)
dx ∀u ∈ E, τ ∈ R, v ∈ E−. (2.5)

Proof. In view of (1.2), (1.3), (1.4) and inf V∞ > 0,

τ〈Φ′(u), τu + 2v〉

= τ2‖u+‖2 − τ2‖u−‖2 − 2τ(u−, v) − τ
∫
RN

f (x, u)(τu + 2v) dx

= τ2‖u+‖2 − ‖τu− + v‖2 + ‖v‖2 −
∫
RN

V∞(x)(τu + v)2 dx

+

∫
RN

[V∞(x)(τu + v)2 − τ f (x, u)(τu + 2v)] dx

=

∫
RN
{V∞(x)v2 + 2[V∞(x)u − f (x, u)]τv + [V∞(x)u2 − u f (x, u)]τ2} dx

+ τ2‖u+‖2 − ‖τu− + v‖2 + ‖v‖2 −
∫
RN

V∞(x)(τu + v)2 dx

≥ τ2‖u+‖2 − ‖τu− + v‖2 + ‖v‖2 −
∫
RN

V∞(x)(τu + v)2 dx

+ τ2
∫
RN

u f (x, u)V∞(x) − [ f (x, u)]2

V∞(x)
dx ∀u ∈ E, τ ∈ R, v ∈ E−,

which shows that (2.5) holds. �

Corollary 2.8. Suppose that (V), (F1) and (F2′) are satisfied, and that inf V∞ > 0.
Then

‖u+‖2 − ‖u− + v‖2 −
∫
RN

V∞(x)(u + v)2 dx

≤ −‖v‖2 −
∫
RN

u f (x, u)V∞(x) − [ f (x, u)]2

V∞(x)
dx ∀u ∈ N−, v ∈ E−.
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Applying Corollary 2.5, we can prove the following lemma in the same way as
[10, Lemma 2.4].

Lemma 2.9. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then:

(i) there exists ρ > 0 such that

m = inf
N−

Φ ≥ κ := inf{Φ(u) : u ∈ E+, ‖u‖ = ρ} > 0;

(ii) ‖u+‖ ≥ max{‖u−‖,
√

2m} for all u ∈ N−.

Define a set E+
0 as follows:

E+
0 =

{
u ∈ E+ \ {0} : ‖u‖2 − ‖w‖2 −

∫
RN

V∞(x)(u + w)2 dx < 0 ∀w ∈ E−
}
. (2.6)

Obviously, (F2′) shows that the set E+
0 is not empty.

Lemma 2.10. Suppose that (V), (F1) and (F2′) are satisfied. Then, for any e ∈ E+
0 ,

sup Φ(E− ⊕ R+e) <∞ and there is Re > 0 such that

Φ(u) ≤ 0 ∀u ∈ E− ⊕ R+e, ‖u‖ ≥ Re.

This result is essentially contained in [11], see also [7, Lemma 3.1], but for the
reader’s convenience we choose to write it in detail.

Proof. It is sufficient to show that Φ(w + te) ≤ 0 for t ≥ 0, w ∈ E− and ‖w + te‖ ≥ R for
large R > 0. Arguing indirectly, assume that, for some sequence {wn + sne} ⊂ E− ⊕ R+e
with ‖wn + sne‖ → ∞, Φ(wn + sne) ≥ 0 for all n ∈ N. Set

vn = ‖wn + tne‖/(wn + tne) = v−n + τne;

then ‖v−n + τne‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v in E
(vn weakly convergences to v in E); then vn → v almost everywhere on RN , v−n ⇀ v− in
E, τn → τ and

Φ(wn + tne)
‖wn + tne‖2

=
τ2

n

2
‖e‖2 −

1
2
‖v−n ‖

2 −

∫
RN

F(x,wn + tne)
‖wn + tne‖2

dx ≥ 0. (2.7)

Clearly, (2.7) yields that τ > 0. Since e ∈ E+
0 , there exists a bounded domain Ω ⊂ RN

such that
τ2‖e‖2 − ‖v−‖2 −

∫
Ω

V∞(x)(τe + v−)2 dx < 0. (2.8)

Let F∞(x, t) =
∫ t

0 f∞(x, s) ds; then F(x, t) = 1
2 V∞(x)t2 + F∞(x, t). It follows from (2.7)

that

0 ≤
τ2

n

2
‖e‖2 −

1
2
‖v−n ‖

2 −

∫
Ω

F(x,wn + tne)
‖wn + tne‖2

dx

=
τ2

n

2
‖e‖2 −

1
2
‖v−n ‖

2 −
1
2

∫
Ω

V∞(x)v2
n dx −

∫
Ω

F∞(x,wn + tne)
‖wn + tne‖2

dx.
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Clearly, |F∞(x, t)| ≤ c0t2 for some c0 > 0 and F∞(x, t)/t2 → 0 as |t| → ∞. Since
vn ⇀ v in E, vn → v in L2(Ω) and it is easy to see from the Lebesgue dominated
convergence theorem that∫

Ω

F∞(x,wn + tne)
‖wn + tne‖2

dx =

∫
Ω

F∞(x,wn + tne)
|wn + tne|2

|vn|
2 dx = o(1).

Hence,

0 ≤ τ2‖e‖2 − ‖v−‖2 −
∫

Ω

V∞(x)(τe + v−)2 dx,

which is a contradiction to (2.8). �

Corollary 2.11. Suppose that (V), (F1) and (F2′) are satisfied. Let e ∈ E+
0 with

‖e‖ = 1. Then there is a r0 > ρ such that sup Φ(∂Q) ≤ 0 for r ≥ r0, where

Q = {w + se : w ∈ E−, s ≥ 0, ‖w + se‖ ≤ r}. (2.9)

Lemma 2.12. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then, for any
u ∈ E+

0 , N− ∩ (E− ⊕ R+u) , ∅, that is, there exist t(u) > 0 and w(u) ∈ E− such that
t(u)u + w(u) ∈ N−.

Proof. By view of Lemma 2.10, there exists a constant R > 0 such that Φ(v) ≤ 0 for
v ∈ (E− ⊕ R+u) \ BR(0). By Lemma 2.9(i), Φ(tu) > 0 for small t > 0. Thus we have,
0 < sup Φ(E− ⊕ R+u) < ∞. It is easy see that Φ is weakly upper semicontinuous on
E− ⊕ R+u; therefore, Φ(u0) = sup Φ(E− ⊕ R+u) for some u0 ∈ E− ⊕ R+u. This u0

is a critical point of Φ|E−⊕Ru, so 〈Φ′(u0), u0〉 = 〈Φ′(u0), v〉 = 0 for all v ∈ E− ⊕ R u.
Consequently, u0 ∈ N

− ∩ (E− ⊕ R+u). �

Lemma 2.13. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then there exist a
constant c ∈ [κ, sup Φ(Q)] and a sequence {un} ⊂ E satisfying

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0,

where Q is defined by (2.9).

Proof. Lemma 2.13 is a direct corollary of Lemmas 2.1, 2.2, 2.9(i) and
Corollary 2.11. �

The following lemma is crucial to demonstrate the existence of ground state
solutions of Nehari–Pankov type for problem (1.1).

Lemma 2.14. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then there exist a
constant c∗ ∈ [κ,m] and a sequence {un} ⊂ E satisfying

Φ(un)→ c∗, ‖Φ′(un)‖(1 + ‖un‖)→ 0. (2.10)
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Proof. Choose vk ∈ N
− such that

m ≤ Φ(vk) < m +
1
k
, k ∈ N. (2.11)

By Lemma 2.9, ‖v+
k ‖ ≥

√
2m > 0. Since vk ∈ H1(RN), meas{x ∈ RN : |vk(x)| ≤ α0} =∞.

It follows from (F2′) that ∫
RN

f (x, vk) f∞(x, vk)
V∞(x)

dx < 0. (2.12)

Set ek = v+
k /‖v

+
k ‖. Then ek ∈ E+ and ‖ek‖ = 1. By virtue of Corollary 2.8 and (2.12),

‖ek‖
2 − ‖w‖2 −

∫
RN

V∞(x)(ek + w)2 dx

=
‖v+

k ‖
2

‖v+
k ‖

2 − ‖w‖
2 −

∫
RN

V∞(x)
( vk

‖v+
k ‖

+ w −
v−k
‖v+

k ‖

)2
dx

≤ −

∥∥∥∥∥w −
v−k
‖v+

k ‖

∥∥∥∥∥2
−

1
‖v+

k ‖
2

∫
RN

vk f (x, vk)V∞(x) − [ f (x, vk)]2

V∞(x)
dx

= −

∥∥∥∥∥w −
v−k
‖v+

k ‖

∥∥∥∥∥2
+

1
‖v+

k ‖
2

∫
RN

f (x, vk) f∞(x, vk)
V∞(x)

dx < 0 ∀w ∈ E−.

This shows that ek ∈ E+
0 . In view of Corollary 2.11, there exists rk > max{ρ, ‖vk‖} such

that sup Φ(∂Qk) ≤ 0, where

Qk = {w + sek : w ∈ E−, s ≥ 0, ‖w + sek‖ ≤ rk}, k ∈ N. (2.13)

Hence, applying Lemma 2.13 to the above set Qk, there exist a positive constant
ck ∈ [κ, sup Φ(Qk)] and a sequence {uk,n}n∈N ⊂ E satisfying

Φ(uk,n)→ ck, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, k ∈ N. (2.14)

By virtue of Corollary 2.5,

Φ(vk) ≥ Φ(w + tvk) ∀t ≥ 0,w ∈ E−. (2.15)

Since vk ∈ Qk, it follows from (2.13) and (2.15) that Φ(vk) = sup Φ(Qk). Hence, by
(2.11) and (2.14),

Φ(uk,n)→ ck < m +
1
k
, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, k ∈ N.

Now, we can choose a sequence {nk} ⊂ N such that

κ −
1
k
< Φ(uk,nk ) < m +

1
k
, ‖Φ′(uk,nk )‖(1 + ‖uk,nk‖) <

1
k
, k ∈ N.

Let uk = uk,nk , k ∈ N. Then, going if necessary to a subsequence,

Φ(un)→ c∗ ∈ [κ,m], ‖Φ′(un)‖(1 + ‖un‖)→ 0. �
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Lemma 2.15. Suppose that (V), (F1), (F2′) and (WN) are satisfied. Then any sequence
{un} ⊂ E satisfying (2.10) is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖; then ‖vn‖ = 1. By the Sobolev embedding theorem, there
exists a constant C1 > 0 such that ‖vn‖2 ≤ C1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|v+

n |
2 dx = 0,

then, by Lions’ concentration compactness principle [8] or [16, Lemma 1.21], v+
n → 0

in Ls(RN) for 2 < s < 2∗. Fix R > [2(1 + c∗)]1/2 and p ∈ (2, 2∗). By virtue of (F1) and
(F2′), for ε = 1/4(RC1)2 > 0, there exists Cε > 0 such that |F(x, t)| ≤ ε|t|2 + Cε|t|p for
all (x, t) ∈ RN × R. Hence,

lim sup
n→∞

∫
RN

F(x,Rv+
n ) dx ≤ ε(RC1)2 + RpCε lim

n→∞
‖v+

n ‖
p
p =

1
4
. (2.16)

Let tn = R/‖un‖. Hence, by virtue of (2.10), (2.16) and Corollary 2.5,

c∗ + o(1) = Φ(un) ≥
t2
n

2
(‖u+

n ‖
2 + ‖u−n ‖

2) −
∫
RN

F(x, tnu+
n ) dx +

1 − t2
n

2
〈Φ′(un), un〉

+ t2
n〈Φ

′(un), u−n 〉

=
R2

2
(‖v+

n ‖
2 + ‖v−n ‖

2) −
∫
RN

F(x,Rv+
n ) dx +

(1
2
−

R2

2‖un‖
2

)
〈Φ′(un), un〉

+
R2

‖un‖
2 〈Φ

′(un), u−n 〉

=
R2

2
−

∫
RN

F(x,Rv+
n ) dx + o(1) ≥

R2

2
−

1
4

+ o(1) > c∗ +
3
4

+ o(1),

which implies that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such
that

∫
B1+

√
N (kn) |v

+
n |

2 dx > δ/2. Let ṽn(x) = vn(x + kn). Then ‖ṽn‖ = ‖vn‖ = 1 and∫
B1+

√
N (0)
|ṽ+

n |
2 dx >

δ

2
. (2.17)

Passing to a subsequence, we have ṽn ⇀ ṽ in E, ṽn → ṽ in Ls
loc(RN), 2 ≤ s < 2∗ and

ṽn → ṽ almost everywhere on RN . Thus, (2.17) implies that ṽ+ , 0 and so ṽ , 0.
Now we define ũn(x) = un(x + kn); then ũn/‖un‖ = ṽn → ṽ almost everywhere on

RN , ṽ , 0. For x ∈ Ω := {y ∈ RN : ṽ(y) , 0}, we have limn→∞ |ũn(x)| = ∞. For any
φ ∈ C∞0 (RN), setting φn(x) = φ(x − kn),

〈Φ′(un), φn〉 = (u+
n − u−n , φn) − (V∞un, φn)L2 −

∫
RN

f∞(x, un)φn dx

= ‖un‖

[
(v+

n − v−n , φn) − (V∞vn, φn)L2 −

∫
RN

f∞(x, un)
|un|

|vn|φn dx
]

= ‖un‖

[
(ṽ+

n − ṽ−n , φ) − (V∞ṽn, φ)L2 −

∫
RN

f∞(x, ũn)
|ũn|

|ṽn|φ dx
]
,
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which, together with (2.10), yields

(ṽ+
n − ṽ−n , φ) − (V∞ṽn, φ)L2 −

∫
RN

f∞(x, ũn)
|ũn|

|ṽn|φ dx = o(1).

Note that∣∣∣∣∣∫
RN

f∞(x, ũn)
|ũn|

|ṽn|φ dx
∣∣∣∣∣ ≤ ∫

RN

∣∣∣∣∣ f∞(x, ũn)
ũn

∣∣∣∣∣ |ṽn − ṽ| |φ| dx +

∫
RN

∣∣∣∣∣ f∞(x, ũn)
ũn

∣∣∣∣∣ |ṽ| |φ| dx

≤ C2

∫
supp φ

|ṽn − ṽ| |φ| dx +

∫
Ω

∣∣∣∣∣ f∞(x, ũn)
ũn

∣∣∣∣∣ |ṽ||φ| dx = o(1).

Hence,
(ṽ+ − ṽ−, φ) − (V∞ṽ, φ)L2 = 0.

Thus, ṽ is an eigenfunction of the operator B := −4 + (V − V∞), contradicting the
fact that B has only a continuous spectrum. This contradiction shows that {un} is
bounded. �

Proof of Theorem 1.1. Applying Lemmas 2.14 and 2.15, we deduce that there exists
a bounded sequence {un} ⊂ E satisfying (2.10). A standard argument shows that
{un} is a nonvanishing sequence. Going if necessary to a subsequence, we may
assume the existence of kn ∈ Z

N such that
∫

B1+
√

N (kn) |un|
2 dx > δ/2 for some δ > 0. Let

vn(x) = un(x + kn). Then ∫
B1+

√
N (0)
|vn|

2 dx >
δ

2
. (2.18)

Since V(x) and f (x, u) are periodic in x, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c∗, ‖Φ′(vn)‖(1 + ‖vn‖)→ 0. (2.19)

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Ls
loc(RN), 2 ≤ s < 2∗ and

vn → v almost everywhere on RN . Obviously, (2.18) and (2.19) imply that v , 0 and
Φ′(v) = 0. This shows that v ∈ N− and so Φ(v) ≥ m. On the other hand, by using
(2.19), (WN) and Fatou’s lemma,

m ≥ c∗

= lim
n→∞

[
Φ(vn) −

1
2
〈Φ′(vn), vn〉

]
= lim

n→∞

∫
RN

[1
2

f (x, vn)vn − F(x, vn)
]

dx

≥

∫
RN

lim
n→∞

[1
2

f (x, vn)vn − F(x, vn)
]

dx =

∫
RN

[1
2

f (x, v)v − F(x, v)
]

dx

= Φ(v) −
1
2
〈Φ′(v), v〉 = Φ(v).

This shows that Φ(v) ≤ m and so Φ(v) = m = infN− Φ > 0. �

https://doi.org/10.1017/S144678871400041X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871400041X


116 X. H. Tang [13]

References
[1] Y. Ding, Variational Methods for Strongly Indefinite Problems (World Scientific, Singapore, 2007).
[2] Y. Ding and C. Lee, ‘Multiple solutions of Schrödinger equations with indefinite linear part and

super or asymptotically linear terms’, J. Differential Equations 222 (2006), 137–163.
[3] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators (Clarendon Press,

Oxford, 1987).
[4] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators (Birkhäuser, Basel, 1996).
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